
Investigating the Safe Evolution of Software Product Lines

Laı́s Neves, Leopoldo Teixeira,
Paulo Borba

Informatics Center
Federal University of Pernambuco
50740-540, Recife – PE – Brazil
{lmn3, lmt, phmb}@cin.ufpe.br

Demóstenes Sena
Federal Institute of Education, Science

and Technology of Rio Grande do Norte
59015-000, Natal – RN – Brazil
demostenes.sena@ifrn.edu.br

Vander Alves
Computer Science Department

University of Brası́lia
70910-900, Brası́lia – DF – Brazil

valves@unb.br

Uirá Kulesza
Computing Department

Federal University of Rio Grande do Norte
59072-970, Natal – RN – Brazil

uira@dimap.ufrn.br

Abstract
The adoption of a product line strategy can bring significant pro-
ductivity and time to market improvements. On the other hand,
evolving a product line is risky because it might impact many prod-
ucts and their users. So when evolving a product line to introduce
new features or to improve its design, it is important to make sure
that the behavior of existing products is not affected. In fact, to
preserve the behavior of existing products one usually has to an-
alyze different artifacts, like feature models, configuration knowl-
edge and the product line core assets. To better understand this pro-
cess, in this paper we discover and analyze concrete product line
evolution scenarios and, based on the results of this study, we de-
scribe a number of safe evolution templates that developers can
use when working with product lines. For each template, we show
examples of their use in existing product lines. We evaluate the
templates by also analyzing the evolution history of two different
product lines and demonstrating that they can express the corre-
sponding modifications and then help to avoid the mistakes that we
identified during our analysis.

Categories and Subject Descriptors D.2.8 [Software Engineer-
ing]: Software Product Lines

General Terms Investigation, analysis

Keywords Software product line, refactoring, product line evolu-
tion

1. Introduction
A software product line (PL) is a set of related software products
that are generated from reusable assets. Products are related in the
sense that they share common functionality. This kind of reuse tar-

[Copyright notice will appear here once ’preprint’ option is removed.]

geted at a specific set of products can bring significant productivity
and time to market improvements [21, 27]. To obtain these benefits
with reduced upfront investment and risks, previous work [3, 8, 18]
proposes to minimize the initial product line (domain) analysis and
development process by deriving a product line from an existing
product. A similar process applies to evolving a product line, when
adding new products or improving the PL design requires extract-
ing variations from previous parts shared by a set of products.

Manually extracting and changing different code parts when
evolving a PL requires substantial effort, especially for checking
necessary conditions to make sure the extraction is correctly per-
formed. Moreover, this process is tedious and can also easily intro-
duce defects, modifying the behavior of the products before the ex-
traction process, and compromising the promised benefits on other
dimensions of costs and risks.

To better understand this process, in this paper we discover and
analyze concrete product line evolution scenarios and, based on
the results of this study, we describe a number of safe evolution
templates that developers can use when working with product lines.
For this, we rely on a notion of PL refinement that preserves
the PL original products behavior while allowing the generation
of new products in the resulting PL [6]. We use the definitions
and suggestions from previous works [5], [6] to identify evolution
scenarios and then generalize these scenarios to other situations
through the templates.

These templates specify transformations that go beyond pro-
gram refactoring notions [14, 22] by considering both sets of
reusable assets that not necessarily correspond to valid programs,
and extra artifacts, such as feature models (FM) [11, 15] and con-
figuration knowledge (CK) [11], which are necessary for automati-
cally generating products from assets. For each template, we show
examples of their use in existing product lines. We evaluate the
templates by also analyzing the evolution of two different product
lines and demonstrating that they can express the corresponding
modifications and then help to avoid the mistakes that we identified
during our analysis.

This paper makes the following contributions:

– we discover and analyze PL evolution scenarios by mining part
of a PL SVN history (Section 2);

1 2011/7/8

Figure 1. Scenario A - Test Case Preferences widow with the new
Component Keyword field

– we identify and describe precisely a number of product line safe
evolution templates that abstract, generalize and factorize the
analyzed scenarios (Section 4);

– we show evidence that the identified templates can justify all
evolution scenarios in the SVN history of two PLs and could
avoid the mistakes that we found during our analysis. We also
show the frequency of use for each template in the analyzed
scenarios (Section 5);

Besides these sections, Section 6 lists the works related to our
research and Section 7 presents the concluding remarks.

2. Motivating Example
In order to better illustrate the problems that might occur when
manually evolving PLs, we present a maintenance scenario based
on TaRGeT PL [12]. TaRGeT is a product line of automatic test
generation tools and is implemented using Eclipse RCP plug-ins
technology. TaRGeT has been developed since 2007 and its current
version has 42 implemented features and counts approximately
32,000 lines of code. The history track of 3 major releases and
several minor releases is available in a SVN repository.

While analyzing TaRGeT’s SVN history we have found sev-
eral evolution steps that were supposed to be safe, that is just a
design improvement or the addition of new products, but actually
introduced errors to the product line. Scenario A describes one of
these cases, the implementation of the new Component Keyword
text field in the Test Case Preferences window. Figure 1 shows the
new field. This field should only appear when the XLS STD feature
is selected. This feature is related to TaRGeT’s output format and,
when selected, generates test suites in a format compatible with
Microsoft Excel.

