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Abstract. To safely derive and evolve a software product line, it is im-
portant to have a notion of product line refactoring and its underlying
refinement notion, which assures behavior preservation. In this paper we
present a general theory of product line refinement by extending a pre-
vious formalization with explicit interfaces between our theory and the
different languages that can be used to create product line artifacts. More
important, we establish product line refinement properties that justify
stepwise and compositional product line development and evolution.

1 Introduction

A software product line is a set of related software products that are
generated from reusable assets. Products are related in the sense that they
share common functionality. Assets correspond to components, classes,
property files, and other artifacts that are composed in different ways to
specify or build the different products. This kind of reuse targeted at
a specific set of products can bring significant productivity and time to
market improvements [PBvdL05,vdLSR07].

To obtain these benefits with reduced upfront investment, previous
work [Kru02,CN01,AJC+05] proposes to minimize the initial product line
(domain) analysis and development process by bootstraping existing re-
lated products into a product line. In this context it is important to rely
on a notion of product line refactoring [Bor09], which provides guidance
and safety for deriving a product line from existing products, and also
for evolving a product line by simply improving its design or by adding
new products while preserving existing ones. Product line refactoring
goes beyond program refactoring notions [Opd92,Fow99,BSCC04,CB05]
by considering both sets of reusable assets that not necessarily cor-
respond to valid programs, and extra artifacts, such as feature mod-
els [KCH+90,CE00], which are necessary for automatically generating
products from assets.

Instead of focusing on the stronger notion of refactoring, in this pa-
per we focus on the underlying notion of product line refinement, which
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also captures behavior preservation but abstracts quality improvement.
This allows us to develop a formal theory of product line refinement,
extending the previous formalization [Bor09] with explicit assumptions
about the different languages that can be used to create product line
artifacts. More important, we establish product line refinement proper-
ties that justify safe stepwise and compositional product line development
and evolution. Our theory is encoded in the Prototype Verification System
(PVS) [ORS92], which provides mechanized support for formal specifica-
tion and verification. All properties are proved using the PVS prover.

This text is organized as follows. Section 2 introduces basic con-
cepts and notation for feature models and other extra product line ar-
tifacts [CE00,BB09]. Several assumptions and axioms explicitly establish
the interfaces between our theory and particular languages used to de-
scribe a product line. Definitions and lemmas are introduced to formalize
auxiliary concepts and properties. Following that, in Sec. 3, we discuss
and formalize our notion of product line refinement. We also derive basic
properties that justify stepwise product line development and evolution.
Next, Sec. 4 presents the product line refinement compositionality results
and their proofs. We discuss related work in Sec. 5 and conclude with
Sec. 6. Finally, Appendix A contains proofs omitted in the main text.

2 Product lines concepts

In the product line approach formalized in this paper, automatic gener-
ation of products from assets is enabled by Feature Models and Config-
uration Knowledge (CK) [CE00]. A feature model specifies common and
variant features among products, and is used for describing and selecting
products based on the features they support. A CK relates features and
assets, specifying which assets implement possible feature combinations.
Hence a CK can be used to actually build a product given chosen fea-
tures for that product. We now explain in more detail these two kinds
of artifacts and related concepts, using examples from the Mobile Media
product line [FCS+08], which contains applications – such as the one il-
lustrated in Fig. 1 – that manipulate photo, music, and video on mobile
devices.

2.1 Feature models

A feature model is essentially represented as a tree, containing features
and information about how they are related. Features basically abstract
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Fig. 1. Mobile Media screenshots

groups of associated requirements, both functional and non-functional.
In the particular feature model notation illustrated here, relationships
between a parent feature and its child features (subfeatures) indicate
whether the subfeatures are optional (present in some products but not
in others, represented by an unfilled circle), mandatory (present in all
products, represented by a filled circle), or (every product has at least one
of them, represented by a filled triangular shape), or alternative (every
product has exactly one of them, represented by an unfilled triangular
shape). For example, Fig. 2 depicts a simplified Mobile Media feature
model, where Sorting is optional, Media is mandatory, Photo and Music
are or-features, and the two illustrated screen sizes are alternative.

Mobile Media

Media

Photo Music

Screen Size

128x149 240x320

Management

Send Photo Sorting

Send Photo ⇒ Photo

Fig. 2. Mobile Media simplified feature model

Besides these relationships, feature models may contain propositional
logic formulas about features. Feature names are used as atoms to indicate
that a feature should be selected. So negation of a feature indicates that
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it should not be selected. For instance, the formula just below the tree
in Fig. 2 states that feature Photo must be present in some product
whenever feature Send Photo is selected. So

{Photo, Send Photo, 240x320},

together with the mandatory features, which hereafter we omit for brevity,
is a valid feature selection (product configuration), but

{Music, Send Photo, 240x320}

is not. Likewise {Music, Photo, 240x320} is a valid configuration, but

{Music, Photo, 240x320, 128x149}

is not because it breaks the Screen Size alternative constraint. In sum-
mary, a valid configuration is one that satisfies all feature model con-
straints, specified both graphically and through formulas.

The set of all valid configurations often represents the semantics of a
feature model. However, as different feature model notations might ex-
press constraints and configurations in different ways, our product line
refinement theory abstracts the details and just assumes a generic func-
tion [[ ]] for obtaining the semantics of a feature model as a set of config-
urations.

Assumption 1 〈Feature model semantics〉
FeatureModel : TY PE

Configuration : TY PE

[[ ]] : FeatureModel→ set[Configuration]

We use simplified PVS notation for introducing the mentioned function
and related types. In PVS, TYPE declares an uninterpreted type that
imposes no assumptions on implementations of the specification.

As shall be clear latter, these concepts are all we require about
feature models. With them, we can define our product line refinement
notion and derive its properties. So our theory applies for any fea-
ture model notation whose semantics can be expressed as a set of
configurations. This is the case of the feature model notation illus-
trated in this section and others, which have been formalized else-
where [GMB08,AGM+06,CHE05,Bat05,SHTB07].

Given a notion of feature model semantics, it is useful to define a
notion of feature model equivalence to reason about feature models. Two
feature models are equivalent iff they have the same semantics.
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Definition 1 〈Feature model equivalence〉
Feature models F and F ′ are equivalent, denoted F ∼= F ′, whenever
[[F ]] = [[F ′]].

Again, this is quite similar to the PVS specification, which defines the
equivalence as a function with the following type:

∼= : FeatureModel, FeatureModel→ bool

Hereafter we omit such typing details, and overload symbols, but the
types can be easily inferred from the context.

We now establish the equivalence properties for the just introduced
function.

