
Emergent Feature Modularization

Márcio Ribeiro Humberto Pacheco Leopoldo Teixeira Paulo Borba

Informatics Center, Federal University of Pernambuco, 50740-540, Recife – PE – Brazil

{mmr3, hsp, lmt, phmb}@cin.ufpe.br

Abstract
Virtual Separation of Concerns reduces the drawbacks of im-
plementing product line variability with preprocessors. De-
velopers can focus on certain features and hide others of no
interest. However, these features eventually share elements
between them, which might break feature modularization,
since modifications in a feature result in problems for an-
other. We present the concept of emergent feature modular-
ization, which aims to establish contracts between features,
to prevent developers from breaking other features when per-
forming a maintenance task. These interfaces are product-
line-aware, in the sense that it only considers valid feature
combinations. We also present a prototype tool that imple-
ments the concept.

Categories and Subject Descriptors D.2.3 [Software En-
gineering]: Coding Tools and Techniques

General Terms Design

Keywords Product Lines, Modularity, Preprocessors

1. Introduction
A Software Product Line (SPL) is a family of intensive sys-
tems developed from reusable assets. These systems share a
common set of features that satisfy the specific needs of a
particular market segment [6]. By reusing assets, it is pos-
sible to construct products through specific features defined
according to customers’ requirements [17]. Features are the
semantic units by which different programs within a SPL can
be differentiated and defined [21]. The set of possible prod-
ucts of a SPL is usually represented through feature models.

Features are often implemented using preprocessors [3,
12]. Conditional compilation directives such as#ifdef and
#endif encompass code associated with features. Despite
their widespread use, preprocessors have some drawbacks,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Onward! 2010, October 17–21, 2010, Reno/Tahoe, Nevada, USA.
Copyright c© 2010 ACM 978-1-4503-0236-4/10/10. . . $10.00

including no support for separation of concerns [18]. Virtual
Separation of Concerns (VSoC) [12] allow developers to
hide feature code not relevant to the current task, being
important to reduce some of the preprocessors drawbacks.
The idea is to provide developers a way to focus on a feature
without the distraction brought by other features [10].

Although this approach is helpful to visualize a feature
individually, it does not modularize features to the extent
of supporting independent feature maintenance and develop-
ment [16], since developers know nothing about hidden fea-
tures. In fact, by visualizing and trying to maintain a feature
individually, a developer might introduce errors into the hid-
den features, since these features eventually share elements
— such as variables and methods — with the maintained fea-
ture. For instance, the new value of a variable might be cor-
rect to the maintained feature, but incorrect to another one
that uses this variable. Thus, we have a problem due to the
lack of feature modularization: the modification of a feature
leads to errors in another one. Moreover, this problem may
be worse because this error is only noticed when running the
product built with the problematic feature [10].

In this work, we propose the concept of emergent fea-
ture modularization, which consists of establishing contracts
among feature implementations. We call our approach emer-
gent because the components and interfaces here are neither
predefined nor have a rigid structure. Instead, they emerge
on demand to give support for specific feature development
or maintenance tasks. For example, using the emergent con-
cept, the developer firstly selects feature code to maintain.
We associate this selection with a feature, or a combination
of features, which we denote as a feature expression. Then,
information with respect to the other features and their com-
binations emerge through an interface.

We also achieve the hiding benefits towards feature com-
prehensibility. But, while still hiding the feature code, emer-
gent interfaces abstract its details. At the same time, they
provide valuable information to maintain the selected code
and keep other features and their combinations safe.

This paper makes the following contributions:

• We present the concept of emergent feature modulariza-
tion to help developers when maintaining SPL imple-
mented with preprocessors-like mechanisms (Section 3);

• A general algorithm to compute emergent components
and their emergent interfaces (Sections 3.1, 3.2, and 3.3);

• A prototype tool based on CIDE [12] (a tool that relies
on VSoC) to support the concept. It computes and shows
emergent interfaces after developers select the code to
maintain. Emergent interfaces contain provided/required
information to/from other features (Section 4).

2. Motivating Example
Virtual Separation of Concerns (VSoC) reduces some of pre-
processors drawbacks, allowing developers to hide feature
code not relevant to the current maintenance task [12]. Thus,
developers can, to some extent, maintain a feature without
the distraction brought by other features [10]. However, we
show here that VSoC is not enough to provide feature modu-
larization, which aims at achieving independent feature com-
prehensibility, changeability, and development [16].

