Hephaestus
A Tool for Managing SPL Variabilities

Rodrigo Bonifacio and Leopoldo Teixeira and Paulo Borba

linformatics Center — Federal University of Pernambuco (ElFP
Recife — PE — Brazil

{rba2, | m, phmb}@i n. uf pe. br

Abstract. In this paper we present Hephaestus, a suite of tools thkivisl a
crosscutting approach for the product engineering phaseaffware product
line (SPL) development. Here we focus on some design desigiat led the
development of Hephaestus, and also present how it coulddu:for generat-
ing product specific use cases and build files of a well knovee cudy: the
Mobile Media product line.

1. Introduction

A software product line (SPL) is a set of related softwaredpats that are generated
from reusable assets. Products are related in the sensthélyathare common func-
tionality. Assets might correspond to different kinds difacts, such as requirements,
design, source code, configuration files and tests. The relusssets targeted at a
specific set of products can bring significant productivityl dime to market improve-
ments [Pohl et al. 2005]. Indirectly, quality can be imprdveo [Linden et al. 2007],
since assets are typically more exposed and tested by bewmd in different prod-
ucts. Software mass customization is one of the trends of &Rjineering, which
includes tool support for automatically composing and ganfhg assets in different
ways [Krueger 2006]. In order to do that, tools usually havednsider different models:

e Feature models (FM)that describes the domain by representing the common and
variable features of an SPL. It is understood that the wiahips and constraints
of a FM in fact represent a propositional formula whose ims¢g correspond to
the SPL members [Batory 2005].

¢ Instance models (IM)that represent SPL members. Therefore, an IM is usually
represented as a selection of features that satisfies alldrstraints.

e Product line assets (PLA)that represent (configurable) artifacts of a SPL. It is
important to remind that PLA might involve different kindsantifacts.

e Configuration knowledge (CK) that is responsible for relating configurations of
features to product line assets. Actually, there existemiht CK representations,
whereas the most simple basically maps one feature to ot ass

The main contribution of this paper is to presefeiphaestus a suite of libraries
and tools that evaluates SPL models and generates arfdastgecific instances of a SPL.
Hephaestuprovides a simple graphical interface that basically al@roduct engineers
to select the input models of the product derivation pro@esk IM, CK, and PLA). In the
current version, two types of PLA are supported: use caseasios, to generate product
specific use case models, and mappings between names aod code files, to generate

'Hephaestus was the Greek god of technology, craftsmen rtisairss.

build files in a suitable format for compiling Java/Aspectdgrams. The result of the
building process is an abstract representation of a SPL raethat could be exported to
different formats. For instance, currently we export prcidipecific use case models to
both ETeX and MS Word Documents.

Figure 1 shows the big picture éfephaestushighlighting the models used as
input for the product derivation process, as well as the tain window, presenting
some of its features. For example, besides deriving praghestific use case models and
build files, Hephaestuslso allows product engineers to check satisfiability aneate
some mistakes that are likely to occur in feature models.s&hater operations are not
covered in this paper.

It is important to notice that the input models are not speditisingHephaestus
Actually, different tools might be used for specifying thefor example, we make use
of MS Word documents, following a particular template, tateiuse case scenarios.
These documents are exported to XML and then parsed by disgdephaestusibrary.
Similarly, feature models, as well as instance models, aasgecified using available
tools, such ageature Modeling Plugitor Feature IDE

As a final remark for this section, in this paper we draw speatizntion to the
design of our configuration knowledge, which differs fromséixg tools [Beuche 2003,
Cirilo et al. 2008] in the sense that it relates feature esgoms to actions that evolve
PLA to product specific artifacts. Thus, a given feature egpion could be related to
several actions. This design simplifies the configuratioovkadge, since it is able to
remove multiple copies of an expression. Such a duplicatimit arise when relating a
single component to its required features.

