
Hephaestus
A Tool for Managing SPL Variabilities

Rodrigo Bonifácio and Leopoldo Teixeira and Paulo Borba

1Informatics Center – Federal University of Pernambuco (UFPE)
Recife – PE – Brazil

{rba2,lmt,phmb}@cin.ufpe.br

Abstract. In this paper we present Hephaestus, a suite of tools that follows a
crosscutting approach for the product engineering phase ofsoftware product
line (SPL) development. Here we focus on some design decisions that led the
development of Hephaestus, and also present how it could be used for generat-
ing product specific use cases and build files of a well known case study: the
Mobile Media product line.

1. Introduction

A software product line (SPL) is a set of related software products that are generated
from reusable assets. Products are related in the sense thatthey share common func-
tionality. Assets might correspond to different kinds of artifacts, such as requirements,
design, source code, configuration files and tests. The reuseof assets targeted at a
specific set of products can bring significant productivity and time to market improve-
ments [Pohl et al. 2005]. Indirectly, quality can be improved too [Linden et al. 2007],
since assets are typically more exposed and tested by being used in different prod-
ucts. Software mass customization is one of the trends of SPLengineering, which
includes tool support for automatically composing and configuring assets in different
ways [Krueger 2006]. In order to do that, tools usually have to consider different models:

• Feature models (FM)that describes the domain by representing the common and
variable features of an SPL. It is understood that the relationships and constraints
of a FM in fact represent a propositional formula whose instances correspond to
the SPL members [Batory 2005].
• Instance models (IM) that represent SPL members. Therefore, an IM is usually

represented as a selection of features that satisfies all FM constraints.
• Product line assets (PLA)that represent (configurable) artifacts of a SPL. It is

important to remind that PLA might involve different kinds of artifacts.
• Configuration knowledge (CK) that is responsible for relating configurations of

features to product line assets. Actually, there exists different CK representations,
whereas the most simple basically maps one feature to one asset.

The main contribution of this paper is to presentHephaestus1, a suite of libraries
and tools that evaluates SPL models and generates artifactsfor specific instances of a SPL.
Hephaestusprovides a simple graphical interface that basically allows product engineers
to select the input models of the product derivation process(FM, IM, CK, and PLA). In the
current version, two types of PLA are supported: use case scenarios, to generate product
specific use case models, and mappings between names and source code files, to generate

1Hephaestus was the Greek god of technology, craftsmen, and artisans.



build files in a suitable format for compiling Java/AspectJ programs. The result of the
building process is an abstract representation of a SPL member that could be exported to
different formats. For instance, currently we export product specific use case models to
both LATEX and MS Word Documents.

Figure 1 shows the big picture ofHephaestus, highlighting the models used as
input for the product derivation process, as well as the toolmain window, presenting
some of its features. For example, besides deriving productspecific use case models and
build files, Hephaestusalso allows product engineers to check satisfiability and detect
some mistakes that are likely to occur in feature models. These later operations are not
covered in this paper.

It is important to notice that the input models are not specified usingHephaestus.
Actually, different tools might be used for specifying them. For example, we make use
of MS Word documents, following a particular template, to write use case scenarios.
These documents are exported to XML and then parsed by a specific Hephaestuslibrary.
Similarly, feature models, as well as instance models, can be specified using available
tools, such asFeature Modeling Pluginor Feature IDE.

As a final remark for this section, in this paper we draw special attention to the
design of our configuration knowledge, which differs from existing tools [Beuche 2003,
Cirilo et al. 2008] in the sense that it relates feature expressions to actions that evolve
PLA to product specific artifacts. Thus, a given feature expression could be related to
several actions. This design simplifies the configuration knowledge, since it is able to
remove multiple copies of an expression. Such a duplicationmight arise when relating a
single component to its required features.