For example, considerScenario 1, where a developer has
to maintain theMusic feature of the Mobile Media SPL [7].
It implements this functionality using the J2ME standard
media API, so that users can play music in formats likeMIDI
andMp3. Basically, the implementation contains a controller
(MMController), responsible for handling the play and stop
events, and a screen (MMScreen), responsible for painting
the buttons and encapsulating the media API. Our scenario
consists of adding a new format to play music: theOggopen
format. Since theOggAPI supports not only play and stop
but also pause, rewind and forward events, we need a new
controller and screen for it. Figure 1 shows the changes in
part of theMusic feature code in order to fit this new format.

MMScreen screen = new MMScreen(..);
MMController controller = new MMController(screen);
//#ifdef copy
...
//#endif
...

//#ifdef ogg
 OggScreen screen = new OggScreen(..);
 OggController controller = new OggController(screen);
//#elif
 MMScreen screen = new MMScreen(..);
 MMController controller = new MMController(screen);
//#endif
//#ifdef copy
...
//#endif
...

Figure 1. Adding Ogg format to the Mobile Media SPL.

Notice that there is an#ifdef directive encompassing
the code of theCopy optional feature, which allows us to
remove that part of the code. Therefore, in the original ver-
sion of the product line, we have at least two products (pos-
sible feature selections): (i)Music without Copy; and (ii)
Music with Copy. The compiler raises no errors when com-
piling the (i) variant in the resulting version of the product
line. However, there is a compilation error when we take
the (ii) variant into consideration. TheCopy feature uses
a method (controller.setMediaName(..)) that is only
defined inMMController, so that it does not exist in our
new OggController class due to a programmer failure.
This shows that we have no proper feature modularization:
the modification of a feature (Music) breaks another feature

(Copy). In addition, this situation gets worse because this er-
ror is only noticed when the developer eventually builds the
product line with the problematic feature combination (using
Copy).

We do not provide theCopy feature code on purpose in
order to simulate a developer that is using VSoC, so that he
is not concerned about other features (such asCopy). Con-
sequently, he is neither maintaining nor visualizing the code
surrounded by theCopy #ifdef directive. To some extent,
this support for hiding features is worthwhile to the indepen-
dentfeature comprehensibilitybenefit, since it may help de-
velopers to comprehend a feature individually. Despite this
advantage of visualizing features individually, VSoC does
not provide enough support for understanding and modify-
ing features in separate. For example, because there is no
information about the hidden feature (Copy) when maintain-
ing Music, problems may occur in it. So, the independent
changeabilitybenefit is not achieved.

In this context, sharing information about two or more
features may be a confusing point for two developers, so that
achieving theparallel developmentis difficult. For example,
considerScenario 2, where a developer is responsible for
evolving theCopy feature and another one is responsible
for the Music feature. The first developer might decide to
use thescreen variable for implementing a progress bar
for showing the copy progress. Meanwhile, because only
one place in the original version of the product line uses
thescreen variable, the second developer might decide to
changeMMController(screen) for MMController(new
MMScreen(..)) and delete thescreen declaration. Since
screen is now undeclared, a compilation error will happen
in theCopy feature. It happens because there is no “mutual
agreement between the creator and accessor” [22]. Since
this contract does not exist, developers of a feature might
actually break another one.

Scenario 1and Scenario 2basically show that condi-
tional compilation, even with VSoC support, does not pro-
vide adequate modularization support. Bug reports1 of sys-
tems like Linux Kernel and Mozilla present similar prob-
lems (undeclared variables, missing methods, ...) involving
different features. Besides these kinds of syntactic errors, as
discussed in the remaining of the paper, we also consider se-
mantic errors such as when changing the value of a variable
that another feature uses. This way, the new value might be
right for the maintained feature but wrong for others. Our
approach aims to address these cases as well.

3. Emergent Feature Modularization
To solve the problems discussed previously, we propose the
concept of emergent feature modularization, which basically
consists of establishing, on demand and according to a given
development task, interfaces for feature implementations.
It is an uncommon way to think about components and

1 See http://bugzilla.kernel.org/ and https://bugzilla.mozilla.org/

interfaces: they are not predefined by developers, nor have
a rigid structure. Instead, we compute them on demand to
give support for specific feature development tasks.

For example, in a maintenance task, we consider the fea-
ture code to be maintained a component, namedSelection.
The backward/forward paths of the code surrounding it are
components too. Paths consider the different feature com-
binations by the feature model. We name themdataflows,
since features exchange data among them. Interfaces basi-
cally capture data dependencies between these components,
and give support to maintainingSelectionwithout having to
understand the details of code associated to thedataflows.