Theorem 1 〈Feature model equivalence – reflexivity〉

∀F : FeatureModel · F ∼= F

Proof: Follows directly from Definition 1 and the reflexivity of the equal-
ity of configuration sets. �

Theorem 2 〈Feature model equivalence – symmetry〉

∀F, F ′ : FeatureModel · F ∼= F ′ ⇒ F ′ ∼= F

Proof: Follows directly from Definition 1 and the symmetry of the equal-
ity of configuration sets. �

Theorem 3 〈Feature model equivalence – transitivity〉

∀F, F ′, F ′′ : FeatureModel · F ∼= F ′ ∧ F ′ ∼= F ′′ ⇒ F ∼= F ′′

Proof: Follows directly from Definition 1 and the transitivity of the equal-
ity of configuration sets. �

These properties justify safe stepwise evolution of feature models, as il-
lustrated in previous work [AGM+06].

2.2 Assets and products

Besides a precise notion of feature model semantics, for defining prod-
uct line refinement we assume means of comparing assets and products
with respect to behavior preservation. We distinguish arbitrary asset sets
(set[Asset]) from well-formed asset sets (Product), which correspond to
valid products in the underlying languages used to describe assets. We
assume the wf function specifies well-formedness, and v denotes both
asset and product refinement.
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Assumption 2 〈Asset and product refinement〉
Asset : TY PE

v: Asset, Asset→ bool

wf : set[Asset]→ bool

Product : TY PE = (wf)

v : Product, Product→ bool

We use the PVS notation for defining the Product type as the set of all
asset sets that satisfy the wf predicate.

Our product line refinement theory applies for any asset language with
these notions as long as they satisfy the following properties. Both asset
and product refinement must be pre-orders.

Axiom 1 〈Asset refinement reflexivity〉

∀a : Asset · a v a

Axiom 2 〈Asset refinement transitivity〉

∀a, b, c : Asset · a v b ∧ b v c⇒ a v c

Axiom 3 〈Product refinement reflexivity〉

∀p : Product · p v p

Axiom 4 〈Product refinement transitivity〉

∀p, q, r : Product · p v q ∧ q v r ⇒ p v r

These are usually properties of any refinement notion because they are
essential to support stepwise refinement and development. This is, for
example, the case of existing refinement notions for object-oriented pro-
gramming and modeling [BSCC04,GMB05,MGB08].

Finally, asset refinement must be compositional in the sense that refin-
ing an asset that is part of a valid product yields a refined valid product.

Axiom 5 〈Asset refinement compositionality〉
∀a, a′ : Asset · ∀s : set[Asset]·

a v a′ ∧ wf(a ∪ s)

⇒ wf(a′ ∪ s) ∧ a ∪ s v a′ ∪ s
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We use ∪ both to denote set union and insertion of an element to a set.

Such a compositionality property is essential to guarantee independent
development of assets in a product line, and is supported, for example, by
existing class refinement notions [SB04]. In that context, a product is a
main command with a set of class declarations that coherently resolves all
references to class and method names. In general, we do not have to limit
ourselves to code assets, and consider any kind of asset that supports the
concepts and properties discussed in this section.

2.3 Configuration knowledge

As discussed in Sec. 2.1, features are groups of requirements, so they must
be related to the assets that realize them. This is specified by the configu-
ration knowledge (CK), which can be expressed in many ways, including
as a relation from feature expressions (propositional formulas having fea-
ture names as atoms) to sets of asset names [BB09]. For example, showing
the relation in tabular form, the following CK

Music.java, ...

AppMenu.aj, ...
Common.aj, ...

Photo.java, ...

Photo ∧ Music
Photo ∨ Music

Photo
Music

MM.java, ...Mobile Media

… …

establishes that if the Photo and Music features are both selected then
the AppMenu asset, among others omitted in the fifth row, should be part
of the final product. Essentially, this product line uses the AppMenu aspect
as a variability implementation mechanism [GA01,AJC+05] that has the
effect of presenting the left screenshot in Fig. 1. For usability issues, this
screen should not be presented by products that have only one of the
Media features, so the need for the fifth row in the simplified Mobile
Media CK. Similarly, some assets are shared by the Photo and Music
implementations, so we write the fourth row to avoid repeating the asset
names on the second and third rows.

Given a valid product configuration, the evaluation of a CK yields
the names of the assets needed to build the corresponding product. In
our example, the configuration {Photo, 240x320}1 leads to

{MM.java, . . . , Photo.java, . . . , Commom.aj, . . . }.
1 Remember we omit mandatory features for brevity.
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This gives the basic intuition for the semantics of a CK. It is a function
that maps product configurations into finite sets (represented by fset)
of asset names. So our product line refinement theory relies on a CK
semantic function [[ ]] as follows.

Assumption 3 〈CK semantics〉
CK : TY PE

AssetName : TY PE

[[ ]] : CK → Configuration→ fset[AssetName]

For the CK notation illustrated in this section, the semantics of a given
CK K, represented as [[K]], could be defined in the following way: for
a configuration c, an asset name n is in the set [[K]]c iff there is a row
in K that contains n and its expression evaluates to true according to
c. But we do not give further details because our aim is to establish a
product line refinement theory that is independent of CK notation, as
long as this notation’s semantics can be expressed as a function that
maps configurations into finite sets of assets names.

Similarly to what we have done for feature models, we define a notion
of CK equivalence based on the notion of CK semantics. This is useful to
reason about CK. Two CK specifications are equivalent iff they have the
same semantics.

Definition 2 〈Configuration knowledge equivalence〉
Configuration knowledge K is equivalent to K ′, denoted K ∼= K ′, when-
ever [[K]] = [[K ′]].

We now establish the equivalence properties for the just introduced
relation.

Theorem 4 〈Configuration knowledge equivalence – reflexivity〉

∀K : CK ·K ∼= K

Proof: Follows directly from Definition 2 and the reflexivity of the equal-
ity of functions. �

Theorem 5 〈Configuration knowledge equivalence – symmetry〉

∀K,K ′ : CK ·K ∼= K ′ ⇒ K ′ ∼= K

Proof: Follows directly from Definition 2 and the symmetry of the equal-
ity of functions. �
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Theorem 6 〈Configuration knowledge equivalence – transitivity〉

∀K,K ′,K ′′ : CK ·K ∼= K ′ ∧K ′ ∼= K ′′ ⇒ K ∼= K ′′

Proof: Follows directly from Definition 2 and the transitivity of the equal-
ity of functions.

�

2.4 Asset mapping

Although the CK illustrated in the previous section refers only to code
assets, in general we could also refer to requirements documents, design
models, test cases, image files, XML files, and so on. For simplicity, we
focus on code assets as they are equivalent to other kinds of asset for our
purposes. The important issue here is not the nature of asset contents,
but how the assets are compared and referred to in the CK.