2. Hephaestus

Hephaestusdevelopment was initially proposed to validate one approach for representing
variability in requirements models [Bonifácio and Borba 2009]. Recently, we introduced
new features, allowing users to generate product specific build files and check several
properties of features models. We start this section presenting usage scenarios for manag-
ing variabilities in two different types of artifacts: requirements and build files. Then we
present an overview of the main building blocks of Hephaestus. The usage scenarios are
based on examples from the Mobile Media product line [Figueiredo et al. 2008], which
contains applications that manipulate media such as photo,music, and video on mobile
devices.

2.1. Managing requirement variabilities

Following the terminology proposed by [Bachmann and Bass 2001],Hephaestussupports
three types of requirements variability:

• Variability in function. Occurs when a particular function (detailed as use case
scenarios here) might exist in some products and not in others.
• Variability in control flow. Occurs when a pattern ofuser-systeminteraction

within a scenario varies from one product to another.
• Variability in data. Corresponds to fine grained variations and occurs whenever

two or more scenarios share the same behavior and differ in relation to the values
of a same concept.



Product Derivation Process

FM IM PLA CK

Product Specific
Artifacts

Figure 1. High level view and GUI of Hephaestus.

For instance, consider the reusable scenarioReproduce Media, which can be con-
figured according to the supported types of streaming, the available control options, and
the selection (or not) of theFavoritefeature. Two instances of this scenario are shown on
Figure 2. The first instance ofReproduce Mediascenario (in the left side of the figure)
will be found in products with the following configuration:

⋆ Streaming Content (Audio, Video), Control Options (Pause,Stop), Favorite

whereas the second one will be found in products configured with:

⋆ Streaming Content (Audio), Control Options (Pause),Not (Favorite)

!"#$%&'()*+ ,-"(#.%/#"0*+"#

!"#$%&#'$&#(#)*&$+,#$#-.&*.,/$0(1%2$
+3$*"#$&%44+'*#5$&*'#02.,/$)+,*#,*&$
6!"#$%&7

!"#$88$044(.)0*.+,$'#*'.#9#&$0,5$&"+:&$*"#$(.&*$+3
&%44+'*#5$&*'#02.,/$)+,*#,*&$'!"#$%&$090.(01(#$.,
*"#$&#(#)*#5$0(1%27

!"#$%&#'$&#(#)*&$+,#$+3$*"#$
090.(01(#$2%(*.2#5.0$)+,*#,*&7

!"#$88$044(.)0*.+,$"./"(./"*&$*"#$&#(#)*#5$)+,*#,*7

!"#$%&#'$&#(#)*&$*"#$;#4'+5%)#!
+4*.+,7

!"#$88$044(.)0*.+,$.,&*0,*.0*#&$*"#$&%.*01(#$4(0<#'$
3+'$*"#$&#(#)*#5$)+,*#,*$*<4#$'!"#$%&7

=

!"#$88$044(.)0*.+,$&*0'*&$*+$'#4'+5%)#$*"#
&*'#02.,/$)+,*#,*>$:".)"$:.(($1#$4(0<.,/$%,*.($#.*"#'$
*"#$4(0<#'$'#0)"$*"#$#,5$+3$*"#$&*'#02.,/!+'$*"#$%&#'$
&#(#)*&$+,#$+3$*"#$090.(01(#$+4*.+,&$'()"*+&7

!"#$%&'()*+ ,-"(#.%/#"0*+"#

12#%3"#$%"#4#'("%*+#%#5)"()+6%7483.%
*9%(2#%"300*$(#:%"($#7..)+6%
'*+(#+("!!"#$%&'()%$*&+;%

!"#$%%$&''()*&+),-$.#+.)#/#0$&-1$0",20$+"#$()0+$,3$
04'',.+#1$0+.#&5)-6$*,-+#-+0$!"#$%&'()%$*&+(
&/&)(&7(#$)-$+"#$0#(#*+#1$&(7458