Still using the Mobile Media SPL [7], we now illus-
trate our approach using a scenario with two optional fea-
tures, Sorting and Favorites, and a mandatory one,
Management, which is the feature to maintain — theSelec-
tion component. Figure 2 illustrates forward dataflows with
arrows. SinceSorting and Favorites are optional fea-
tures, there are four different feature expressions, each one
associated with adataflow component:d1: Management

∧ (¬ Favorites) ∧ (¬ Sorting); d2: Management ∧
Favorites ∧ Sorting; d3: Management ∧ Favorites

∧ (¬ Sorting); andd4: Management ∧ (¬ Favorites) ∧
Sorting.

For each component (SelectionandDataflow), we com-
pute associated interfaces expressing dependencies between
them. For example, Figure 2 shows that the dataflowd3 (as-
sociated withFavorites) requires themedia variable pro-
vided by theSelection. These interfaces allow us to change
Selectionabstracting details of the surrounding feature code.
At the same time, they provide information to the developer,
so that he might avoid implementations that cause problems
to other features, like removingmedia, for instance.

...

...

MediaData media = ...

#ifdef favorites
...
setFavorite(media);
...
#endif

#ifdef sorting
...
countView(media);
...
#endif

Selection

(associated with

Management)

Interface
Provides: media

Dataflow

(associated with Sorting)

Interface
Requires: media

d1 d2 d3 d4

Dataflow

(associated with Favorites)

Interface
Requires: media

Dataflow

(associated with

Favorites and Sorting)

Interface
Requires: media

Figure 2. Components and their respective interfaces.

An advantage of using the feature model information is
that we can filter which dataflows to take into account. For
example, suppose that we associate theSelectioncomponent
with featureA, that cannot be present in the same product
with featureB. This might be due to a constraint in the
feature model or by them being alternative features. Thus,
we discard dataflows containing both features.

The conceptual model of our approach, depicted in Fig-
ure 3, summarizes these ideas. As explained, there are two
kinds of components:Selection, which corresponds to the

code to maintain (selected by the developer); andDataflow,
representing backward (from the beginning of the method
to the selection) and forward dataflows derived from the
Selectioncomponent. The dataflows are useful to navigate
through the code, being important to retrieve data dependen-
cies among features with respect to theSelection. For exam-
ple, through dataflowd4, we learn that theSorting feature
usesmedia, which is a variable declared in theSelection.
Notice that we discard dataflows in which all code is only
associated with theSelectionfeature expression. In this way,
d1 (Figure 2) is not taken into account. So, as mentioned,
we associate each component with a feature expression and
an interface, which states that components may provide/re-
quire elements such as variables to/from other components.
These interfaces emerge from the components, establishing
contracts between features.

Component

Interface

1 is associated with 1

is associated with
provides elements to

requires elements from

0..*

0..*
1

1

1

1

Feature Expression

Selection Dataflow
1 selects 1

derives1 0..*

Developer

Figure 3. Conceptual Model of our approach.

We now illustrate how our approach might be useful to
avoid the problems of the scenarios showed in Section 2.

Scenario 1

In order to add theOggformat, we place bothMMScreen
and MMController declarations into anelse statement.
Since the maintenance involves these declarations, develop-
ers select them before proceeding with the task, as illustrated
in Step 1of Figure 4. This is an example ofSelectioncompo-
nent. Additionally, this component is associated with a fea-
ture expression, which, in this case, isMusic. Now, this de-
veloper needs information to proceed with the maintenance
without damaging other features. For example, which infor-
mationSelectionprovides (like declared variables and their
values) that other features require.

By using theSelectioncomponent, we derive dataflow
components. In Figure 4, arrows fromSelectiontowards
other parts of the code represent dataflows (d1andd2). Since
Copy is an optional feature, we have the following dataflows
with their respective feature expressions:d1: Music ∧ Copy

andd2: Music ∧ (¬ Copy).
After defining theSelectionand Dataflowcomponents,

their interfaces emerge in order to establish the contracts.
Dataflowd1 is associated with theCopy feature, which uses
the controller variable from theSelection component

(1)
Provides

controller = new

MMController(..)

to Copy

controller.setMediaName(..)

to Copy

Interface

(2)

Selection

MMScreen screen
= new ...

MMController
controller = new ...

Copy

controller.
setMediaName(..)

d1 d2

Figure 4. Emergent Interface for Scenario 1.

(see Figure 4). This way, the interface of dataflowd1 states
that Copy requirescontroller. Because the developer is
maintaining theSelection, he must be aware that there is
another feature (and, maybe, another developer) depend-
ing on controller. In this way, theSelectioninterface
emerges (Step 2 of Figure 4), stating that theSelection
component should provide to theCopy feature a variable
controller assigned to aMMController object and this
object must have thesetMediaName(..) method. This in-
terface might be useful to avoid problems like the one re-
ported inScenario 1of Section 2. Now, looking at the in-
terface makes the developer think twice before assigning the
samecontroller variable to anOggController object.