With that in mind, Figure 2 describes changes applied to the
feature model, configuration knowledge and source code artifacts
in order to address this evolution scenario. The CK notion that we
here is represented as a table and maps feature expressions (in the
left-hand side column) to asset names (in the right-hand side col-
umn). In this case, we only show the parts of configuration knowl-
edge and feature model that are related to the example context. As
TaRGeT has many features implemented, due to limited space it is

TaRGeT

Output

Output OutputExtensionPoint

OutputExtensionPoint
STDPreferencesAspectOutput

STDExtensionXLS STD

TaRGeT

Output

XML

XLS
STD

HTML

XMLHTML OutputExtension
Point.java

STDPreferences
Aspect.aj

STDExtension.java

OutputExtension
Point.java

✔

✔

✔

✔

Figure 2. Scenario A - Adding the new optional feature STD
Output

not possible to show everything here. The tick signs indicate what
was changed.

In summary, To modify the product line, the developers first cre-
ated the aspect STDPreferencesAspect, which is responsible for in-
troducing the Component Keyword field. However, when updating
the configuration knowledge, they made a mistake and the aspect
was associated to the Output feature instead of XLS STD. The de-
velopers then tested the product with the XLS STD feature selected
and saw that the new field was present in the window as expected.
They also tested the products with other output formats but they
only verified if the main features were correct. They haven’t no-
ticed that the new Component Keyword field became visible in all
product configurations, introducing a bug in the product line. As a
consequence, they thought that the products were working as ex-
pected and committed the modified code to make the changes ef-
fective.

This example demonstrates that manually evolving a PL is
error-prone, because in order to make sure that the behavior of
existing products is not affected, one usually has to analyze differ-
ent artifacts, like feature models, configuration knowledge and the
product line assets (such as classes, configuration files or aspects).
In addition, the bugs that might be introduced during manual evolu-
tion of PL could be difficult to track because they are present only
in certain product configurations.

Analyzing TaRGeT’s evolution history through releases 4.0 to
6.0 (from January to July 2009), we identified a total of 20 evolu-
tion scenarios. We verified that the minimum number of modified
classes in these scenarios was 1 and the maximum was 54, and the
average number of modified classes was 12.9. We also found that
about 20% of these modifications introduced a defect in the prod-
uct line. This shows that issues like the one presented might happen
often and demand special attention.

To better understand the problems that might occur with manual
PL evolution, in following sections we discover and analyze con-
crete product line evolution scenarios and, based on the results of
this study, we describe a number of safe evolution templates that
developers can use when working with product lines.

2 2011/7/8

3. Product Line Refinement and Safe Evolution
To guide our PL evolution analysis and help us to identify the
evolution scenarios, we rely on a notion of PL refinement [2, 5]
that is based on a notion of program refinement [6], which is useful
for comparing assets with respect to behavior preservation. In this
section we briefly introduce these necessary concepts to understand
the PL safe evolution templates described in the next section.

Similar to program refinement, PL refinements are behavior-
preserving transformations that go beyond source code, and might
transform FMs and CKs as well. The notion of behavior is lifted
from programs to product lines. In a product line refinement, the
resulting PL should be able to generate products (programs) that
behaviorally match the original PL products. So users of an orig-
inal product do not observe behavior differences when using the
corresponding product of the new PL. This is exactly what guaran-
tees safety when improving the design of a PL or extending the PL
to generate new products

In most of PL refinement scenarios, however, many changes
need to be applied to the code assets, feature models and config-
uration knowledge, which sometimes leads the refactored PL to
generate more products than before. As long as it generates enough
products to match the original PL we still satisfy existing users.
This is illustrated by Figure 3, where we refine the simplified Mo-
bileMedia product line (detailed in Section 5) by adding the op-
tional Copy feature. The new product line generates twice as many
products as the original one, but what matters is that half of them
– the ones that do not have feature Copy – behave exactly as the
original products. This ensures that the transformation is safe; we
extended the product line without impacting existing users.

The PL refinement notion that we rely on formalize these ideas
and is defined in terms of program refinement [23] [9]. Basically,
each program generated by the original PL must be refined by some
program of the new PL. Figure 4 illustrates this by showing two
products lines, PL and PL’. In this example, PL is refined by PL’
because for each product in PL (represented by a star shape), there
is a corresponding product in PL’ that refines it (represented by a
square shape) and meaning that every behavior presented by the
product on the right is a possible behavior of the corresponding
product on the left. As we explained before, one can also have new
products in PL’ and still preserve the refinement relation.

4. Safe Evolution Templates for PLs
Based on this notion of refinement, in this section, we describe
how we discovered and analyzed concrete product line evolution
scenarios and, from the results of this study, we present a number of
safe evolution templates. The templates provide guidance on how
to structure extracted variant parts and help to avoid problems that
might occur when evolving PLs manually.

The templates are valid modifications that can be applied to a
product line thereby improving its quality and preserving existing
products’ behavior. The PL transformations listed here involve ar-
tifacts like feature models, configuration knowledge specifications
and core assets as well. It is important to mention that the refine-
ment notion that we rely on (see Section 3) is independent from the
used language for feature model and configuration knowledge [6].
However, the safe evolution templates presented here are specific
to the language of these artifacts.

To discover the safe evolution templates, we identified and an-
alyzed different evolution scenarios from the TaRGeT PL between
releases 4.0 to 5.0. During this time, we identified a total of 11 safe
evolution scenarios, that means evolution steps according to the re-
finement notion that we rely on. After this step, we analyzed the
changes performed in code assets, feature model and configuration
knowledge. We also considered SVN commit comments and revi-

Music.java, ...