2. Hephaestus

Hephaestudevelopment was initially proposed to validate one apgrdacrepresenting
variability in requirements models [Bonifacio and Borl09]. Recently, we introduced
new features, allowing users to generate product specifid bles and check several
properties of features models. We start this section ptegpasage scenarios for manag-
ing variabilities in two different types of artifacts: ragements and build files. Then we
present an overview of the main building blocks of Hephagestine usage scenarios are
based on examples from the Mobile Media product line [Figed® et al. 2008], which
contains applications that manipulate media such as phaisic, and video on mobile
devices.

2.1. Managing requirement variabilities

Following the terminology proposed by [Bachmann and Bagd P®lephaestusupports
three types of requirements variability:

e Variability in function. Occurs when a particular function (detailed as use case
scenarios here) might exist in some products and not in ether

e Variability in control flow. Occurs when a pattern afser-systeninteraction
within a scenario varies from one product to another.

¢ Variability in data. Corresponds to fine grained variations and occurs whenever
two or more scenarios share the same behavior and diffefatiae to the values
of a same concept.

X| Hephaestus - Variability Management Environment
Input models

Use case model |] ueModeLxmi E
FM IM PLA CK Component model || componentModel.txt =
Feature model featureModel xm! =

g @ £L @ Product configwation [| instanceModelxml =)

c knowledge xml =
Product Derivation Process
oy €
A1 S =
ﬂ Check Input Files Check FM Satisfiabilty Find FM Bad Smells Display FM Generate Products
Enrors | Summary |

Product Specific il | |
Artifacts

Figure 1. High level view and GUI of Hephaestus.

For instance, consider the reusable scen@dproduce Mediavhich can be con-
figured according to the supported types of streaming, taéadole control options, and
the selection (or not) of theavoritefeature. Two instances of this scenario are shown on
Figure 2. The first instance &teproduce Mediacenario (in the left side of the figure)
will be found in products with the following configuration:

* Streaming Content (Audio, Video), Control Options (Pa&ep), Favorite
whereas the second one will be found in products configuréa wi

* Streaming Content (Audio), Control Options (Pausét (Favorite)

User Action System Response
The user selects one existing album | The MM application retrieves and shows the list of
of the supported streamming supported streaming contents (Audio, Video)
contents (Audio, Video). available in the selected album.
User Action System Response
The user selecis one of the The MM application highlights the selected content,

available multimedia contents.
The user selects one existing album | The MM application retrieves and shows the list of
o of the supported streaming contents | supported streaming contents (Audio) available in
The user selects the Reproduce The MM application instantiates the suitable player (Audio). the selected album.

option. for the selected content type (Audio, Video).

The user selects one of the

The MM application starts to reproduce the available multimedia contents.

streaming content, which will be playing until either
the player reach the end of the streaming or the user
selects one of the available options (Pause, Stop) in The user selects the R The MM 1 instantiates the suitable player
the player control. option. for the selected content type (Audio).

The MM application highlights the selected content.

The MM application increments the number of times

the content has been played. The MM application starts to reproduce Ihe_ !

— - _ streaming content, which will be playing until either
The MM application updates the record store with the player reach the end of the streaming or the user
the current number of times the content had been selects one of the available options (Pause).
played.

Figure 2. Two configurations of Reproduce Media

In order to deal with variabilities between instances ofgame scenario, we had
to propose new constructs to describe use cases [Cockb0f}: 2&pectual use cases and
parameters. Aspectual use cases deal with variability irobflow (as required by the
Favoritefeature in the current example, whose behavior is repreddaytthegray steps in
the first configuration of Figure 2). Scenario parametragton the other hand, deal with
variability in data (as required by tHgtreaming Conterdnd Control Optionsfeatures).
Variability in function did not demand any new construct gewcase modeling. Indeed,
we represent which selection of features requires a seettanough the configuration
knowledge (as we explain later).

Using these new constructs, we could represent both coafigns of Figure 2
using: (a) a parameterized scenario (SC01), which defiresdmmon behavior dRe-
produce Mediand (b) an aspectual use case (ADV01) that specifies thengppbehavior
required by thd=avoritefeature. We represent this design in Figure 3.