Scenario 2

Figure 5 illustrates two developers working on two differ-
ent features. Each developer is responsible for a feature, as
explained inScenario 2of Section 2: developerA maintains
theMusic feature, whereas developerB works on theCopy
feature. So, developerB selects theCopy code snippet, as il-
lustrated inStep 1of Figure 5. Because there is code before
and after the selection, forward and backward dataflows are
computed. They are, respectively,d3 andd4. Again, these
dataflows are helpful to establish the contracts. We can use
them to discover other features that share information con-
tained in theSelectioncomponent of developerB.

Now, suppose that the contracts have already emerged
(Selectioninterfaces illustrated inSteps 2andStep 3) and
when maintainingCopy, developerB decides to use the
screen variable (from theMusic feature) to implement a
progress bar for theCopy feature (Step 4). DeveloperB now
requires a variable provided by another feature (Music).
Thus, we update bothSelectionand dataflow interfaces.
Step 5 shows the updatedSelectioninterface for devel-
oper B. This way, when selecting theMusic feature be-
fore a maintenance, the analogous components/interfaces
computations occur for developerA, and theSelectionin-
terface shows information to him (Step 6). Now, when
looking at this interface, developerA would think twice
before refactoringnew MMController(screen) to new

MMController(new MMScreen()).

Therefore, our emerging interfaces should help develop-
ers to make some changes in one feature without breaking
others, even when they are working on parallel, mitigating
the problem illustrated inScenario 2.

Now we present the details on how we implement our
emergent approach. Mainly, we defined a general algorithm
that consists of three major steps: (i) ComputeSelectionand
dataflows components; (ii) Compute their interfaces; and
(iii) Match these interfaces.

3.1 Selection/Dataflows Components

The first step consists of computing theSelectioncompo-
nent and the dataflow components. We associate theSelec-
tion component with a feature expression and its computa-
tion is straightforward: it is the Abstract Syntax Tree (AST)
representing the code selected by the developer (seeStep 1
andStep 2) of Figure 6. From theSelectioncomponent, we
compute the backward and forward dataflow components.
As discussed earlier, we compute dataflows in accordance to
the feature expression associated with theSelectioncompo-
nent and the feature model.

Figure 6 shows a simplified feature model of the Mo-
bile Media product line [7]. It contains theManagement
mandatory feature (filled circle) and theCopyandSMSop-
tional features (open circles). When maintaining theSelec-
tion component (associated withManagement), we compute
the following dataflows:d1: Management ∧ (¬ Copy) ∧ (¬
SMS); d2: Management ∧ Copy ∧ SMS; d3: Management ∧
Copy ∧ (¬ SMS); andd4: Management∧ (¬ Copy) ∧ SMS.

Although all these feature expressions are valid according
to the feature model, there is a particularity within the code
of Figure 6: dataflowsd2andd4are the same because of the
two conditional directives:copy || sms and sms. When
considering dataflowd2, Copy andSMS are present, so that
both directives evaluate totrue, which means thatd2 starts
from theSelectiontowards the second#endif directive. The
same happens to dataflowd4. BecauseSMS is present, both
conditional compilation directives evaluate totrue as well.

These feature expression combinations are important to
alert developers about the impact of their maintenance. By
using them, we are able to inform the exact product con-
figurations impacted by a determined maintenance task. For
example, if the maintenance assigned a new value tocanv

(Figure 6), we can inform the developer which SPL prod-
ucts this change may affect. In this case, it affects all possi-
ble feature combinations. If the number of possible affected
products is high, and if thecanvmaintenance point is avoid-
able, developers may opt for another strategy or algorithm
to maintain the desired code without causing potential prob-
lems in those products.

3.2 Selection/Dataflows Interfaces

Now that theSelectionand the dataflow components are
already defined, we should compute their interfaces. First,
we consider theSelectioninterface, calculated by using not

Requires

controller = new

MMController(..)

from Music

(6)

(4)

A

B

A

B

Interface

Interface

(3)(1)

d3

(5)

Music

MMScreen screen
= new ...

MMController
controller = new ...

Copy

controller.
setMediaName(..)

d4

Provides

controller = new

MMController(..)

to Copy

controller.setMediaName(..)

to Copy

d3

d3

Music

MMScreen screen
= new ...

MMController
controller = new ...