AppMenu.aj, ...
Common.aj, ...

Photo.java, ...

Photo ∧ Music
Photo ∨ Music

Photo
Music

MM.java, ...Mobile Media
Photo.java

AppMenu.aj

Mobile Media

Media

Photo Music

Screen Size

128x149 240x320

Management

Send Photo Sorting

Send Photo ⇒ Photo

… …

Mobile Media

Media

Photo Music

Screen Size

128x149 240x320

Management

Send Photo Sorting

Send Photo ⇒ Photo

Copy

CopyPhoto.aj, ...Copy ∧ Photo
Copy.java, ...Copy

Music.java, ...

AppMenu.aj, ...
Common.aj, ...

Photo.java, ...

Photo ∧ Music
Photo ∨ Music

Photo
Music

MM.java, ...Mobile Media Photo.java

AppMenu.aj
… …

CopyPhoto.aj

✔

✔

✔

✔

Figure 3. Adding an optional feature refinement

1

4

3

2

5

2

1

3

6

4

⊑

⊑

⊑

⊑

PL products PL' products

Figure 4. Product Line Refinement

sion history annotations in the source code files. Based on these
results, we derived a set of safe evolution templates that abstract,
generalize and factorize the analyzed scenarios and can be used in
different contexts.

Regarding the used notation, each template described here
shows the feature model, asset mapping and configuration knowl-
edge status before and after the transformation. Feature models

3 2011/7/8

F

a a' a''�

F

...

e

...

n e n, n'

......

�
n ↦ a

...

n ↦ a'

...
n' ↦ a''

n and n' do not show up in other CK lines
n' is not used in other AM lines

Figure 5. Template 1 - Split asset

contain only the features that are necessary to understand the tem-
plates. These are the features that are involved or are affected by
the template being described. If we want to say that a feature may
contain other features related to it, this can be expressed by a trace
above or below the feature.

We represent the configuration knowledge by a two-column
table, in which the left-hand column contains feature expressions
that are mapped to names of assets, represented in the right-hand
column. The ellipsis indicate other lines different from the one that
is explicitly expressed. An asset mapping (AM) maps asset names
into assets. It is useful to avoid conflicting assets names in the CK.
Two curly braces represent the AM, grouping a mapping of asset
names, on the left-hand side, to assets, on the right-hand side.

In the case that feature model, asset mapping or configuration
knowledge are not changed in the transformation, they are ex-
pressed in the template by the single letters F, A and K, respec-
tively. Each template also declares meta-variables that abstractly
represent the PL elements, for example an arbitrary feature expres-
sion or an arbitrary asset name. The letters F, A and K are also
meta-variables. If these variables appear in both sides of a transfor-
mation, this means that they remain unchanged. On the bottom we
express the pre-conditions to the transformation.

4.1 Template 1 – Split Asset
When analyzing evolution scenarios that changed a mandatory
feature to optional, we observe that this type of operation usually
involved tracking the code related to the feature and extracting it to
other artifacts, like aspects, property files or Eclipse RCP plug-in
extensions (in case of TaRGeT).

To generalize these cases, we derived Template 1, illustrated by
Figure 5. This template indicates that it is possible to split an asset
a into two other assets a’ and a” as long as the composition of
assets a’ and a” refines asset a. The first restriction is necessary
to guarantee that the behavior of the old asset a is preserved. We
added the second restriction to simplify the CK representation.

When n appears in other CK lines, it is only necessary to change
all occurrences for n, n’. Another variation of this template is that
n’ can also represent an existing asset in the PL. We could discuss
other variations too, but the focus here is on the basic template.
The variations can often be derived from the basic template by
composing it with other templates. We can say that Template 1
is a PL refinement because for each product that contained asset
a before, there is now a corresponding refined one that contains
the composition of assets a’ and a” after the transformation. This
specific transformation improves product line quality because it is
possible to modularize feature behavior in different assets.

In our study, this template was used, for example, in the scenario
that appears in Figure 6, where developers want to extract the

TargetProjectRefresher
FeaturesView

FeaturesTreeViewLabelProvider
TaRGeT

TargetProjectRefresher
FeaturesView

FeaturesTreeViewLabelProvider
PMInterruptionAspect

TaRGeT

Split Asset

TaRGeT

Interruption

TaRGeT

Interruption

Java Files

Java Files
PMInterruption

Aspect.aj

✔

✔

Figure 6. Split asset example

Interruption feature code that is scattered along three different Java
classes (the ones listed in the CK) to a new Aspect. For this, they
applied the Split Asset template and its variations several times and
extracted the feature code to the new aspect PMInterruptionAspect.
As can be noticed, the FM is not affected by the transformation. The
source files in the figure represents the AM.

4.1.1 Split Asset – Code Transformations
In order to better explain the code transformations, like in the ex-
ample presented on Figure 6, we need transformations that deal
specifically with code assets. This is necessary because the general
abstract PL templates only establishes the refinement constraint. So
that is why we specify more precisely code transformations tem-
plates that complement the general templates for PL safe evolu-
tion. The existing refactorings in Eclipse IDE are an example of
these code transformations to refactor Java code assets.

For Template 1, there are many variation extraction mechanisms
described in other works [1, 3] that could be classified as code
transformation templates. However, we only mention here the ones
that we observed in our analysis of TaRGeT PL. All these code
templates are helpful because they propose valid transformations
that do not deteriorate the product line. So if a developer needs
to maintain the product line, with the templates he reduces the
possibility of introducing errors, increasing confidence.