In our notation, parameters are represented as names emdps<” and “>".
There are four references to parameters in the scenarigafd=B. In the first and third
steps, references to the SC' > parameter abstract the options of thgeaming Con-
tentfeature. Similarly, the reference to tke OC' > parameter abstracts tl@ptional
Controls Further, aspectual use cases differ from scenarios bectheyg have a pointcut
clause (either After or Before). In this clause we refer tecs@l annotations written in
steps of scenarios (or even steps of advice). The evaluafian advice combines its
steps before (or after) any step that matches the pointausel In the current example,
the fourth step of the scenario SCO1 (see Figure 3) hag@dhayMedi a annotation.
Consequently, evaluating the advice ADVO01 results in a floevents similar to the sce-
nario described in the left side of Figure 2.

Id: SCO1

User Action System Response

The user selects one existing album | The MM application retrieves and shows the list of
of the supported streaming contents | supported streaming contents (<SC>) available in
(<8C>). the selected album.

The user selects one of the

available multimedia contents. The MM application highlights the selected content.

The user selects the Reproduce The MM application instantiates the suitable player
option. for the selected content type (<SC>).

The MM application starts to reproduce the
streaming content, which will be playing until either
the player reach the end of the streaming or the user
selects one of the available options (<OC>).

@PlayMedia
Id: ADVO1
Pointcut: after PlayMedia
User Action System Response

The MM application increments the number of times
the content has been played.

The MM application updates the record store with
the current number of times the content had been
played.

Figure 3. Specification of the features Reproduce Media and F avorite.

Note that scenarios (or advices) do not make explicit refeze to features. Ac-
tually, the configuration knowledge is responsible for tiaa PLA (in this section, use
case scenarios) to features. Indeed, the structure of edigooation knowledge relates
feature expressions to transformations that translatésii®io product specific artifacts.

If a feature expression is evaluatedTasefor a given instance model, the related trans-
formations are applied.

Three distinct transformations deal with the types of \ality discussed here:
select scenario (deals with variability in function), ewatle advice (deals with variabil-
ity in control flow), and bind parameter (deals with variépiin data). Therefore, the
configuration knowledge of Figure 4 covers the configurgbdf the Reproduce Media
scenario.

Feature Expression Transformations

ReproduceMedia selectScenario SCO1

Streaming Content bindParameter SC

Optional Controls bindParameter OC

Favorite evaluateAdvice AVO01, selectScenario SC02

Figure 4. Instance of the CK for managing requirements varia bility.

2.2. Managing build files variabilities

To create an instance of the Mobile Media product line [Figed®o et al. 2008], we use
a build file (Ist) to list all the source files (classes and aspects) that dhimicompiled
by the build task. In the original way that the Mobile Mediaguct line is set up, for
each instance of the SPL we have to manually create a builth@iledescribes it. As
an example, consider tidobileMediaA02.Isfile depicted on Figure 5 (a) and théo-
bileMediaABCO3.Istile depicted on Figure 5 (b). The first file describes the dassd
aspects that comprise the product that includes the faligfeatures:

* Photo, Sorting, Favorite
whereas the second file describes products configured with:

* Photo, Music, Video, Sorting, Favorite, Copy, SMS, Capture

Common # Common
src/lancs/mobilemedia/core/ui/MainUIMidlet.java
Photo
src/lancs/mobilemedia/core/util/MediaUtil.java
Sorting
Photo
src/lancs/mobilemedia/alternative/photo/PhotoAspect.aj # Favorite
src/lancs/mobilemedia/alternative/photo/PhotoViewScreen.java ;é.Sorling AND Favorite
Sorting # Music
src/lancs/mobilemedia/optional/sorting/SortingAspect.aj src/lancs/mobilemedia/alternative/music/MusicAspect.aj
Favorite # Copy AND Video
rc/lancs/mobilemedi: nati ourites/FavouritesAspect.java src/lancs/mobilemedia/alternative/video/optional/CopyAndVideo.aj
Sorting AND Favorite # Copy OR SMS
src/lancs/mobilemedia/optional/SortingAndFavorite.aj src/lancs/mobilemedia/optional/copySMS/PhotoViewController.java
(a) MobileMediaA02.Ist (b) MobileMediaABCO03.Ist

Figure 5. Simplified examples of build files for MobileMedia.