We cover asset comparison in Sec. 2.2. For dealing with asset refer-
ences, each product line keeps a mapping such as the following

{Main 1 7→
class Main {

...new StartUp(...);...

}

Main 2 7→
class Main {

...new OnDemand(...);...

}

Common.java 7→
class Common {

...

}
...

}

from asset names used in a CK to actual assets. So, besides a feature
model and a CK, a product line contains an asset mapping, which ba-
sically corresponds to an environment of asset declarations. This allows
conflicting assets in a product line, like assets that implement alternative
features, such as both Main classes in the illustrated asset mapping.

Formally, we specify asset mappings in PVS as follows.
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Definition 3 〈Asset mapping〉
Let r be a finite set of name-asset pairs (r : fset[AssetName,Asset]).

mapping(r) : bool =

∀n : AssetName · ∀a, b : Asset·
(n, a) ∈ r ∧ (n, b) ∈ r ⇒ a = b

AssetMapping : TY PE = (mapping)

Since there is not much to abstract from this notion of asset mapping,
it is actually defined as part of our theory. Differently from the concepts
of feature model, CK, and their semantics, the asset mapping concept is
not a parameter to our theory.

We also define auxiliary functions that are used to define product
line refinement. The second one is mapping application over a set. In the
following, consider that m : AssetMapping and s : fset[AssetName].

Definition 4 〈Auxiliary asset mapping functions〉

dom(m) : set[AssetName] =

{n : AssetName | ∃a : Asset · (n, a) ∈ m}
m〈s〉 : set[Asset] =

{a : Asset | ∃n ∈ s · (n, a) ∈ m}

We use the notation ∃n ∈ s ·p(n) as an abbreviation for the PVS notation
∃n : AssetName · n ∈ s ∧ p(n).

To derive product line refinement properties, we establish several
properties of the introduced auxiliary functions. The proofs appear in
Appendix A.

Lemma 1 〈Distributed mapping over union〉
For asset mapping A, asset a, and finite sets of asset names S and S′, if

a ∈ A〈S ∪ S′〉

then

a ∈ A〈S〉 ∨ a ∈ A〈S′〉

�
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Lemma 2 〈Distributed mapping over singleton〉
For asset mapping A, asset name an and finite set of asset names S, if

an ∈ dom(A)

then

∃a : Asset · (an, a) ∈ A ∧ A〈an ∪ S〉 = a ∪A〈S〉
�

Remember we use ∪ both for set union and insertion of an element to a
set.

Lemma 3 〈Asset mapping domain membership〉
For asset mapping A, asset name an and asset a, if

(an, a) ∈ A

then

an ∈ dom(A)

�

Lemma 4 〈Distributed mapping over set of non domain elements〉
For asset mapping A and finite set of asset names S, if

¬∃n ∈ S · n ∈ dom(A)

then

A〈S〉 = {}
�

For reasoning about asset mappings, we define a notion of asset map-
ping refinement. Asset mapping equivalence could also be defined, but
we choose the weaker refinement notion since it gives us more flexibility
when evolving asset mappings independently of other product line ele-
ments such as feature models and CK. As shall be clear latter, we can
rely on refinement for asset mappings but not for the other elements; that
is why, in previous sections, we define equivalences for them. For asset
mapping refinement, exactly the same names should be mapped, not nec-
essarily to the same assets, but to assets that refine the original ones.
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Definition 5 〈Asset mapping refinement〉
For asset mappings A and A′, the first is refined by the second, denoted

A v A′

whenever

dom(A) = dom(A′)

∧ ∀n ∈ dom(A)·
∃a, a′ : Asset · (n, a) ∈ A ∧ (n, a′) ∈ A′ ∧ a v a′

We use ∀n ∈ dom(A) · p(n) to abbreviate the PVS notation

∀n : AssetName · n ∈ dom(A)⇒ p(n)

Note also that a v a′ in the definition refers to asset refinement, not to
program refinement.

We now prove that asset mapping refinement is a pre-order.

Theorem 7 〈Asset mapping refinement reflexivity〉

∀A : AssetMapping ·A v A

Proof: For an arbitrary asset mapping A, from Definition 5 we have to
prove that

dom(A) = dom(A)

∧ ∀n ∈ dom(A)·
∃a, a′ : Asset · (n, a) ∈ A ∧ (n, a′) ∈ A ∧ a v a′

The first part of the conjunction follows from equality reflexivity. For an
arbitrary n ∈ dom(A), we are left to prove

∃a, a′ : Asset · (n, a) ∈ A ∧ (n, a′) ∈ A ∧ a v a′ (1)

From Definition 4, as n ∈ dom(A), we have that

n ∈ {n : AssetName | ∃a : Asset · (n, a) ∈ A}

By set comprehension and membership, we have that

∃a : Asset · (n, a) ∈ A

Let a1 be such a. Then we have (n, a1) ∈ A. From this and Axiom 1, we
easily obtain 1 taking a and a′ as a1.



A Theory of Software Product Line Refinement 13

�

Theorem 8 〈Asset mapping refinement transitivity〉

∀A,A′, A′′ : AssetMapping ·A v A′ ∧A′ v A′′ ⇒ A v A′′

Proof: For arbitrary asset mappings A, A′, and A′′, assume that A v A′

and A′ v A′′. From Definition 5 we have to prove that

dom(A) = dom(A′′)

∧ ∀n ∈ dom(A)·
∃a, a′′ : Asset · (n, a) ∈ A ∧ (n, a′′) ∈ A′′ ∧ a v a′′

The first part of the conjunction follows from our assumptions, Defini-
tion 5, and equality transitivity. For an arbitrary n ∈ dom(A), we are left
to prove

∃a, a′′ : Asset · (n, a) ∈ A ∧ (n, a′′) ∈ A′′ ∧ a v a′′ (2)

But from our assumptions and Definition 5 we have that n ∈ dom(A′)
and therefore

(n, a) ∈ A ∧ (n, a′) ∈ A′ ∧ a v a′

(n, a′) ∈ A′ ∧ (n, a′′) ∈ A′′ ∧ a′ v a′′

for some a, a′, a′′ : Asset. We then have the a and a′′ necessary to obtain 2
directly from this and the transitivity of asset refinement (Axiom 2). �

To establish the compositionality results, we rely on an important
property of asset mapping refinement: if A v A′ then products formed by
using A assets are refined by products formed by corresponding A′ assets.

Lemma 5 〈Asset mapping compositionality〉
For asset mapping A and A′, if

A v A′

then

∀ans : fset[AssetName] · ∀as : fset[Asset]·
wf(as ∪A〈ans〉)

⇒ wf(as ∪A′〈ans〉) ∧ as ∪A〈ans〉 v as ∪A′〈ans〉
�
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2.5 Product lines

We can now provide a precise definition for product lines. In particular,
a product line consists of a feature model, a CK, and an asset mapping
that jointly generate products, that is, valid asset sets in their target
languages.