Copy

controller.
setMediaName(..)

screen ...

d4

Requires

controller = new

MMController(..)

from Music

screen = new MMScreen(..)

from Music

Interface

Interface

Provides

controller = new

MMController(..)

to Copy

controller.setMediaName(..)

to Copy

screen = new MMScreen(..)

to Copy

(2)

d3

Figure 5. Emergent Interfaces for Scenario 2.

only the Selectioncomponent, but also the backward and
forward dataflow components.

When the developer selects the code associated with the
Managementmandatory feature, we compute the AST of the
Selectioncomponent and navigate throughout it to define the
Selection Elements List (SEL). This list plays an important
role to define theSelectioninterface. It represents all dec-
larations, assignments and variable uses within theSelection
component. We illustrate SEL inStep 3of Figure 6. For each
dataflow component, we navigate through its code searching
for elements of SEL. We use some algorithms in this search.
Now, we detail two of them:

• Does any other feature need variable declarations?
Takingcanv variable from SEL as an example, we search
in the forward dataflows components for uses of this
variable within features other thanManagement. Because
this variable appears in three dataflow components (d2,
d3, andd4) within other features (Copy and SMS), we
add it to theSelectioninterface. Thus, developers must
be careful when dealing with this variable, since there
are other features needing it. This way, theSelection
interface states the following:

Providescanv to:
Copy ∧ SMS; Copy ∧ (¬ SMS); and (¬ Copy) ∧ SMS

• Does any other feature need a specific assignment?
Now, we consider the assignments present in SEL that
reach other features. If there are two assignments to a
variable withinSelection, we only consider the last one.
There is only one assignment in SEL:nextcontroller

= this. This algorithm verifies in the forward dataflows
components if this assignment reaches other features. As
we can see, it reaches the feature expressions associ-
ated withd2, d3, andd4, since each of these dataflows
(bold line in Figure 6) usesnextcontroller assigned
to this. Although we reach all feature expressions, the
other use ofnextcontroller (within #ifdef sms) is
not reached becausenextcontroller gets reassigned

(italic line in Figure 6). We show the updatedSelection
interface in what follows.

Provides canv and nextcontroller = this to:
Copy ∧ SMS; Copy ∧ (¬ SMS); and (¬ Copy) ∧ SMS

Now, the developer of theSelectioncomponent knows
what he should provide in order to keep the other features
safe. In addition, this emergent interface abstracts details of
these surrounding features, keeping the developer focused
on the maintenance task as well as on the elements that may
cause problems to these features.

Notice that there is an element of SEL that is not used
in any of the dataflows:storedImage. This way, removing
such a variable or changing its value does not affect other
features, but only the maintained feature. Therefore, this
variable is not considered in theSelectioninterface.

We consider the dataflow interfaces as follows. We need
to compute the interfaces for the dataflow components of
Figure 6. Instead of using the SEL as an input, we use the
Selectioninterface in order to avoid useless elements, such
asstoredImage. Thus, two elements must be considered:
canv andnextcontroller = this. Now, we search for
these elements within each dataflow component.

• d2, d3, andd4Require:
canv andnextcontroller = this fromManagement

3.3 Matching Interfaces

Given that we have theSelectionand Dataflow interfaces,
we check if they match. That is, if everything that is re-
quired by the interfaces is provided. Using the example
from Figure 6, suppose that the developer responsible for
the Managementfeature now decides to change the value
assigned tonextcontroller. Thus,Selection does not
providenextcontroller = this anymore, which inter-
faces of dataflowsd2, d3, andd4 require. The contract is
now broken, and this should be reported to the developer.

Image storedImage;
PhotoViewScreen canv;
AbstractController nextcontroller = this;

...
//#if copy || sms
PhotoController controller = new PhotoController(...);
controller.setNextController(nextcontroller);
canv.setCommandListener(controller);
nextcontroller = controller;

//#endif
//#ifdef sms
SmsController smscontroller = new SmsController(...);
smscontroller.setNextController(nextcontroller);
canv.setCommandListener(smscontroller);
nextcontroller = smscontroller;
//#endif

Selection Elements List (SEL):

Declares: canv, storedImage
Assigns: nextcontroller = this

AST

Management

CopySMS

d2 and d4

d3

(1) (2)

(3)

d1

Mobile Media

Figure 6. Copy and SMS features of Mobile Media.

4. Supporting Developers
To support developers in charge of maintaining annotative-
based SPLs, we present xCIDE (eXtended Colored IDE):
a prototype tool that implements the concept of emergent
interfaces2. We implemented xCIDE as an extension of
CIDE [12], a tool that allows developers to use preproces-
sors in a disciplined manner. Instead of textual comments,
it uses background colors to represent features. Thus, given
that we already have a SPL implemented with CIDE, our
tool can automatically compute the emergent interfaces on
demand to support developers that need to maintain a SPL.