By analysis of these files, we noticed that some lines will fgs@nt in both prod-
ucts, while others are specific to a product. Actually, #i@mmonrsection will be the
same for all products. In order to manage variability in ébasild files, we have to be
able to relate feature expressions to classes and aspbetgfdre, we can generate build
files for specific instances of the SPL, instead of having touady create them. This
facilitates the maintenance and evolution of build script®e can also clearly notice the
need for a mapping of feature expressions to artifacts. msiance, this can be seen on
Figure 5 (a): the line corresponding to the ertingAndFavorite.ayill only be present
when both features are selected. If we only mapped featarasgets in a 1:1 relation-
ship, creating another feature call@drtingAndFavoritevould be the only way we could
achieve the same result. However, we would pollute the feahodel with implementa-
tion decisions.

Again, the configuration knowledge will be responsible felating features to
PLA, which in this section, are classes and aspects to be i@pln this particular
case, the build file that is going to be generated only needsctade the path to the
class or aspect to be compiled. Therefore, the structurertanfiguration knowledge,
in this case, will relate feature expressions to the transftionselect that maps a name
to a source code file path. This mapping is important, foraimse¢, to enable us to use
classes and aspects with the same name, something that gaaden a SPL to represent
variations. In a regular program, this would normally résnla compile error. The
configuration knowledge of Figure 6 illustrates how we camagge variability on the
build files, based on the examples from Figure 5.

Feature Expression Transformations

MobileMedia select MainUIMidlet, ..., select MediaUtil
Photo select PhotoAspect, ..., select PhotoViewScreen
Sorting and Favorite select SortingAndFavorite
Copy and Video select CopyAndVideo
Figure 6. Simplified instance of CK for managing build files va riability.

2.3. Hephaestus libraries

In fact, Hephaestus is a suite of Haskell libraries and ttmiproduct line development.
We justify our choice for Haskell and discuss about somegtedecisions regarding its
implementation in Section 3. The following libraries haweeh developed:

e Core: Defines functions and data types that are available to adrétephaestus
libraries. For instance, it declares tRarserResuldata type, which follows a
monadic approach for dealing with parsers. All parsers ddfin our tool suite
depends oParserResult

e Feature model: Defines data types for feature modeling and several funsfam
reasoning about feature and instance models. For exarhdilrary provides
functions for:

— translating feature models to propositional logic
— checking feature model satisfiability
— mining feature model bad smells

Additionally, we have implemented a generic traversal fiomcthat can be used
for developing new operations on FMs. Finally, there is aw@nd line applica-
tion within this library. As a consequence, users and dg@esinterested only in
FM reasoning and manipulation could use this library indeieatly.

e Use case modelDefines an abstract representation of pineduct line use case
model This includes the definition of some data types, such asassscaspectual
use cases, scenarios, and advice. Additionally, it imptemall transformations
that map a product line use case model into product specHicases.

e Component model: Defines the mapping between names and source code files.
Some items of the configuration knowledge refer to these samerder to select
the source files that should be included in a build file. Trams&tions related
to the component model are defined in this library. Currerdhly the select
transformation, discussed before, is available.

e Configuration knowledge: Defines a novel representation of the configuration
knowledge and implements a reusable engine of the produistatien process
(see Figure 1). This engine is able to evaluate differerdskiof transformations,
so it does not have to change when new transformations aredefMoreover,
the output of the product derivation process is an abstegresentation of a SPL
member. Currently, this representation is composed by duatspecific use case
model and a list of references to source code files.