Definition 6 〈Product line〉
For a feature model F , an asset mapping A, and a configuration knowledge
K, we say that tuple

(F,A,K)

is a product line when, for all c ∈ [[F ]],

wf(A〈[[K]]c〉)

We omit the PVS notation for introducing the ProductLine type, but it
roughly corresponds to the one we use in this definition.

The well-formedness constraint in the definition is necessary because
missing an entry on a CK might lead to asset sets that are missing some
parts and thus are not valid products. Similarly, a mistake when writ-
ing a CK or asset mapping entry might yield an invalid asset set due
to conflicting assets, like two aspects that are used as variability mecha-
nism [GA01,AJC+05] and introduce methods with the same signature in
the same class. Here we demand product line elements to be coherent as
explained.

Given the importance of the well-formedness property in this def-
inition, we establish compositionality properties related to the well-
formedness function wf . First we have that feature model equivalence
is compositional with respect to wf .

Lemma 6 〈Feature model equivalence compositionality over wf〉
For feature models F and F ′, asset mapping A, and configuration knowl-
edge K, if

F ∼= F ′ ∧ ∀c ∈ [[F ]] · wf(A〈[[K]]c〉)

then

∀c ∈ [[F ′]] · wf(A〈[[K]]c〉)
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�

Similarly, for CK we have the following.

Lemma 7 〈CK equivalence compositionality over wf〉
For feature model F , asset mapping A, and configuration knowledge K
and K ′, if

K ∼= K ′ ∧ ∀c ∈ [[F ]] · wf(A〈[[K]]c〉)

then

∀c ∈ [[F ]] · wf(A〈[[K ′]]c〉)

�

Finally, for asset mappings we have that refinement is compositional with
respect to wf .

Lemma 8 〈Asset mapping refinement compositionality over wf〉
For feature model F , asset mapping A and A′ and configuration knowl-
edge K, if

A v A′ ∧ ∀c ∈ [[F ]] · wf(A〈[[K]]c〉)

then

∀c ∈ [[F ]] · wf(A′〈[[K]]c〉)

�

3 Product line refinement

Now that we better understand what a product line is, we can introduce
a notion of product line refinement that provides guidance and safety for
deriving a product line from existing products, and also for evolving a
product line by simply improving its design or by adding new products
while preserving existing ones.

Similar to program and model refinement [BSCC04,GMB05], product
line refinement preserves behavior. However, it goes beyond source code
and other kinds of reusable assets, and considers transformations to fea-
ture models and CK as well. This is illustrated by Fig. 3, where we refine
the simplified Mobile Media product line by renaming the feature Music.
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Music.java, ...

AppMenu.aj, ...
Common.aj, ...

Photo.java, ...

Photo ∧ Music
Photo ∨ Music

Photo
Music

MM.java, ...Mobile Media
Photo.java

Music.java

Mobile Media

Media

Photo Music

Screen Size

128x149 240x320

Management

Send Photo Sorting

Send Photo ⇒ Photo

… …

Audio.java, ...

AppMenu.aj, ...
Common.aj, ...

Photo.java, ...

Photo ∧ Audio
Photo ∨ Audio

Photo
Audio

MM.java, ...Mobile Media
Photo.java

Audio.java

… …

Mobile Media

Media

Photo Audio

Screen Size

128x149 240x320

Management

Send Photo Sorting

Send Photo ⇒ Photo

✔

✔
✔
✔

✔

✔

✔

Fig. 3. Product line renaming refinement

As indicated by check marks, this renaming requires changing the feature
model, CK, and asset mapping; due to a class name change, we must
apply a global renaming, so the main method and other classes beyond
Music.java are changed too.

The notion of behavior preservation should be also lifted from assets
to product lines. In a product line refinement, the resulting product line
should be able to generate products that behaviorally match the origi-
nal product line products. So users of an original product cannot observe
behavior differences when using the corresponding product of the new
product line. With the renaming refinement, for example, we have only
improved the product line design: the resulting product line generates a
set of products exactly equivalent to the original set. But it should not
be always like that. We consider that the better product line might gen-
erate more products than the original one. As long as it generates enough
products to match the original product line, users have no reason to com-
plain. For instance, by adding the optional Copy feature (see Fig. 4), we
refine our example product line. The new product line generates twice as
many products as the original one, but what matters is that half of them
– the ones that do not have feature Copy – behave exactly as the original
products. This ensures that the transformation is safe; we extended the
product line without impacting existing users.

3.1 Formalization

We formalize these ideas in terms of product refinement (see Assump-
tion 2). Basically, each program generated by the original product line
must be refined by some program of the new, improved, product line.
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Music.java, ...

AppMenu.aj, ...
Common.aj, ...

Photo.java, ...

Photo ∧ Music
Photo ∨ Music

Photo
Music

MM.java, ...Mobile Media
Photo.java

AppMenu.aj

Mobile Media

Media

Photo Music

Screen Size

128x149 240x320

Management

Send Photo Sorting

Send Photo ⇒ Photo

… …

Mobile Media

Media

Photo Music

Screen Size

128x149 240x320

Management

Send Photo Sorting

Send Photo ⇒ Photo

Copy

CopyPhoto.aj, ...Copy ∧ Photo
Copy.java, ...Copy

Music.java, ...

AppMenu.aj, ...
Common.aj, ...

Photo.java, ...

Photo ∧ Music
Photo ∨ Music

Photo
Music

MM.java, ...Mobile Media
Photo.java

AppMenu.aj… …

CopyPhoto.aj

✔

✔
✔

✔

Fig. 4. Adding an optional feature refinement

Definition 7 〈Product line refinement〉
For product lines (F,A,K) and (F ′, A′,K ′), the first is refined by the
second, denoted

(F,A,K) v (F ′, A′,K ′)

whenever

∀c ∈ [[F ]] · ∃c′ ∈ [[F ′]] ·A〈[[K]]c〉 v A′〈[[K ′]]c′〉

Remember that, for a configuration c, a configuration knowledge K, and
an asset mapping A related to a given product line, A〈[[K]]c〉 is a well-
formed set of assets. So A〈[[K]]c〉 v A′〈[[K ′]]c′〉 refers to the product re-
finement notion discussed in Sec. 2.2.

3.2 Examples and considerations

To explore the definition just introduced, let us analyze a few concrete
product line transformation scenarios.