In a practical scenario, like the one that appears in Figure 6,
the developer first selects a PL template that makes the necessary
transformation in the configuration knowledge and feature model,
in this case the Split Asset template, and then selects the code trans-
formation templates to actually implement the necessary changes in
code assets. In the above mentioned example, we applied templates

4 2011/7/8

public void createFormContent(IManagedForm managedForm) {

 ScrolledForm form = managedForm.getForm();
 form.setText(properties.getProperty("test_selection_page"));

}

public void createFormContent(IManagedForm managedForm) {

 ScrolledForm form = managedForm.getForm();
 form.setText("Test Selection Page");

}

invalid_similarity_value = Invalid Similarity Value
test_purpose_creation = Test Purpose Creation
test_selection_page = Test Selection Page

+

Figure 7. Example of text extraction to properties file

Extract Resource to Aspect - after, Extract Method to Aspect, Ex-
tract Context and Extract After Block to extract the feature code to
the PMInterruptionAspect. These code templates first appeared in
a catalog of refactoring templates to extract code from classes to
aspects, using AspectJ [3]. The templates from this catalog rely on
aspect oriented programming to modularize crosscutting concerns,
which often occur in PLs.

Another code template that we identified during our analysis
is useful to extract constants in the source code, usually user in-
terface texts, to a properties file. We could define many other code
templates to other types of values. This operation is commonly per-
formed when there is the need to localize the user interface to sup-
port different languages, like in the example shown in Figure 7,
where the form title text “Test Selection Page” is moved to a prop-
erties file. In this code template the original class is refined by the
composition of the new refactored class with a call to the properties
file, and the properties file itself.

Figure 8 shows the abstract transformation template. The nota-
tion used follows the representation of programming laws [23]. On
the right-hand side, all occurrences of text s in body are replaced by
a call to the property that contains its value. We denote the set of
field declarations, method declarations and properties declarations
by fs, ms and ps, respectively. We use T to represent the return
type of method m. In class C constructor we place a call to a new
method responsible to load the properties file. On the bottom we
list the transformation restrictions.

In our study, we also identified code transformation scenarios
that involved variation extraction to extension points. To capture
that, we have a code template that represents this operation. This
template uses Eclipse plug-ins extension point pattern and defines
that it is possible to extract code within a class, create an exten-
sion point and replace the code in the class by a call to existing
extensions that implement that new extension point. A new ex-
tension is then created with the extracted code. As TaRGeT is an
Eclipse RCP application, we observed that many variations are im-
plemented with the extension point mechanism and can be justified
by this template.

Figure 9 presents the abstract transformation. On the left-hand
side, is the C class that has at least a method m with a body. On
the right-hand side, method m is refactored and body is replaced
by a call to the m’ method defined in the abstract class C’, which
actually represents the extension point itself. We need other con-
figuration files to implement extension points and corresponding
extensions, but we have omitted them for clarity. The extension ba-

class C {
 fs
 ms

 C(){
 body'
 }

 T m (ps) {
 body
 }

}

class C {
 fs

 Properties p;

 C(){
 body'
 loadProperties();
 }

 void loadProperties() throws FileNotFoundException,
 IOException {
 p = new Properties()
 p.load(new FileInputStream(
 new File(“property_file.properties”))
 }

 ms

 T m (ps) {
 body[p.getProperty("property_name") / s]
 }

}

property_file.properties
 props
 property_name = s

+

provided
 - there is no atributte p in fs;
 - there is no method loadProperties in ms
 - there is no property property_name in props

property_file.properties
 props

+

Figure 8. Abstract template for text extraction to properties file

class C {
 ts
 ms

 T m(ps) {
 body
 }

}

Extension point
definition

Extension

abstract class C' {

 abstract T m'(ps)

}

class C'' extends C' {
 T m'(ps) {
 body
 }
}

+

class C {
 ts
 ms

 T m(ps) {
 access m' with ps
 }

}

provided
 - body does not use local variables declared in ts; body does not call any method in ms

Figure 9. Abstract template for extension points

sically contains a class C” that extends the abstract class C’ and
implements method m’, where body is placed with the necessary
modifications.

4.2 Template 2 – Refactor Asset
Another template that we propose based on the observations of
our study is showed in Figure 10. This template defines that it
is possible to modify an asset a, transforming it into asset a’, as
long as the new asset a’ refines the original asset a. We assure
refinement because each product that contained asset a now has
a corresponding refined one that contains asset a’.

Template 2 also relies on code transformation templates. For
example, we could use Template 2 combined with existing refac-
torings for object-oriented, aspect-oriented, and conditional com-
pilation programs. In practice, we know that some of these code
transformations might change other code assets. For instance, if a
class that is used by other classes is renamed, these classes need to
be modified as well. We can have variations of Template 2 to deal

5 2011/7/8

a a'�

�n ↦ a

...

n ↦ a'

...

K

F F

K

Figure 10. Template 2 - Refactor asset

P
P�

O
...

e

...

n

......

n'

ne

e'

n ↦ a

...

n' ↦ a'

...
n ↦ a

e' ⇒ O

Figure 11. Template 3 - Add new optional feature

with these cases. They need to assure that the resulting product line
is well formed and that the products that use these classes are not
affected.