!"#$40#.$0#(#*+0$,-#$,3$+"#$
&/&)(&7(#$54(+)5#1)&$*,-+#-+08

!"#$%%$&''()*&+),-$")6"()6"+0$+"#$0#(#*+#1$*,-+#-+8

!"#$40#.$0#(#*+0$+"#$9#'.,14*#!
,'+),-8

!"#$%%$&''()*&+),-$)-0+&-+)&+#0$+"#$04)+&7(#$'(&:#.$
3,.$+"#$0#(#*+#1$*,-+#-+$+:'#$;<41),=$>)1#,?8

@

!"#$%%$&''()*&+),-$0+&.+0$+,$.#'.,14*#$+"#
0+.#&5)-6$*,-+#-+=$2")*"$2)(($7#$'(&:)-6$4-+)($#)+"#.$
+"#$'(&:#.$.#&*"$+"#$#-1$,3$+"#$0+.#&5)-6!,.$+"#$40#.$
0#(#*+0$,-#$,3$+"#$&/&)(&7(#$,'+),-0$!,-#.*'(/0&1+()-$
+"#$'(&:#.$*,-+.,(8

@
!"#$%%$&''()*&+),-$)-*.#5#-+0$+"#$-457#.$,3$+)5#0$
+"#$*,-+#-+$"&0$7##-$'(&:#18

@
!"#$%%$&''()*&+),-$4'1&+#0$+"#$.#*,.1$0+,.#$2)+"$
+"#$*4..#-+$-457#.$,3$+)5#0$+"#$*,-+#-+$"&1$7##-$
'(&:#18

Figure 2. Two configurations of Reproduce Media

In order to deal with variabilities between instances of thesame scenario, we had
to propose new constructs to describe use cases [Cockburn 2000]: aspectual use cases and
parameters. Aspectual use cases deal with variability in control flow (as required by the
Favoritefeature in the current example, whose behavior is represented by thegraysteps in
the first configuration of Figure 2). Scenario parametrization, on the other hand, deal with
variability in data (as required by theStreaming ContentandControl Optionsfeatures).
Variability in function did not demand any new construct to use case modeling. Indeed,
we represent which selection of features requires a scenario through the configuration
knowledge (as we explain later).



Using these new constructs, we could represent both configurations of Figure 2
using: (a) a parameterized scenario (SC01), which defines the common behavior ofRe-
produce Mediaand (b) an aspectual use case (ADV01) that specifies the optional behavior
required by theFavoritefeature. We represent this design in Figure 3.

In our notation, parameters are represented as names enclosed by “<” and “>”.
There are four references to parameters in the scenario of Figure 3. In the first and third
steps, references to the< SC > parameter abstract the options of theStreaming Con-
tent feature. Similarly, the reference to the< OC > parameter abstracts theOptional
Controls. Further, aspectual use cases differ from scenarios because they have a pointcut
clause (either After or Before). In this clause we refer to special annotations written in
steps of scenarios (or even steps of advice). The evaluationof an advice combines its
steps before (or after) any step that matches the pointcut clause. In the current example,
the fourth step of the scenario SC01 (see Figure 3) has the@PlayMedia annotation.
Consequently, evaluating the advice ADV01 results in a flow of events similar to the sce-
nario described in the left side of Figure 2.

!"#$%&'()*+ ,-"(#.%/#"0*+"#

!"#$%&#'$&#(#)*&$+,#$#-.&*.,/$0(1%2$
+3$*"#$&%44+'*#5$&*'#02.,/$)+,*#,*&$
6!"#$%7

!"#$88$044(.)0*.+,$'#*'.#9#&$0,5$&"+:&$*"#$(.&*$+3
&%44+'*#5$&*'#02.,/$)+,*#,*&$6!"#$%$090.(01(#$.,
*"#$&#(#)*#5$0(1%27