Feature names do not matter First let us see how the definitions
applies to the transformation depicted by Fig. 3. The feature models
differ only by the name of a single feature. So they generate the same
set of configurations, modulo renaming. For instance, for the source (left)
product line configuration {Music, 240x320} we have the target (right)
product line configuration {Audio, 240x320}. As the CKs have the same
structure, evaluating them with these configurations yield
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{Commmon.aj, Music.java, . . . }

and

{Commmon.aj, Audio.java, . . . }.

The resulting sets of asset names differ at most by a single element:
Audio.java replacing Music.java. Finally, when applying these sets of
names to both asset mappings, we obtain the same assets modulo global
renaming, which is a well known refinement for closed programs. This
is precisely what, by Definition 7, we need for assuring that the source
product line is refined by the target product line.

This example shows that our refinement definition focus on the prod-
uct line themselves, that is, the sets of products that can be gener-
ated. Contrasting with our previous notion of feature model refactor-
ing [AGM+06], feature names do not matter. So users will not notice
they are using products from the new product line, although developers
might have to change their feature nomenclature when specifying product
configurations. Not caring about feature names is essential for support-
ing useful refinements such as the just illustrated feature renaming and
others that we discuss later.

Safety for existing users only To further explore the definitions, let
us consider now the transformation shown in Fig. 4. The target feature
model has an extra optional feature. So it generates all configurations of
the source feature model plus extensions of these configurations with fea-
ture Copy. For example, it generates both {Music, 240x320} and {Music,
240x320, Copy}. For checking refinement, we focus only on the common
configurations to both feature models – configurations without Copy. As
the target CK is an extension of the source CK for dealing with cases
when Copy is selected, evaluating the target CK with any configuration
without Copy yields the same asset names yielded by the source CK with
the same configuration. In this restricted name domain, both asset map-
pings are equal, since the target mapping is an extension of the first for
names such as CopyPhoto.java, which appears only when Copy is se-
lected. Therefore, the resulting assets produced by each product line are
the same, trivially implying program refinement and then product line
refinement.

By focusing on the common configurations to both feature models,
we check nothing about the new products offered by the new product
line. In fact, they might even not operate at all. Our refinement notion
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assures only that users of existing products will not be disappointed by
the corresponding products generated by the new product line. We give
no guarantee to users of the new products, like the ones with Copy func-
tionalities in our example. So refinements are safe transformations only in
the sense that we can change a product line without impacting existing
users.

Non refinements As discussed, the transformation depicted in Fig. 3
is a refinement. Classes and aspects are transformed by a global renam-
ing, which preserves behavior for closed programs. But suppose that,
besides renaming, we change the AppMenu.aj2 aspect so that, instead of
the menu on the left screenshot in Fig. 1, we have a menu with “Pho-
tos” and “Audio” options. The input-output behavior of new and original
products would then not match, and users would observe the difference.
So we would not be able to prove program refinement, nor product line
refinement, consequently.

Despite not being a refinement, this menu change is an useful product
line improvement, and should be carried on. The intention, however, is to
change behavior, so developers will not be able to rely on the benefits of
checking refinement. The benefits of checking for refinement only apply
when the intention of the transformation is to improve product line con-
figurability or internal structure, without changing observable behavior.

3.3 Basic properties

To support stepwise product line development and evolution, we now
establish that product line refinement is a pre-order.

Theorem 9 〈Product line refinement reflexivity〉

∀l : ProductLine · l v l

Proof: Let l = (F,A,K) be an arbitrary product line. By Definition 7,
we have to prove that

∀c ∈ [[F ]] · ∃c′ ∈ [[F ]] ·A〈[[K]]c〉 v A〈[[K]]c′〉

For an arbitrary c ∈ [[F ]], just let c′ be c and the proof follows from
product refinement reflexivity (Axiom 3).

�

2 See Sec. 2.3 for understanding the role this aspect plays.
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Theorem 10 〈Product line refinement transitivity〉

∀l1, l2, l3 : ProductLine · l1 v l2 ∧ l2 v l3 ⇒ l1 v l3

Proof: Let l1 = (F1, A1,K1), l2 = (F2, A2,K2), l3 = (F3, A3,K3) be arbi-
trary product lines. Assume that l1 v l2 ∧ l2 v l3. By Definition 7, this
amounts to

∀c1 ∈ [[F1]] ∧ ∃c2 ∈ [[F2]] ·A1〈[[K1]]c1〉 v A2〈[[K2]]c2〉 (3)

and

∀c2 ∈ [[F2]] · ∃c3 ∈ [[F3]] ·A2〈[[K2]]c2〉 v A3〈[[K3]]c3〉 (4)

We then have to prove that

∀c1 ∈ [[F1]] · ∃c3 ∈ [[F3]] ·A1〈[[K1]]c1〉 v A3〈[[K3]]c3〉

For an arbitrary c1 ∈ [[F1]], we have to prove that

∃c3 ∈ [[F3]] ·A1〈[[K1]]c1〉 v A3〈[[K3]]c3〉 (5)

Properly instantiating c1 in 3, we have

∃c2 ∈ [[F2]] ·A1〈[[K1]]c1〉 v A2〈[[K2]]c2〉

Let c′2 be such c2. Properly instantiating c′2 in 4, we have

∃c3 ∈ [[F3]] ·A2〈[[K2]]c
′
2〉 v A3〈[[K3]]c3〉

Let c′3 be such c3. Then we have

A1〈[[K1]]c1〉 v A2〈[[K2]]c
′
2〉 ∧A2〈[[K2]]c

′
2〉 v A3〈[[K3]]c

′
3〉

By product refinement transitivity (Axiom 4), we have

A1〈[[K1]]c1〉 v A3〈[[K3]]c
′
3〉

This gives us the c3 in 5 that completes our proof.
�
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4 Product line refinement compositionality

The product line refinement notion allows one to reason about a product
line as a whole, considering its three elements (artifacts): feature model,
CK, and asset mapping. However, for independent development of prod-
uct line artifacts, we must support separate and compositional reasoning
for each product line artifact. This allows us to evolve product line arti-
facts independently. We first consider feature models. Replacing a feature
model by an equivalent one leads to a refined product line.