4.3 Template 3 – Add New Optional Feature
Template 3 emerged when analyzing evolution scenarios like the
one described in our motivating example, when one introduces
an optional feature to the PL. This template, presented in Figure
11, states that it is possible to introduce a new optional feature
O and add a new asset a associated to a feature expression e’ in
the configuration knowledge only if the restriction that says that
selecting e’ implies selecting O is respected. The restriction assures
that the new assets are only present in products that have feature O
selected and that products built without the new feature correspond
exactly to the original PL products. We assure refinement because
the resulting product line has the same products that it had before
in addition to products that contain feature O, and we improve the
resulting PL quality by increasing its configurability.

In practice, the template implementation should be flexible
enough to allow the association of more than one asset to the new
optional feature in the CK. Figure 12 shows the application of
Template 3 in the scenario that we described in our motivating ex-
ample. The new assets STDExtension and STDPreferencesAspect
are correctly associated to the new XLS STD feature in the CK.

4.4 Template 4 – Add New Mandatory Feature
Template 4, represented in Figure 13, indicates that we can insert
a new mandatory feature, represented by M, on a feature model as
long as we preserve the configuration knowledge, represented by
K, and the asset mapping, represented by A. This transformation
is a refinement because the asset mapping and the configuration
knowledge do not change, so the products before and after the
transformation are still precisely the same. It increases quality
because it improves feature model readability.

If we had added new assets and associated them with feature
M in the configuration knowledge, it would not be possible only
with this template to ensure that these artifacts would not alter the
behavior of existing products. Consequently, we could not assure
that the transformation was a safe evolution step. It is possible to
generalize even more the template considering that we can add any

TaRGeT

Output

OutputExtensionPointOutput
STDExtension

STDPreferencesAspect
XLS
STD

TaRGeT

Output

XML

XLS
STD

HTML

XMLHTML

Template 3
Add New Optional Feature

OutputExtension.java

OutputExtension.java

STDExtension.java

STDPreferences
Aspect.aj

OutputExtensionPointOutput

✔

✔

✔

✔

Figure 12. Add new optional feature example

P

M

PA

K
� A

K

Figure 13. Template 4 - Add new mandatory feature

kind of feature to the FM (mandatory, optional, alternative, or) if
we preserve code assets and CK.

Figure 14 illustrates the template utilization. In this example,
developers inserted a new mandatory feature Word under the In-
put feature. This feature identifies the possible formats of use case
documents that TaRGeT accepts as input. The Word feature repre-
sents the Microsoft Word format. This transformation is useful to
improve FM readability. Similarly to this operation, it is possible
to add any kind of feature (optional, alternative, or) in the FM, as
long as the CK is preserved.

We observed in our study that Template 4 is usually used to-
gether with other templates following it. We decided to divide this
transformation into two steps to facilitate the automation and reuse
of the templates, since it is possible to combine templates to derive
more complex transformations.

4.5 Template 5 – Replace Feature Expression
Template 5 in Figure 15 expresses that it is possible to change
the feature expression associated to an asset n in the configuration
knowledge from e to e’ only if one respects the restriction that
these expressions are equivalent considering the feature model. The
restrictions specify that all product configurations from a feature

6 2011/7/8

TaRGeT

Input

TaRGeT

Input

Word

Java Files

Java Files

Template 4
Add New Mandatory Feature

✔

Input WordDocumentProcessing

Input UseCaseDocumentParser

Input WordDocumentProcessing

Input UseCaseDocumentParser

Figure 14. Add new mandatory feature example

n

...

e

...

A

F ⊢ e ⇔ e'

n

...

e'

...

A
�F F

names(e') ⊆ names(F)

Figure 15. Template 5 - Replace feature expression

model F lead to equivalent evaluation for the feature expressions
in both e and e’. It also specify that the feature expression in e’
only references names from F. This template improves product line
quality by enhancing configuration knowledge readability.

We found many occurrences of this template combined with
Template 4. Figure 16 illustrates how we can use Template 5 in
the example described in Figure14. In this example, the template
changed the feature expression related to the WordDocumentPro-
cessing asset from Input to Word. This is possible because as Word
is under Input, selecting the first means that the second is also se-
lected. This operation is useful because it improves both CK and
FM readability and, in the example, structures the PL for the intro-
duction of new Input formats.

4.6 Other Templates
When deriving the templates we assured first that they complied
with the refinement notion that we rely on. After deriving the
preliminary versions, we realized that in some cases the restrictions
associated to the templates were too strong and that they could not
be used in other situations different from the ones we analyzed. So

Word WordDocumentProcessing

Input UseCaseDocumentParser

TaRGeT

Input

Word Input WordDocumentProcessing

Input UseCaseDocumentParser

TaRGeT

Input

Word

Java Files

Java Files

Template 5
Replace Feature Expression

✔

Figure 16. Template 5 - Replace feature expression example

we decided to discard unnecessary conditions in order to make the
templates more general and consequently more useful.

Besides, we found that we could divide some templates into
more steps, which improved understanding and would help an
automation process in the future in order to provide better support
to developers. So we refactored and evolved these templates and
new ones were derived.

We also observed that in some evolution scenarios that we ana-
lyzed, it was usually necessary to combine more than one template,
for example, templates 4 and 5. This information can be useful
when defining a strategy to compose the templates in an automated
solution.