!"#$%&#'$&#(#)*&$+,#$+3$*"#$
090.(01(#$2%(*.2#5.0$)+,*#,*&7

!"#$88$044(.)0*.+,$"./"(./"*&$*"#$&#(#)*#5$)+,*#,*7

!"#$%&#'$&#(#)*&$*"#$;#4'+5%)#!
+4*.+,7

!"#$88$044(.)0*.+,$.,&*0,*.0*#&$*"#$&%.*01(#$4(0<#'$
3+'$*"#$&#(#)*#5$)+,*#,*$*<4#$6!"#$%7

=

!"#$88$044(.)0*.+,$&*0'*&$*+$'#4'+5%)#$*"#
&*'#02.,/$)+,*#,*>$:".)"$:.(($1#$4(0<.,/$%,*.($#.*"#'$
*"#$4(0<#'$'#0)"$*"#$#,5$+3$*"#$&*'#02.,/!+'$*"#$%&#'$
&#(#)*&$+,#$+3$*"#$090.(01(#$+4*.+,&$6!&#$%7
'()*+,-./*

!"#$%&'(

!"#$%&'%()*+%,-)!.*/0,1#*

21()34567

!"#$%&'()*+ ,-"(#.%/#"0*+"#

!
"#$%&&%'(()*+',*-.%*.+/$0$.,1%,#$%.203$/%-4%,*0$1%
,#$%+-.,$.,%#'1%3$$.%()'5$67

!
"#$%&&%'(()*+',*-.%2(6',$1%,#$%/$+-/6%1,-/$%8*,#%
,#$%+2//$.,%.203$/%-4%,*0$1%,#$%+-.,$.,%#'6%3$$.%
()'5$67

Figure 3. Specification of the features Reproduce Media and F avorite.

Note that scenarios (or advices) do not make explicit references to features. Ac-
tually, the configuration knowledge is responsible for relating PLA (in this section, use
case scenarios) to features. Indeed, the structure of our configuration knowledge relates
feature expressions to transformations that translates PLA into product specific artifacts.
If a feature expression is evaluated asTrue for a given instance model, the related trans-
formations are applied.

Three distinct transformations deal with the types of variability discussed here:
select scenario (deals with variability in function), evaluate advice (deals with variabil-
ity in control flow), and bind parameter (deals with variability in data). Therefore, the
configuration knowledge of Figure 4 covers the configurability of theReproduce Media
scenario.



Feature Expression Transformations

ReproduceMedia selectScenario SC01

Streaming Content bindParameter SC

Optional Controls bindParameter OC

Favorite evaluateAdvice AV01, selectScenario SC02

... ...

Figure 4. Instance of the CK for managing requirements varia bility.

2.2. Managing build files variabilities

To create an instance of the Mobile Media product line [Figueiredo et al. 2008], we use
a build file (.lst) to list all the source files (classes and aspects) that should be compiled
by the build task. In the original way that the Mobile Media product line is set up, for
each instance of the SPL we have to manually create a build filethat describes it. As
an example, consider theMobileMediaA02.lstfile depicted on Figure 5 (a) and theMo-
bileMediaABC03.lstfile depicted on Figure 5 (b). The first file describes the classes and
aspects that comprise the product that includes the following features:

⋆ Photo, Sorting, Favorite

whereas the second file describes products configured with:

⋆ Photo, Music, Video, Sorting, Favorite, Copy, SMS, Capture

 # Common
 src/lancs/mobilemedia/core/ui/MainUIMidlet.java
 ...
 src/lancs/mobilemedia/core/util/MediaUtil.java

 # Photo
 src/lancs/mobilemedia/alternative/photo/PhotoAspect.aj 
 ...
 src/lancs/mobilemedia/alternative/photo/PhotoViewScreen.java 

 # Sorting
 src/lancs/mobilemedia/optional/sorting/SortingAspect.aj

 # Favorite
 src/lancs/mobilemedia/alternative/favourites/FavouritesAspect.java 

 # Sorting AND Favorite
 src/lancs/mobilemedia/optional/SortingAndFavorite.aj 

 # Common
 ... 
 # Photo
 ...
 # Sorting
... 
 # Favorite
 ...
 # Sorting AND Favorite
 ... 
 # Music
 src/lancs/mobilemedia/alternative/music/MusicAspect.aj 
  ...
 # Copy AND Video
 src/lancs/mobilemedia/alternative/video/optional/CopyAndVideo.aj 

 # Copy OR SMS
 src/lancs/mobilemedia/optional/copySMS/PhotoViewController.java 

(a) MobileMediaA02.lst (b) MobileMediaABC03.lst

Figure 5. Simplified examples of build files for MobileMedia.