Theorem 11 〈Feature model equivalence compositionality〉
For product lines (F,A,K) and (F ′, A,K), if

F ∼= F ′

then

(F,A,K) v (F ′, A,K)

Proof: For arbitrary F , F ′, A, K, assume that F ∼= F ′. By Definition 7,
we have to prove that

∀c ∈ [[F ]] · ∃c′ ∈ [[F ′]] ·A〈[[K]]c〉 v A〈[[K]]c′〉

From our assumption and Definition 1, this is equivalent to

∀c ∈ [[F ]] · ∃c′ ∈ [[F ]] ·A〈[[K]]c〉 v A〈[[K]]c′〉

For an arbitrary c ∈ [[F ]], just let c′ be c and the proof follows from
product refinement reflexivity (Axiom 4). �

We require feature model equivalence because feature model refinement,
which requires [[F ]] ⊆ [[F ′]] instead of [[F ]] = [[F ′]], is not enough for ensur-
ing that separate modifications to a feature model imply refinement for
the product line. In fact, refinement allows the new feature model to have
extra configurations that might not generate valid products; the associ-
ated feature model refinement transformation would not lead to a valid
product line. For example, consider that the extra configurations result
from eliminating an alternative constraint between two features, so that
they become optional. The assets that implement these features might
well be incompatible, generating an invalid program when both features
are selected. Refinement of the whole product line, in this case, would
also demand changes to the assets and CK.

We can also independently evolve a CK. For similar reasons, we require
CK equivalence as well.
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Theorem 12 〈CK equivalence compositionality〉
For product lines (F,A,K) and (F,A,K ′), if

K ∼= K ′

then

(F,A,K) v (F,A,K ′)

Proof: The proof is similar to that of Theorem 11, using Definition 2
instead of Definition 1. �

Note that the reverse does not hold because the asset names generated
by K and K ′ might differ for assets that have no impact on product
behavior,3 or for assets that have equivalent behavior but are named
differently in the product lines. For similar reasons, the reverse does not
hold for Theorem 11.

For asset mappings, we can rely only on refinement. Separately refin-
ing an asset mapping implies refinement for the product line as a whole.

Theorem 13 〈Asset mapping refinement compositionality〉
For product lines (F,A,K) and (F,A′,K), if

A v A′

then

(F,A,K) v (F,A′,K)

Proof: For arbitrary F , A, A′, and K, assume that A v A′. By Defini-
tion 7, we have to prove that

∀c ∈ [[F ]] · ∃c′ ∈ [[F ]] ·A〈[[K]]c〉 v A′〈[[K]]c′〉

For an arbitrary c ∈ [[F ]], if we prove

A〈[[K]]c〉 v A′〈[[K]]c〉 (6)

then c is the necessary c′ we need to complete the proof. By Lemma 5
and our assumption, we have that

∀ans : fset[AssetName] · ∀as : fset[Asset]·
wf(as ∪A〈ans〉)

⇒ wf(as ∪A′〈ans〉) ∧ as ∪A〈ans〉 v as ∪A′〈ans〉
(7)

3 Obviously an anomaly, but still possible.
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By properly instantiating ans with [[K]]c and as with {} in 7, from set
union properties we obtain

wf(A〈[[K]]c〉)
⇒ wf(A′〈[[K]]c〉) ∧A〈[[K]]c〉 v A′〈[[K]]c〉

(8)

From Definition 6, we have that wf(A〈[[K]]c〉) for all c ∈ [[F ]]. Therefore,
from this and 8 we obtain

wf(A′〈[[K]]c〉) ∧A〈[[K]]c〉 v A′〈[[K]]c〉

concluding the proof (see 6). �

Finally, we have the full compositionality theorem, which justifies
completely independent development of product line artifacts.

Theorem 14 〈Full compositionality〉
For product lines (F,A,K) and (F ′, A′,K ′), if

F ∼= F ′ ∧A v A′ ∧K ∼= K ′

then

(F,A,K) v (F ′, A′,K ′)

Proof: First assume that F ∼= F ′, A v A′, and K ∼= K ′. By Lemma 6,
the fact that (F,A,K) is a product line, and Definition 6, we have that
(F ′, A,K) is a product line. Then, using Theorem 11, we have

(F,A,K) v (F ′, A,K) (9)

Similarly, from our assumptions, deductions, and Lemma 7 we have that
(F ′, A,K ′) is a product line. Using Theorem 12, we have

(F ′, A,K) v (F ′, A,K ′) (10)

Again, from our assumptions, deductions, and Lemma 8, we have that
(F ′, A′,K ′) is a product line. Using Theorem 13, we have

(F ′, A,K ′) v (F ′, A′,K ′) (11)

The proof then follows from 9, 10, 11, and product line refinement tran-
sitivity (Theorem 10). �
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5 Related work

The notion of product line refinement discussed here first appeared in a
product line refactoring tutorial [Bor09]. Besides talking about product
line and population refactoring, this tutorial illustrates different kinds of
refactoring transformation templates that can be useful for deriving and
evolving product lines. In this paper we extend the initial formalization of
the tutorial making clear the interface between our theory and languages
used to describe product line artifacts. We also derive a number of prop-
erties that were not explored in the tutorial. We encode the theory in the
PVS specification language and prove all properties with the PVS prover.

Our notion of product line refinement goes beyond refactoring of fea-
ture models [AGM+06,GMB08], considering also other artifacts like con-
figuration knowledge and assets, both in isolation and in an integrated
way. In particular, the refinement notion explored here is independent of
the language used to describe feature models. The cited formalization of
feature models [AGM+06,GMB08], and others [SHTB07], could, however,
be used to instantiate our theory for dealing with specific feature model
notation and semantics. Similarly, our theory is independent of product
refinement notions. A program refinement notion, like the one for a se-
quential subset of Java [SB04,BSCC04], could be used to instantiate our
general theory.

Early work [CDCvdH03] on product line refactoring focus on Prod-
uct Line Architectures (PLAs) described in terms of high-level compo-
nents and connectors. This work presents metrics for diagnosing struc-
tural problems in a PLA, and introduces a set of architectural refactor-
ings that can be used to resolve these problems. Besides being specific to
architectural assets, this work does not deal with other product line ar-
tifacts such as feature models and configuration knowledge. There is also
no notion of behavior preservation for product lines, as captured here by
our notion of product line refinement.

Several approaches [KMPY05,TBD06,LBL06,KAB07] focus on refac-
toring a product into a product line, not exploring product line evolution
in general, as we do here. First, Kolb et al. [KMPY05] discuss a case
study in refactoring legacy code components into a product line imple-
mentation. They define a systematic process for refactoring products with
the aim of obtaining product lines assets. There is no discussion about
feature models and configuration knowledge. Moreover, behavior preser-
vation and configurability of the resulting product lines are only checked
by testing. Similarly, Kastner et al. [KAB07] focus only on transforming



A Theory of Software Product Line Refinement 25

code assets, implicitly relying on refinement notions for aspect-oriented
programs [CB05]. As discussed here and elsewhere [Bor09] these are not
adequate for justifying product line refinement and refactoring. Trujillo et
al. [TBD06] go beyond code assets, but do not explicitly consider transfor-
mations to feature model and configuration knowledge. They also do not
consider behavior preservation; they indeed use the term “refinement”,
but in the quite different sense of overriding or adding extra behavior to
assets.