Table 1 summarizes all templates proposed in this work. Tem-
plates 1 to 5 are detailed in this section. Template 3 was first men-
tioned in a previous work [5]. Template 6 defines transformations
that occur in configuration knowledge and asset mapping when
adding a new alternative feature in the feature model. Similarly,
Template 7 defines the same transformations to include an OR fea-
ture in the feature model. Finally, Template 8 defines asset removal
and contains the program transformation law for class elimina-
tion [7] defined as a code transformation template. We derived this
template when analyzing another PL, which we describe in more
details in Section 5 The templates not detailed here can be found in
our website 1.

5. Analyzing Product Line Safe Evolution
We chose two different product lines to perform our study. We first
studied TaRGeT [12], which we previsously mention in Section 2.
We also analyzed MobileMedia [13], a PL for media (photo, video
and audio) management on mobile devices. This section describes
how we investigated the evolution scenarios and presents an anal-
ysis on the expressivity of our safe evolution templates. We also

1 http://twiki.cin.ufpe.br/twiki/bin/view/SPG/
SPLRefactoringTemplates

7 2011/7/8

http://twiki.cin.ufpe.br/twiki/bin/view/SPG/SPLRefactoringTemplates
http://twiki.cin.ufpe.br/twiki/bin/view/SPG/SPLRefactoringTemplates

Table 1. Safe Evolution Templates for Product Lines
Template Name

1 Split Asset
2 Refactor Asset
3 Add New Optional Feature
4 Add New Mandatory Feature
5 Replace Feature Expression
6 Add New Alternative Feature
7 Add New OR Feature
8 Delete Asset

show the frequency of use of each template in the evolution scenar-
ios.

5.1 Results
To evaluate the relevance of our safe evolution templates, we ana-
lyzed the evolution of two different product lines. We also exam-
ined whether our templates were sufficient to express the modifica-
tions implemented in all these scenarios. We summarize the results
in Table 2 .

We divided the analysis of TaRGeT in two different steps. First,
we analyzed the evolution scenarios implemented from release 4.0
to release 5.0 (from January to July 2009) to derive the transforma-
tion templates that we presented in Section 4. Then, in the second
step, we analyzed the evolution scenarios implemented between re-
leases 5.0 and 6.0 (from July 2009 to January 2010) in order to ver-
ify if the templates that we had previously identified could address
the changes performed in each scenario. As mentioned in Section 2,
we identified 11 evolution scenarios between releases 4.0 and 5.0
and 9 evolution scenarios between releases 5.0 and 6.0.

We also analyzed MobileMedia [13], a PL for media (photo,
video and audio) management on mobile devices. MobileMedia has
been refactored and evolved to incorporate new features in order to
address new scenarios and applications along many releases. It has
been implemented in two different versions: (i) an object-oriented
Java implementation that uses conditional compilation to imple-
ment variabilities; and (ii) an aspect-oriented Java implementation
that uses AspectJ aspects to modularize the PL variabilities, which
we used in this study. We evaluated releases 4 to 8 and we identified
8 safe evolution scenarios performed in the product line during this
period.

Table 2 lists the templates frequency of use in each safe evo-
lution template in TaRGeT and MobileMedia PLs. We count only
one occurrence of a template, even if it is used more than once in
the same scenario. This is because we want to verify if our set of
templates is sufficient to express the evolution steps, no matter how
many times they are used.

According to Table 2, we observed that in the TaRGeT PL,
Template 6 - Add New Alternative Feature was the most widely
used in the analyzed scenarios. We believe that this was due to the
implementation of different formats for input use case documents
(Word, XML, XLS) and output test suites (XML, HTML and XLS).
On the other hand, we did not find any occurrence of Template 8 -
Delete Asset.

Among MobileMedia evolution scenarios, we did not found any
occurrence of Template 7 - Add New OR Feature because it does
not have any OR feature. Template 1 - Split Asset and Template
2 - Refactor Asset were the most used templates. The former was
applied with code templates to extract subclass and to extract class
member to aspect. The latter was applied in release 5 to introduce a
new alternative feature in the PL. Finally, Template 8 - Delete Asset
was used once when an exception handling class became no longer
useful.

Table 2. Templates Frequence
Template TaRGeT MobileMedia

Split Asset 4 (13.79%) 6 (25%)
Refactor Asset 5 (17.24%) 6 (25%)

Add New Optional Feature 5 (17.24%) 4 (16.66%)
Add New Mandatory Feature 3 (10.34%) 1 (4.16%)
Replace Feature Expression 3 (10.34%) 4 (16.66%)

Add New Alternative Feature 8 (27.58%) 2 (8,33%)
Add New OR Feature 1 (3.44%) 0 (0%)

Delete Asset 0 (0%) 1 (4,16%)

Another fact that we have noticed when analyzing both PL his-
tory was that some operations usually involved a large number of
modified classes. In TaRGeT PL, the average number of modified
assets was 12.9 and in MobileMedia PL the average was 11 assets.
This might indicate that if we implement the templates together
with a development tool, we could also improve productivity. How-
ever, evaluate this is not the focus of our work.

In both cases we found that our transformation templates, in ad-
dition to the feature model and configuration knowledge refactor-
ings listed in previous works [24], [2] were sufficient to justify all
the analyzed evolution scenarios, which reinforces the expressivity
of our safe evolution templates. Besides, during our analysis, we
identified 3 cases that actually introduced new bugs in the product
line, in TaRGeT’s second set of evolution scenarios, and 4 cases in
MobileMedia. Most of these errors are related to the implementa-
tion of a new feature that crashed the behavior of existing products,
like the example that we described in our motivating example. We
found that if our safe evolution templates had been used, these er-
rors could be avoided.