By analysis of these files, we noticed that some lines will be present in both prod-
ucts, while others are specific to a product. Actually, the#Commonsection will be the
same for all products. In order to manage variability in these build files, we have to be
able to relate feature expressions to classes and aspects. Therefore, we can generate build
files for specific instances of the SPL, instead of having to manually create them. This
facilitates the maintenance and evolution of build scripts. We can also clearly notice the
need for a mapping of feature expressions to artifacts. For instance, this can be seen on
Figure 5 (a): the line corresponding to the fileSortingAndFavorite.ajwill only be present
when both features are selected. If we only mapped features to assets in a 1:1 relation-
ship, creating another feature calledSortingAndFavoritewould be the only way we could
achieve the same result. However, we would pollute the feature model with implementa-
tion decisions.



Again, the configuration knowledge will be responsible for relating features to
PLA, which in this section, are classes and aspects to be compiled. In this particular
case, the build file that is going to be generated only needs toinclude the path to the
class or aspect to be compiled. Therefore, the structure of our configuration knowledge,
in this case, will relate feature expressions to the transformationselect, that maps a name
to a source code file path. This mapping is important, for instance, to enable us to use
classes and aspects with the same name, something that can beused on a SPL to represent
variations. In a regular program, this would normally result in a compile error. The
configuration knowledge of Figure 6 illustrates how we can manage variability on the
build files, based on the examples from Figure 5.

Feature Expression Transformations

MobileMedia select MainUIMidlet, ..., select MediaUtil

Photo select PhotoAspect, ..., select PhotoViewScreen

Sorting and Favorite select SortingAndFavorite

Copy and Video select CopyAndVideo

... ...

Figure 6. Simplified instance of CK for managing build files va riability.

2.3. Hephaestus libraries

In fact, Hephaestus is a suite of Haskell libraries and toolsfor product line development.
We justify our choice for Haskell and discuss about some design decisions regarding its
implementation in Section 3. The following libraries have been developed:

• Core: Defines functions and data types that are available to all other Hephaestus
libraries. For instance, it declares theParserResultdata type, which follows a
monadic approach for dealing with parsers. All parsers defined in our tool suite
depends onParserResult.
• Feature model:Defines data types for feature modeling and several functions for

reasoning about feature and instance models. For example, this library provides
functions for:

– translating feature models to propositional logic
– checking feature model satisfiability
– mining feature model bad smells

Additionally, we have implemented a generic traversal function that can be used
for developing new operations on FMs. Finally, there is a command line applica-
tion within this library. As a consequence, users and developers interested only in
FM reasoning and manipulation could use this library independently.
• Use case model:Defines an abstract representation of theproduct line use case

model. This includes the definition of some data types, such as use cases, aspectual
use cases, scenarios, and advice. Additionally, it implements all transformations
that map a product line use case model into product specific use cases.
• Component model: Defines the mapping between names and source code files.

Some items of the configuration knowledge refer to these names, in order to select
the source files that should be included in a build file. Transformations related
to the component model are defined in this library. Currently, only theselect
transformation, discussed before, is available.



• Configuration knowledge: Defines a novel representation of the configuration
knowledge and implements a reusable engine of the product derivation process
(see Figure 1). This engine is able to evaluate different kinds of transformations,
so it does not have to change when new transformations are defined. Moreover,
the output of the product derivation process is an abstract representation of a SPL
member. Currently, this representation is composed by a product specific use case
model and a list of references to source code files.