Liu et al. [LBL06] also focus on the process of decomposing a legacy
application into features, but go further than the previously cited ap-
proaches by proposing a refactoring theory that explains how a feature
can be automatically associated to a base asset (a code module, for in-
stance) and related derivative assets, which contain feature declarations
appropriate for different product configurations. Contrasting with our
theory, this theory does not consider feature model transformations and
assumes an implicit notion of configuration knowledge based on the idea
of derivatives. So it does not consider explicit configuration knowledge
transformations as we do here. Their work is, however, complementary to
ours since we abstract from specific asset transformation techniques such
as the one supported by their theory. By proving that their technique can
be mapped to our notion of asset refinement, both theories could be used
together.

The theory we present in this paper aims to formalize concepts
and processes from tools [LBL06,CBS+07,ACN+08] and practical experi-
ence [ACV+05,AJC+05,KMPY05,AGM+06,TBD06,KAB07] on product
line refactoring. A more rigorous evaluation of the proposed theory is,
however, left as future work.

6 Conclusions

In this paper we present a general theory of product line refinement, for-
malizing refinement and equivalence notions for product lines and its ar-
tifacts: feature model, configuration knowledge, and asset mapping. More
important, we establish a number of properties that justify stepwise and
compositional product line development and evolution. The presented
theory is largely independent of the languages used to describe feature
model, configuration knowledge, and reusable assets. We make this ex-
plicit through assumptions and axioms about basic concepts related to
these languages.
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By instantiating this theory with proper notations and semantic for-
malizations for feature models and the other product line artifacts, we
can directly use the refinement and equivalence notions, and the associ-
ated properties, to guide and improve safety of the product line deriva-
tion and evolution processes. Such an instantiation also allows one to
formally prove soundness of product line refactoring transformation tem-
plates [Bor09] expressed in those notations. As the transformation tem-
plates precisely specify the transformation mechanics and preconditions,
their soundness is specially useful for correctly implementing the transfor-
mations and avoiding typical problems with current program refactoring
tools [ST09]. In fact, soundness could help to avoid even subtler problems
that can appear with product line refactoring tools.
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A Extra proofs

In this appendix we present the proofs we omitted in the main text.
The PVS specification of the whole theory, and proof files for all lemmas
and theorems are available at http://twiki.cin.ufpe.br/twiki/bin/

view/SPG/TheorySPLRefinement.

Lemma 1 〈Distributed mapping over union〉
For asset mapping A, asset a, and finite sets of asset names S and S′, if

a ∈ A〈S ∪ S′〉

then

a ∈ A〈S〉 ∨ a ∈ A〈S′〉

http://twiki.cin.ufpe.br/twiki/bin/view/SPG/TheorySPLRefinement
http://twiki.cin.ufpe.br/twiki/bin/view/SPG/TheorySPLRefinement
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Proof: For arbitrary A, a, S , and S′, assume a ∈ A〈S ∪ S′〉. From this
and Definition 4 (A〈〉) we have

a ∈ {a : Asset | ∃n ∈ S ∪ S′ · (n, a) ∈ m}

From set union and membership properties, we have

a ∈ {a : Asset | ∃n ∈ S · (n, a) ∈ m ∨ ∃n ∈ S′ · (n, a) ∈ m}

From set comprehension properties, we have

a ∈ {a : Asset | ∃n ∈ S · (n, a) ∈ m} ∪ {a : Asset | ∃n ∈ S′ · (n, a) ∈ m}

By applying twice Definition 4 (A〈〉), we derive

a ∈ A〈S〉 ∪A〈S′〉

The proof follows from the above and set membership properties. �

Lemma 2 〈Distributed mapping over singleton〉
For asset mapping A, asset name an, and finite set of asset names S, if

an ∈ dom(A)

then

∃a : Asset · (an, a) ∈ A ∧ A〈an ∪ S〉 = a ∪A〈S〉

Proof: For arbitrary A, an, and S, assume an ∈ dom(A). From this,
Definition 4 (dom), and set comprehension and membership properties,
we have

∃a : Asset · (an, a) ∈ A (12)

Let a1 be such a. By Definition 4 (A〈〉), we have

A〈an ∪ S〉 = {a : Asset | ∃n ∈ an ∪ S · (n, a) ∈ A}

Again, by set membership and comprehension properties, we have

A〈an ∪ S〉 =

{a : Asset | ∃n ∈ {an} · (n, a) ∈ A}
∪ {a : Asset | ∃n ∈ S · (n, a) ∈ A}

By Definition 4 (A〈〉), our assumption that A is an asset mapping, and
set membership and comprehension properties, we have

A〈{an} ∪ S〉 = a1 ∪A〈S〉

From this and remembering that 12 was instantiated with a1, a1 provides
the a we need to conclude the proof.
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�

Lemma 3 〈Asset mapping domain membership〉
For asset mapping A, asset name an, and asset a, if

(an, a) ∈ A

then

an ∈ dom(A)

Proof: For arbitrary A, an, and a, assume (an, a) ∈ A. By Definition 4
(dom), we have to prove that

∃x : Asset | (an, x) ∈ A

Let x be a, and this concludes the proof. �

Lemma 4 〈Distributed mapping over set of non domain elements〉
For asset mapping A and finite set of asset names S, if

¬∃n ∈ S · n ∈ dom(A)

then

A〈S〉 = {}

Proof: For arbitrary A and S, assume ¬∃n ∈ S ·n ∈ dom(A). By Defini-
tion 4 (A〈〉), we have to prove that

{a : Asset | ∃n ∈ S · (n, a) ∈ A} = {}

By Lemma 3, we then have to prove that

{a : Asset | ∃n ∈ S · n ∈ dom(A) ∧ (n, a) ∈ A} = {}

The proof follows from the above, our assumption, and set comprehension
properties. �

Lemma 5 〈Asset mapping compositionality〉
For asset mapping A and A′, if

A v A′
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then

∀ans : fset[AssetName] · ∀as : fset[Asset]·
wf(as ∪A〈ans〉)

⇒ wf(as ∪A′〈ans〉) ∧ as ∪A〈ans〉 v as ∪A′〈ans〉

Proof: For arbitrary A and A′, assume A v A′. From Definition 5, we
have

dom(A) = dom(A′)

∧ ∀n ∈ dom(A)·
∃a, a′ : Asset · (n, a) ∈ A ∧ (n, a′) ∈ A′ ∧ a v a′

(13)

By induction on the cardinality of ans, assume the induction hypothesis

∀ans′ : fset[AssetName]·
card(ans′) < card(ans)

⇒ ∀as : fset[Asset]·
wf(as ∪A〈ans′〉)