We have also proved the templates’ soundness with respect
to the refinement definition. This assures that they do not intro-
duce bugs in the product line. We proved soundness for all tem-
plates listed in Table 1 using the Prototype and Verification Sys-
tem (PVS) [20]. This formal proof is done in accordance with the
general PL refinement theory (See Section 3). The templates proof
details are not in the scope of this work, but they can be retrieved
in our website2.

These two aspects are important because together they address
the problem of the likely chance of error in manual PL evolution;
we assure that the templates do not introduce new bugs and also
that the developer does not need to perform modifications that are
not described by the templates.

5.2 Threats to Validity
The study about PL evolution detailed in this work provides en-
couraging results, but it is not yet complete. Concerning our study,
this subsection lists the main threats to validity identified.

Since we performed our analysis manually, it is possible that
some evolution scenarios have not been taken into consideration.
In this case we may have missed evolution steps that could not
be justified by our templates or scenarios that would enhance the
expressivity of our set of templates. We identified the scenarios
by analyzing different FM versions from each release and also by
comparing different versions of assets in the SVN repository. We
also relied on commit comments and revision history annotations
present in source files that described the changes that developers
executed. However, we believe that the identified evolution scenar-
ios can represent real life operations and that the templates that
we discovered can be used in different contexts from the ones that
we analyzed. Because of the limited quantity of PLs analyzed, the
quantitative results cannot be generalized with confidence, but the

2 http://twiki.cin.ufpe.br/twiki/bin/view/SPG/TheorySPLRefinement

8 2011/7/8

qualitative results are an evidence that our set of safe evolution tem-
plates is quite expressive.

Our approach is based on the fact that manually evolving PLs
is error prone. In this study we found evidences of this issue by
identifying evolution scenarios that were supposed to preserve the
behavior of existing products but in fact introduced errors in the
PL. Despite this, it is also possible that we have overlooked errors
introduced by the manual changes during PL evolution and that the
number of errors is even bigger, which encourages us to continue
with our research.

Another threat to our work is the fact that MobileMedia is a
small system that was developed for educational purposes. How-
ever, we observed that the same categories of evolution scenar-
ios that we identified in TaRGeT PL were present in MobileMedia
scenarios, which indicates that these scenarios are relevant to our
study.

6. Related Work
The notion of product line refinement discussed here first appeared
in a product line refactoring tutorial [5]. Besides covering product
line and population refactoring, that tutorial illustrates different
kinds of refactoring transformation templates that can be useful for
deriving and evolving product lines. Another work [6] extended
this initial formalization making clear the interfaces between the
product line refinement theory and languages used to describe
product line artifacts. In our work we use the existing definitions
for PL refinement and the idea of safe evolution transformation
templates, but we go further by proposing other new templates
based on the analysis of a real product line and evaluating these
templates in two other product lines.

Early work [10] on product line refactoring focus on Product
Line Architectures (PLAs) described in terms of high-level com-
ponents and connectors. This work presents metrics for diagnosing
structural problems in a PLA, and introduces a set of architectural
refactorings that can be used to resolve these problems. Besides
being specific to architectural assets, this work does not deal with
other product line artifacts such as feature models and configura-
tion knowledge, as do the safe evolution templates presented in our
work. There is also no notion of behavior preservation for product
lines.

Several approaches [16, 17, 19, 26] focus on refactoring a prod-
uct into a product line, not exploring product line evolution in gen-
eral, as we do here with our templates. First, Kolb et al. [17] discuss
a case study in refactoring legacy code components into a product
line implementation. They define a systematic process for refactor-
ing products with the aim of obtaining product lines assets. There is
no discussion about feature models and configuration knowledge.
Moreover, behavior preservation and configurability of the result-
ing product lines are only checked by testing. Similarly, Kastner
et al. [16] focus only on transforming code assets, implicitly re-
lying on refinement notions for aspect-oriented programs [9]. As
discussed here and elsewhere [5] these are not adequate for justify-
ing product line refinement. Trujillo et al. [26] go beyond code as-
sets, but do not explicitly consider transformations to feature model
and configuration knowledge as do our templates. They also do not
consider behavior preservation; they indeed use the term “refine-
ment”, but in the quite different sense of overriding or adding extra
behavior to assets.

Liu et al. [19] also focus on the process of decomposing a legacy
application into features, but go further than the previously cited ap-
proaches by proposing a refactoring theory that explains how a fea-
ture can be automatically associated to a base asset (a code module,
for instance) and related derivative assets, which contain feature
declarations appropriate for different product configurations. Con-
trasting with the refinement notion that we rely on, this theory does

not consider feature model transformations and assumes an implicit
notion of configuration knowledge based on the idea of derivatives.
So it does not consider explicit configuration knowledge transfor-
mations as we do here. Their work is, however, complementary
to ours since we abstract from specific asset transformation tech-
niques such as the one supported by their theory. By proving that
their technique can be mapped to the notion of asset refinement,
both theories could be used together.

Thüm et al. [25] present and evaluate an algorithm to classify
edits on feature models. They classify the edits in four categories:
refactorings, when no new products are added and no existing prod-
ucts are removed; specialization, meaning that some existing prod-
ucts are removed and no new products are added; generalization,
when new products are added and no existing products removed
and arbitrary edits otherwise. In our work, we also analyzed edits
in other artifacts like CK and code assets, in addition to FM. How-
ever, we are only interested in refactorings and generalization edits,
not considering specialization and arbritary edits.