3. Hephaestus implementation
We have chosen Haskell as the programming language since thesemantics of theprod-
uct derivationprocess was formalized [Bonifácio and Borba 2009] using the crosscutting
modeling framework [Masuhara and Kiczales 2003], whose original interpreters were im-
plemented using Schema— another functional programming language. After formalizing
that semantics, we realized that Haskell was suitable for developingHephaestus, mainly
because higher order functions and partial application of functions, two mechanisms that
underlie the design of functional languages [Hughes 1989, Bird 1998], led to a simple and
elegant implementation of both CK data type and product derivation process.

For instance, thanks to higher order functions, we could define the family of trans-
formations as a type. Indeed, theTransformationtype synonymous (see code below)
corresponds to any function that receives as arguments the product line assets (PLA)
and a (probably partial) version of the product assets. Then, this family of functions
returns a refined version of the product assets. By followingthis design, the config-
uration knowledge was represented as a list of configurationitems, which are pairs
(FeatureExpression, [Transformation]). Therefore, the product derivation process
filters the configuration items that declare valid feature expressions for an instance model
and generates products by just applying all transformations (t:ts) declared in these config-
uration items.

type Transformation :: PLA→ Product → Product

type ConfigurationKnowledge = [ConfigurationItem ]
data ConfigurationItem = ConfigurationItem {

expression :: FeatureExpression ,

transformations :: [Transformation ]
}
productDerivation fm im ck pla = refine tasks pla newProduct

where

tasks = concat [transformations c | c ← ck , eval im (expression c)]
newProduct = ...

refine [ ] pla product = product

refine (t : ts) pla product = refine ts pla (t pla product )

The partial application of functions allowed us to instantiate configuration items
with transformations that, in fact, could have different signatures. For instance, although
the transformations required for managing the variabilities of Section 2.1 have the signa-
tures:

selectScenario :: Id → PLA→ Product → Product

evaluateAdvice :: Id → PLA→ Product → Product

bindParameter :: Id → Id → PLA→ Product → Product



their partial application result in functions that matchesthe family of transformations.
This occurs because the applicationevaluateAdvice ‘‘ADV01’’ returns a func-
tion with typePLA -> Product -> Product. Therefore, we are able to define
new transformations without changing theproduct derivationfunction (described above).

Although we do not want to claim here the reduction in size of the programs as
a general and significant advantage of functional programming, generic traversals and
combinators, supported by SYB, Parsec, and HXT libraries, simplify in a large amount
the source code. For instance, we found that the Haskell implementation of an XML
parser for use case documents is three times smaller than thecorresponding one written in
Java. Also regarding size, in this section we discussed about the concise implementation
of the product derivation process, which required less than15 lines of code. Of course,
transformations are responsible for part of thehard work. Indeed, each transformation
required a different effort to be developed. But again, thanks to the generic traversals
offered by the Scrap Your Boilerplate library [Lämmel and Peyton Jones 2003], we could
keep their implementation concise, varying from 8 to 30 lines of source code.

We startedHephaestusdevelopment with basic knowledge of the Haskell pro-
gramming language. Therefore, we had to learn about some design principles and ad-
vanced mechanisms (such as combinators, monads, arrows) offunctional programming
throughout its development. However, most of the third-party libraries used inHephaes-
tus(such as Scrap Your Boilerplate, HXT, Parsec, and gtk2HS) are well documented and
they have really simplified our learning process and reducedour development effort. Nev-
ertheless, developers habituated to the imperative style of programming might consider
the design of instances of these mechanisms a challenging task. Finally, we would like
to point a question about portability. For those not familiar with compiling programs in
Unix like systems, porting Haskell code is a bit more tricky than porting Java code. Even
deploying applications using the CABAL package format2, we have to follow a process
of configure-build-installto port a Haskell application to different environments.