As mentioned, the developer must first select code that he
wishes to maintain. Based on this selection, the tool com-
putes interfaces for theSelectionand dataflow components.
It presents theSelectioninterface to the developer, in or-
der to prevent him of breaking feature modularity — that is,
breaking a feature that he is not concerned while performing
the maintenance task. Figure 7 illustrates our tool showing
an emergent interface to the developer. As Figure 7 points
out, there is hidden feature code, associated withSortingand
Copyfeatures, respectively. After the developer indicates the
code snippet to maintain, the tool shows the emergent inter-
face related to that code — stating thatcontroller is pro-
vided with a certain value toCopy.

4.1 Implementation

Our implementation relies on the three steps showed in Sec-
tion 3 plus another one to show the emergent interface. The
first one uses the Eclipse Java Development Tool (JDT) [1]
to retrieve the AST of the selected code and compute theSe-
lectioncomponent. Based on this selection, we then proceed
to retrieve the dataflow components with the aid of Soot [2],
a Java optimization framework for analyzing and transform-
ing Java bytecode. This way, we have computed theSelec-
tion as well as the dataflow components.

The second step consists of computing the interfaces. The
AST retrieved is important to compute the Selection Ele-
ments List (SEL). We use this list as an input to Soot, which
is also used to compute the interfaces, where we analyze the

2 The tool is available athttp://www.cin.ufpe.br/~mmr3/onward10

Hidden Code (Sorting feature)

Hidden Code (Copy feature)

Figure 7. xCIDE screenshot.

dataflow components of our interest. This analysis relies ona
variety of algorithms like the ones presented in Section 3.2.
Roughly, since CIDE uses background colors to represent
feature expressions, these algorithms search for elements
of SEL which are in different colors of the feature expres-
sion associated with theSelectioncomponent. If found, we
consider them in theSelectioncomponent interface. Then,
we take this interface as an input for Soot to compute each
dataflow interface. We match them (third step) and show the
Selectioninterface to the user (fourth step).

4.2 Limitations and Ongoing work

Our tool currently implements the general algorithm to
emerge interfaces. The main limitation when computing in-
terfaces happens when we have mutually exclusive features.
The tool searches SEL elements in all feature expressions
(all colors), whether mutually exclusive or not. Improving
this computation is an ongoing work.

We are also working on other algorithms, using both intra
and interprocedural analysis. An example is the chain of
assignments. In this case, changing the value of a variable
x in theSelectioncomponent may produce a chain of other
changes that reaches another feature. For instance, we might
use the new value ofx to define the value ofy which, in

its turn, defines the value ofz. If another feature usesz,
changing the value ofx can cause problems to this feature.

5. Related work
Interfaces for non-annotative approaches.This work fo-
cuses on interfaces for techniques that annotate code to de-
fine feature boundaries, such as conditional compilation.
Since this leads to scattering and tangling, researchers eval-
uated the use of Aspect-Oriented Programming [3, 4, 15]
to solve these problems. However, because of problems like
fragile pointcuts [19], researchers proposed interfaces be-
tween classes and aspects to achieve modularity.

Griswold et al. [8] proposed Crosscutting Programming
Interfaces (XPIs) aiming at decoupling the aspects from de-
tails of classes, providing better modularity during parallel
evolution. Also, there is a notion of provides and requires
that XPIs may check. For example, we might define a con-
tract in which aspects cannot change the state of some object.
We can write XPIs using AspectJ language constructs. Thus,
components and interfaces have a rigid structure: classes,as-
pects, and XPIs. Unlike XPIs, our approach does not prede-
fine components and interfaces. They emerge on demand,
according to a maintenance task. In addition, since emergent
interfaces are not written, they do not need language con-
structs but tools responsible for generating them. Like XPIs,
we abstract details of features, being important to make de-
velopers focus on the maintenance task.

The AspectScope tool [9] realizes the idea of aspect-
aware interfaces in AspectJ [14]. It performs whole-program
analysis of AspectJ programs and displays module interfaces
according to current deployment of aspects. It aims to help
developers understand program behavior with local reason-
ing. Their concept of presenting interfaces to the developer
is similar to what we propose in this work, aiming to facil-
itate modular reasoning through tool support. However, As-
pectScope module interfaces are not product-line-aware. As
we do, AspectScope provides a visualization of interfaces.