3. Hephaestus implementation

We have chosen Haskell as the programming language sinsathantics of therod-
uct derivationprocess was formalized [Bonifacio and Borba 2009] usimgctiosscutting
modeling framework [Masuhara and Kiczales 2003], whosgimmai interpreters were im-
plemented using Schema— another functional programmirguiage. After formalizing
that semantics, we realized that Haskell was suitable feeldpingHephaestusmainly
because higher order functions and partial applicatiomoétions, two mechanisms that
underlie the design of functional languages [Hughes 1986, B298], led to a simple and
elegant implementation of both CK data type and producvdgan process.

For instance, thanks to higher order functions, we couldhddfie family of trans-
formations as a type. Indeed, tAeansformationtype synonymous (see code below)
corresponds to any function that receives as argumentsrtdtgqt line assets (PLA)
and a (probably partial) version of the product assets. [Thaa family of functions
returns a refined version of the product assets. By followimg design, the config-
uration knowledge was represented as a list of configuratems, which are pairs
(FeatureExpression, [Transformation]). Therefore, the product derivation process
filters the configuration items that declare valid featurgregsions for an instance model
and generates products by just applying all transformatjbts) declared in these config-
uration items.

type Transformation :: PLA — Product — Product
type ConfigurationKnowledge = | Configurationltem]
data Configurationltem = Configurationltem {
expression :: Feature Erpression,
transformations :: [Transformation |
}
productDerivation fm im ck pla = refine tasks pla newProduct
where
tasks = concat [transformations c | ¢ < ck, eval im (expression c)]
newProduct = ...
refine [] pla product = product
refine (t : ts) pla product = refine ts pla (t pla product)

The partial application of functions allowed us to instatgiconfiguration items
with transformations that, in fact, could have differemgjretures. For instance, although
the transformations required for managing the variabgitof Section 2.1 have the signa-
tures:

selectScenario :: Id — PLA — Product — Product
evaluateAdvice :: Id — PLA — Product — Product
bindParameter :: Id — Id — PLA — Product — Product

their partial application result in functions that matchies family of transformations
This occurs because the applicatiewal uat eAdvi ce * * ADVO1’ ’ returns a func-
tion with type PLA -> Product -> Product. Therefore, we are able to define
new transformations without changing f@duct derivatiorfunction (described above).

Although we do not want to claim here the reduction in sizehef programs as
a general and significant advantage of functional progrargmgeneric traversals and
combinators, supported by SYB, Parsec, and HXT librariesply in a large amount
the source code. For instance, we found that the Haskelleinghtation of an XML
parser for use case documents is three times smaller thaoitesponding one written in
Java. Also regarding size, in this section we discussedtdhewconcise implementation
of the product derivation process, which required less ttfahnes of code. Of course,
transformations are responsible for part of tteed work Indeed, each transformation
required a different effort to be developed. But again, kisaio the generic traversals
offered by the Scrap Your Boilerplate library [Lammel arelydn Jones 2003], we could
keep their implementation concise, varying from 8 to 30dinésource code.

We startedHephaestugslevelopment with basic knowledge of the Haskell pro-
gramming language. Therefore, we had to learn about somgndgsnciples and ad-
vanced mechanisms (such as combinators, monads, arrovtg)ational programming
throughout its development. However, most of the thirdyplioraries used irHephaes-
tus(such as Scrap Your Boilerplate, HXT, Parsec, and gtk2H&S)el documented and
they have really simplified our learning process and redocedievelopment effort. Nev-
ertheless, developers habituated to the imperative stybeogramming might consider
the design of instances of these mechanisms a challenghkg Enally, we would like
to point a question about portability. For those not famiigth compiling programs in
Unix like systems, porting Haskell code is a bit more trickgin porting Java code. Even
deploying applications using the CABAL package forrhate have to follow a process
of configure-build-instalto port a Haskell application to different environments.