4. Summary

Variability management is considered a challenge for product line adoption, mainly be-
cause a feature usually requires variation points to be scattered through different models.
Additionally, there are some types of interactions that occur when the presence (or ab-
sence) of a feature changes the behavior of the other ones. Inorder to partially solve these
problems, tools for product line development decouple features and product line assets
by means of configuration models [Beuche 2003, Cirilo et al. 2008]. This paper presents
Hephaestus, a set of libraries and tools that supports SPL variability through a novel rep-
resentation of the configuration model. Differently from existing tools, our CK relates
features expressions to extensible transformations. In this paper we show two usage sce-
narios ofHephaestus, applying it to manage different types of variabilities of the Mobile
Media product line. An official version ofHephaestusis available in theSoftware Produc-
tivity Groupweb site3. This version has been used for managing variabilities in different
case studies, such as the Mobile Media and TaRGeT product lines. A comparison between
Hephaestuswith other tools is a matter of future work.

2http://www.haskell.org/cabal/
3http://www.cin.ufpe.br/spg



Acknowledgment

We gratefully acknowledge Prof. João Saraiva for guidanceon functional programming
and Haskell. This work was partially supported by the National Institute of Science and
Technology for Software Engineering (INES4), funded by CNPq and FACEPE, grants
573964/2008-4 and APQ-1037-1.03/08. The first and second authors are respectively
supported by the grants CNPq CT-INFO 17/2007 and MCT/CNPq/CT-INFO 07/2007.

References

Bachmann, F. and Bass, L. (2001). Managing variability in software architectures.SIG-
SOFT Softw. Eng. Notes, 26(3):126–132.

Batory, D. (2005). Feature models, grammars, and propositional formulas. Technical
Report CS-TR-05-14, University of Texas at Austin, Dept. Computer Science.

Beuche, D. (2003). Variant management with pure:: variants. Technical report, Pure-
Systems GmbH. At http://www.pure-systems.com.

Bird, R. (1998). Introduction to Functional Programming using Haskell. Prentice Hall
PTR, 2 edition.

Bonifácio, R. and Borba, P. (2009). Modeling scenario variability as crosscutting mecha-
nisms. InAOSD ’09: Proceedings of the 8th ACM international conference on Aspect-
oriented software development, pages 125–136, New York, NY, USA. ACM.

Cirilo, E., Kulesza, U., and Lucena, C. (2008). A product derivation tool based on model-
driven techniques and annotations.Journal of Universal Computer Science, 14(8).

Cockburn, A. (2000).Writing Effective Use Cases. Addison-Wesley Professional.

Figueiredo, E. et al. (2008). Evolving software product lines with aspects: an empirical
study on design stability. InICSE ’08: Proceedings of the 30th international confer-
ence on Software engineering, pages 261–270, New York, NY, USA. ACM.

Hughes, J. (1989). Why functional programming matters.Comput. J., 32(2):98–107.

Krueger, C. W. (2006). New methods in software product line practice.Commun. ACM,
49(12):37–40.

Lämmel, R. and Peyton Jones, S. (2003). Scrap your boilerplate: a practical design
pattern for generic programming.ACM SIGPLAN Notices, 38(3):26–37. Proceedings
of the ACM SIGPLAN Workshop on Types in Language Design and Implementation
(TLDI 2003).

Linden, F. J. v. d., Schmid, K., and Rommes, E. (2007).Software Product Lines in Action:
The Best Industrial Practice in Product Line Engineering, chapter 8–10. Springer-
Verlag New York, Inc., Secaucus, NJ, USA.

Masuhara, H. and Kiczales, G. (2003). Modeling crosscutting in aspect-oriented mecha-
nisms. InEuropean Conference on Object-Oriented Programming (ECOOP), Lecture
Notes in Computer Science, pages 2–28. Springer.

Pohl, K., Böckle, G., and Linden, F. J. v. d. (2005).Software Product Line Engineering:
Foundations, Principles and Techniques. Springer-Verlag New York, Inc., Secaucus,
NJ, USA.

4http:://www.ines.org.br