Separation of Concerns.Some approaches aim to pro-
vide separation of concerns by hiding information. My-
lyn [13] is a task-focused approach to reduce information
overload, so that only artifacts (like packages, classes, and
methods) relevant to a current task are visible. A task con-
text, created during a programming activity, filters this infor-
mation. This way, Mylyn monitors tasks aiming at storing
information about what developers are doing to complete the
task. If the task is not completed, developers can continue
them afterwards. When opening the IDE to complete that
task, instead of showing thousands of artifacts, developers
may select the task and Mylyn provides only the artifacts re-
lated to it, improving productivity (developers do not spend
time searching for the artifacts of that task) and reducing
the information overload. Like Mylyn, our approach also
needs a selection. Developers select the snippet in order to
maintain it, whereas when using Mylyn they select tasks.

Our interfaces and the task context of Mylyn emerge during
maintenance. Finally, we also provide information reduc-
tion, since we only show elements shared with other features
to the developer through theSelectioninterface.

Colored IDE (CIDE) is a tool for decomposing legacy
applications into features [12]. Although CIDE uses the
preprocessors semantics (based on the same annotative ap-
proach), it avoids pollution of code, which means that#ifdef
directives are no longer needed. Instead, it relies on the
Eclipse editor to define the features boundaries through
background colors. CIDE relies on VSoC, so that it is pos-
sible to hide code of features not interesting to the current
maintenance task. We presented an extension of this tool to
improve feature modularization. Our intent is to make de-
velopers aware about other featuresbefore initiating their
maintenance tasks. Also, emergent interfaces show the exact
product configurations that a maintenance may affect.

Conceptual Module [5] is an approach to support devel-
opers on maintenance tasks. They set lines of code to be part
of a conceptual module and use queries to capture other lines
that should be part of it and to compute dependencies among
other conceptual modules. We also catch dependencies, but
we go beyond since we consider features relationships. Both
approaches abstract details from developers so that they con-
centrate on relationships among features or conceptual mod-
ules rather than on code of no interest, being important for
comprehensibility. However, our interest lies not only on
providing dependencies, but also information that may be
useful during maintenance. For example, interfaces may in-
dicate that hidden features have statements likecontinue,
break, throws, andreturn. Now, developers are aware
about possible control flow changes during maintenance.

Safe composition.Safe composition relates to safe gen-
eration and verification of properties for SPL assets: i.e.,pro-
viding guarantees that the product derivation process gener-
ates products with properties that are obeyed [11, 20]. Gen-
erating all SPL products to check safe composition turns out
to be impractical as the SPL becomes larger.

Thaker et al. present techniques for verifying type safety
properties of product lines using FMs and SAT solvers [20].
They extract properties from feature modules and verify that
they hold for all SPL members. Safe composition is also pro-
posed for the Color Featherweight Java (CFJ) calculus [11].
This calculus establishes type rules to ensure that CFJ code
only generates well-typed programs. CIDE — the tool we
extended — implements this formalization.

These works check for type errors on SPL products, be-
ing similar to the matching interfaces step of our algorithm,
where we catch some of these errors. However, our intent is
to use emergent interfaces to prevent errors when maintain-
ing features. Moreover, some elements in our emergent in-
terfaces deal with the system behaviour (value assignment),
rather than only with static type information.

6. Concluding Remarks
This paper introduced the emergent feature modularization
concept, which might be applied to maintain features in
product lines. We call our approach emergent since we do
not rely on components and interfaces with a rigid structure,
meaning that they are not predefined. Instead, they emerge
on demand to support developers when maintaining features.

Our interfaces abstract details from features that are not
relevant to the current task (the hidden ones), but at the same
time provide valuable information to maintain a feature and
keep these hidden ones safe. Because of this abstraction,
developers still have the benefits provided by VSoC, in the
sense that the feature code of no interest continues hidden.

We also presented a three-step algorithm to compute
emergent components and interfaces, implemented in xCIDE.
The tool uses the emergent feature modularization concept,
so that after a selection, it shows an emergent interface to
the developer, keeping him informed about the contracts be-
tween the selected feature and the other ones.

As future work, we intend to improve our tool with
more robust emergent interfaces. Also, we should conduct
an experiment to evaluate our proposal to verify its advan-
tages/disadvantages in terms of developer’s productivity.

Acknowledgments
This work was partially supported by the National Insti-
tute of Science and Technology for Software Engineering
(INES3), funded by CNPq and FACEPE, grants 573964/2008-
4 and APQ-1037-1.03/08

References
[1] Eclipse Java Development Tools, January 2008.

http://www.eclipse.org/jdt/.