⇒ wf(as ∪A′〈ans′〉) ∧ as ∪A〈ans′〉 v as ∪A′〈ans〉

(14)

and we have to prove

∀as : fset[Asset]·
wf(as ∪A〈ans〉)

⇒ wf(as ∪A′〈ans〉) ∧ as ∪A〈ans〉 v as ∪A′〈ans〉
(15)

By case analysis, now consider that ¬(∃an ∈ ans · an ∈ dom(A)). By
Lemma 4, we have that A〈ans〉 = {}. Similarly, given that dom(A) =
dom(A′) (see 13), we also have that A′〈ans〉 = {}. So, by set union
properties, we are left to prove that

∀as : fset[Asset] · wf(as)⇒ wf(as) ∧ as v as

The proof trivially follows from Axiom 3 and propositional calculus.
Let’s now consider the case ∃an ∈ ans · an ∈ dom(A). By basic set

properties, we have that ans = an ∪ ans′ for some asset name an ∈
dom(A) and set ans′ such that an 6∈ ans′. Then, from 15, we are left to
prove that

∀as : fset[Asset]·
wf(as ∪A〈an ∪ ans′〉)

⇒ wf(as ∪A′〈an ∪ ans′〉)
∧ as ∪A〈an ∪ ans′〉 v as ∪A′〈an ∪ ans′〉
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By Lemma 2, given that an ∈ dom(A) and consequently an ∈ dom(A′),
we have that A〈an ∪ ans′〉 = a∪A〈ans′〉 and A′〈an ∪ ans′〉 = a′∪A′〈ans′〉
for some assets a and a′. From 13, we also have that a v a′. By equational
reasoning, we then have to prove that

∀as : fset[Asset]·
wf(as ∪ a ∪A〈ans′〉)

⇒ wf(as ∪ a′ ∪A′〈ans′〉)
∧ as ∪ a ∪A〈ans′〉 v as ∪ a′ ∪A′〈ans′〉

For an arbitrary as, assume wf(as ∪ a ∪ A〈ans′〉) and then we have to
prove that

wf(as ∪ a′ ∪A′〈ans′〉)
∧ as ∪ a ∪A〈ans′〉 v as ∪ a′ ∪A′〈ans′〉

(16)

By the induction hypothesis (see 14), instantiating ans′ with the ans′ just
introduced, note that we will have card(ans′) < card(ans) and, therefore

∀as : fset[Asset]·
wf(as ∪A〈ans′〉)
⇒ wf(as ∪A′〈ans′〉) ∧ as ∪A〈ans′〉 v as ∪A′〈ans〉

From this, instantiating as as as ∪ a, and remembering that we have
already assumed wf(as ∪ a ∪A〈ans′〉), we have

wf(as ∪A′〈ans′〉)
∧ as ∪A〈ans′〉 v as ∪A′〈ans〉

Now, given that a v a′, from the compositionality axiom (Axiom 5) and
the above we have that

wf(()as ∪ a′ ∪A′〈ans′〉)
∧ as ∪ a ∪A′〈ans′〉 v as ∪ a′ ∪A′〈ans′〉

The proof then follows from 16, the above, and Axiom 4. �

Lemma 6 〈Feature model equivalence compositionality over wf〉
For feature models F and F ′, asset mapping A, and configuration knowl-
edge K, if

F ∼= F ′ ∧ ∀c ∈ [[F ]] · wf(A〈[[K]]c〉)
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then

∀c ∈ [[F ′]] · wf(A〈[[K]]c〉)

Proof: For arbitrary F , F ′, A, and K, assume

F ∼= F ′ ∧ ∀c ∈ [[F ]] · wf(A〈[[K]]c〉)

By Definition 1, what we have to prove is equivalent to

∀c ∈ [[F ]] · wf(A〈[[K]]c〉)

which corresponds to our assumption. �

Lemma 7 〈CK equivalence compositionality over wf〉
For feature model F , asset mapping A, and configuration knowledge K
and K ′, if

K ∼= K ′ ∧ ∀c ∈ [[F ]] · wf(A〈[[K]]c〉)

then

∀c ∈ [[F ]] · wf(A〈[[K ′]]c〉)

Proof: Similar to proof of Lemma 6, using Definition 2 instead. �

Lemma 8 〈Asset mapping refinement compositionality over wf〉
For feature model F , asset mappings A and A′, and configuration knowl-
edge K, if

A v A′ ∧ ∀c ∈ [[F ]] · wf(A〈[[K]]c〉)

then

∀c ∈ [[F ]] · wf(A′〈[[K]]c〉)

Proof: For arbitrary F , A, A′, and K, assume

A v A′ ∧ ∀c ∈ [[F ]] · wf(A〈[[K]]c〉) (17)

For an arbitrary c ∈ [[F ]], we then have to prove that

wf(A′〈[[K]]c〉) (18)
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By properly instantiating the assumption (17) with the just introduced
c, we have

wf(A〈[[K]]c〉) (19)

From Lemma 5 and the assumption (17), we have

∀ans : fset[AssetName] · ∀as : fset[Asset]·
wf(as ∪A〈ans〉)

⇒ wf(as ∪A′〈ans〉)∧
as ∪A〈ans〉 v as ∪A′〈ans〉

Instantiating ans with [[K]]c, as with {}, and by set union properties, we
have

wf(A〈[[K]]c〉)
⇒ wf(A′〈[[K]]c〉) ∧A〈[[K]]c〉 v A′〈[[K]]c〉

The proof (see 18) then follows from the above and 19. �
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and Carlos Lucena. Refactoring product lines. In 5th International Con-
ference on Generative Programming and Component Engineering, pages
201–210. ACM, 2006.

AJC+05. Vander Alves, Pedro Matos Jr., Leonardo Cole, Paulo Borba, and Geber
Ramalho. Extracting and evolving mobile games product lines. In 9th
International Software Product Line Conference, volume 3714 of LNCS,
pages 70–81. Springer-Verlag, 2005.

Bat05. Don Batory. Feature models, grammars, and propositional formulas. In
9th International Software Product Lines Conference, volume 3714 of
LNCS, pages 7–20. Springer-Verlag, 2005.

BB09. Rodrigo Bonifácio and Paulo Borba. Modeling scenario variability as
crosscutting mechanisms. In 8th International Conference on Aspect-
Oriented Software Development, pages 125–136. ACM, 2009.



A Theory of Software Product Line Refinement 33

Bor09. Paulo Borba. An introduction to software product line refactoring. In
3rd Summer School on Generative and Transformational Techniques in
Software Engineering (to appear), 2009.

BSCC04. Paulo Borba, Augusto Sampaio, Ana Cavalcanti, and Márcio Cornélio.
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