4. Summary

Variability management is considered a challenge for pcotine adoption, mainly be-
cause a feature usually requires variation points to beesedtthrough different models.
Additionally, there are some types of interactions thatunaghen the presence (or ab-
sence) of a feature changes the behavior of the other onesdénto partially solve these
problems, tools for product line development decoupleuiegt and product line assets
by means of configuration models [Beuche 2003, Cirilo et@0&. This paper presents
Hephaestusa set of libraries and tools that supports SPL variabilitptigh a novel rep-
resentation of the configuration model. Differently fromstixg tools, our CK relates
features expressions to extensible transformations.igrptper we show two usage sce-
narios ofHephaestusapplying it to manage different types of variabilities b&tMobile
Media product line. An official version diephaestuss available in th&oftware Produc-
tivity Groupweb sité. This version has been used for managing variabilitiesfiermint
case studies, such as the Mobile Media and TaRGeT prodest llacomparison between
Hephaestusvith other tools is a matter of future work.

2http://www.haskell.org/cabal/
Shttp://www.cin.ufpe.br/spg

Acknowledgment

We gratefully acknowledge Prof. Joao Saraiva for guidarcéunctional programming
and Haskell. This work was partially supported by the Naldnstitute of Science and
Technology for Software Engineering (INBSfunded by CNPq and FACEPE, grants
573964/2008-4 and APQ-1037-1.03/08. The first and secotitbesiare respectively
supported by the grants CNPg CT-INFO 17/2007 and MCT/CNP4NE-O 07/2007.

References

Bachmann, F. and Bass, L. (2001). Managing variability iftveare architecturesSIG-
SOFT Softw. Eng. Note26(3):126—-132.

Batory, D. (2005). Feature models, grammars, and propaositiformulas. Technical
Report CS-TR-05-14, University of Texas at Austin, Deptraoiter Science.

Beuche, D. (2003). Variant management with pure:: variafischnical report, Pure-
Systems GmbH. At http://www.pure-systems.com.

Bird, R. (1998). Introduction to Functional Programming using HaskeRrentice Hall
PTR, 2 edition.

Bonifacio, R. and Borba, P. (2009). Modeling scenarioafaitity as crosscutting mecha-
nisms. INAOSD ’'09: Proceedings of the 8th ACM international conferenon Aspect-
oriented software developmepiiges 125-136, New York, NY, USA. ACM.

Cirilo, E., Kulesza, U., and Lucena, C. (2008). A produciron tool based on model-
driven techniques and annotatiodsurnal of Universal Computer Sciencet(8).

Cockburn, A. (2000)Writing Effective Use Case#ddison-Wesley Professional.

Figueiredo, E. et al. (2008). Evolving software produce$irwith aspects: an empirical
study on design stability. IlCSE '08: Proceedings of the 30th international confer-
ence on Software engineeringages 261-270, New York, NY, USA. ACM.

Hughes, J. (1989). Why functional programming matt€smput. J.32(2):98-107.

Krueger, C. W. (2006). New methods in software product lirecpce. Commun. ACM
49(12):37-40.

Lammel, R. and Peyton Jones, S. (2003). Scrap your baalerpla practical design
pattern for generic programmindCM SIGPLAN Notices38(3):26—37. Proceedings
of the ACM SIGPLAN Workshop on Types in Language Design andlémentation
(TLDI 2003).

Linden, F. J. v. d., Schmid, K., and Rommes, E. (20&0ftware Product Lines in Action:
The Best Industrial Practice in Product Line Engineerifpapter 8—10. Springer-
Verlag New York, Inc., Secaucus, NJ, USA.

Masuhara, H. and Kiczales, G. (2003). Modeling crossayitiraspect-oriented mecha-
nisms. InEuropean Conference on Object-Oriented Programming (EE})0Oecture
Notes in Computer Science, pages 2—28. Springetr.

Pohl, K., Bockle, G., and Linden, F. J. v. d. (2009oftware Product Line Engineering:
Foundations, Principles and TechniqueSpringer-Verlag New York, Inc., Secaucus,
NJ, USA.

“http:://www.ines.org.br