[2] Soot: a Java Optimization Framework, April 2010.
http://www.sable.mcgill.ca/soot/.

[3] V. Alves, P. M. Jr., L. Cole, P. Borba, and G. Ramalho.
Extracting and Evolving Mobile Games Product Lines. In
Proceedings of the 9th International Software Product Line
Conference (SPLC’05), volume 3714 ofLNCS, pages 70–81.
Springer-Verlag, September 2005.

[4] M. Anastasopoulos and C. Gacek. Implementing Product
Line Variabilities. In Proceedings of the 2001 Symposium
on Software Reusability (SSR’01), pages 109–117, New York,
NY, USA, 2001. ACM Press.

[5] E. L. A. Baniassad and G. C. Murphy. Conceptual mod-
ule querying for software reengineering. InProceedings of
the 20th International Conference on Software Engineering
(ICSE’98), pages 64–73, Washington, DC, USA, 1998. IEEE
Computer Society.

[6] P. Clements and L. Northrop.Software Product Lines: Prac-
tices and Patterns. Addison-Wesley, 2002.

[7] E. F. et. Al. Evolving software product lines with aspects:
an empirical study on design stability. InProceedings of

3 http://www.ines.org.br

the 30th International Conference on Software Engineering
(ICSE’08), pages 261–270, New York, NY, USA, 2008. ACM.

[8] W. G. Griswold, K. Sullivan, Y. Song, M. Shonle, N. Tewari,
Y. Cai, and H. Rajan. Modular Software Design with Cross-
cutting Interfaces.IEEE Software, 23(1):51–60, 2006.

[9] M. Horie and S. Chiba. Aspectscope: An outline viewer for
AspectJ programs.Journal of Object Technology, 6(9):341–
361, 2007.

[10] C. Kästner and S. Apel. Virtual separation of concerns- a sec-
ond chance for preprocessors.Journal of Object Technology,
8(6):59–78, 2009.

[11] C. Kästner and S. Apel. Type-checking software product lines
- a formal approach. InProceedings of the 23rd International
Conference on Automated Software Engineering (ASE), pages
258–267. IEEE Computer Society, September 2008.

[12] C. Kästner, S. Apel, and M. Kuhlemann. Granularity in Soft-
ware Product Lines. InProceedings of the 30th International
Conference on Software Engineering (ICSE’08), pages 311–
320, New York, NY, USA, 2008. ACM.

[13] M. Kersten and G. C. Murphy. Using task context to improve
programmer productivity. InProceedings of the 14th Inter-
national Symposium on Foundations of Software Engineering
(FSE’06), pages 1–11, New York, NY, USA, 2006. ACM.

[14] G. Kiczales and M. Mezini. Aspect-Oriented Programming
and Modular Reasoning. InProceedings of the 27th Inter-
national Conference on Software Engineering (ICSE 2005),
pages 49–58. ACM Press, 2005.

[15] G. C. Murphy, A. Lai, R. J. Walker, and M. P. Robillard.
Separating features in source code: an exploratory study. In
Proceedings of the 23rd International Conference on Soft-
ware Engineering (ICSE’01), pages 275–284, Washington,
DC, USA, 2001. IEEE Computer Society.

[16] D. L. Parnas. On the criteria to be used in decomposing
systems into modules.CACM, 15(12):1053–1058, 1972.

[17] K. Pohl, G. Bockle, and F. J. van der Linden.Software Product
Line Engineering. Springer, 2005.

[18] H. Spencer and G. Collyer. #ifdef considered harmful, or
portability experience with C news. InProceedings of the
Usenix Summer 1992 Technical Conference, pages 185–198,
Berkeley, CA, USA, June 1992. Usenix Association.

[19] M. Störzer and C. Koppen. Pcdiff: Attacking the fragile
pointcut problem, abstract. InEuropean Interactive Workshop
on Aspects in Software, Berlin, Germany, September 2004.

[20] S. Thaker, D. S. Batory, D. Kitchin, and W. R. Cook. Safe
composition of product lines. InProceedings of the 6th In-
ternational Conference Generative Programming and Com-
ponent Engineering, (GPCE’07), pages 95–104. ACM, 2007.

[21] S. Trujillo, D. Batory, and O. Diaz. Feature refactoring a
multi-representation program into a product line. InProceed-
ings of the 5th International Conference on Generative Pro-
gramming and Component Engineering (GPCE’06), pages
191–200, New York, NY, USA, 2006. ACM.

[22] W. Wulf and M. Shaw. Global variable considered harmful.
SIGPLAN Notices, 8(2):28–34, 1973.