7. Conclusions
In this paper we investigate the safe evolution of PLs and based on
the results of this study we present and describe a set of safe evolu-
tion templates that can be used by developers in charge of maintain-
ing product lines. The described templates abstract, generalize and
factorize the analyzed scenarios and are in accordance with the re-
finement notion that we rely on. The templates express transforma-
tions in feature models and configuration knowledge. We abstract
code assets modifications through code transformation templates,
which are more precise transformations that deal with changes in
code level. Some of our general PL templates might have a set of
code transformation templates associated to them.

We also present the preliminary results of a study that we per-
formed to evaluate the evolution of two product lines. We show
evidence that the discovered templates can justify all evolution sce-
narios that we identified in the SVN history of these two PLs.
We present examples of how using our templates could avoid the
mistakes that we found during our analysis and we show the fre-
quency of occurrence of each template among the analyzed scenar-
ios. These results, in addition to the templates formal proofs, intend
to address the problem of the likely chance of erros in manual evo-
lution in product lines.

We know that our results are limited by the context of the
two product lines that we analyzed and that new templates (both
general and specific for code assets) can be necessary to justify
other transformations that we did not analyze in this paper. In order
to complement these results, we intend to extend our study by
analyzing other product lines from different domains.

Our results also showed evidence that PL manual evolution can
be time consuming because it usually involves the analysis and
modification of a great number of source code artifacts. We believe
that the templates automation integrated with a development tool
could address this issue. As future work, we intend to implement
our templates integrated with FLiP [4], an existing product line
refactoring tool developed by our group. We also plan to execute
a controlled experiment to evaluate the time, and consequently,
productivity gains when using our templates to evolve product
lines.

Acknowledgments
We would like to thank CNPq, a Brazilian research funding
agency, and National Institute of Science and Technology for Soft-
ware Engineering (INES), funded by CNPq and FACEPE, grants
573964/2008-4 and APQ-1037-1.03/08, for partially supporting

9 2011/7/8

this work. In addition, we thank SPG3 members for feedback and
fruitful discussions about this paper.

References
[1] V. Alves, P. M. Jr., L. Cole, P. Borba, and G. Ramalho. Extracting and

evolving mobile games product lines. In SPLC 2005, Rennes, France,
Lecture Notes in Computer Science, pages 70–81. Springer, 2005.

[2] V. Alves, R. Gheyi, T. Massoni, U. Kulesza, P. Borba, and C. J. P.
de Lucena. Refactoring product lines. In GPCE 2006, Portland,
Oregon, USA, pages 201–210. ACM, 2006.

[3] V. Alves, P. Matos, L. Cole, A. Vasconcelos, P. Borba, and G. Ra-
malho. Extracting and evolving code in product lines with aspect-
oriented programming. Transactions on Aspect-Oriented Software De-
velopment, 4:117–142, 2007.

[4] V. Alves, F. Calheiros, V. Nepomuceno, A. Menezes, S. Soares, and
P. Borba. Flip: Managing software product line extraction and reaction
with aspects. In SPLC, page 354, 2008.

[5] P. Borba. An introduction to software product line refactoring. In
GTTSE’09 Summer School, Braga, Portugal, 2009.

[6] P. Borba, L. Teixeira, and R. Gheyi. A theory of software product
line refinement. In ICTAC’10, pages 15–43, Berlin, Heidelberg, 2010.
Springer-Verlag.

[7] A. Cavalcanti, P. Borba, A. Sampaio, and M. Cornelio. Algebraic
reasoning for object-oriented programming. Science of Computer
Programming, Jan. 2004.

[8] P. Clements and L. Northrop. Software Product Lines: Practices and
Patterns. Addison-Wesley, 2001.

[9] L. Cole and P. Borba. Deriving refactorings for AspectJ. In In Proc.
Int’l Conf. Aspect-Oriented Software Development, pages 123–134.
ACM Press, 2005.

[10] M. Critchlow, K. Dodd, J. Chou, and A. van der Hoek. Refactoring
product line architectures. In 1st International Workshop on Refactor-
ing: Achievements, Challenges, and Effects, pages 23–26, 2003.

[11] K. Czarnecki and U. Eisenecker. Generative programming: methods,
tools, and applications. Addison-Wesley, 2000.

[12] F. Ferreira, L. Neves, M. Silva, and P. Borba. Target: a model based
product line testing tool. In Tools Session of CBSoft 2010, Salvador,
Brazil, 2010.

[13] E. Figueiredo, N. Cacho, M. Monteiro, U. Kulesza, R. Garcia,
S. Soares, F. Ferrari, S. Khan, O. C. Filho, and F. Dantas. Evolv-
ing software product lines with aspects: An empirical study on design
stability, 2008.

[14] M. Fowler. Refactoring: Improving the Design of Existing Code.
Addison-Wesley, Aug. 1999.

[15] K. Kang, S. Cohen, J. Hess, W. Novak, and A. S. Peterson. Feature-
oriented domain analysis (FODA) feasibility study. Technical Report
CMU/SEI-90-TR-21, Software Engineering Institute, Carnegie Mel-
lon University, 1990.

[16] C. Kastner, S. Apel, and D. Batory. A case study implementing
features using AspectJ. In 11th International Software Product Line
Conference, pages 223–232. IEEE Computer Society, 2007.

[17] R. Kolb, D. Muthig, T. Patzke, and K. Yamauchi. A case study in
refactoring a legacy component for reuse in a product line. In 21st
International Conference on Software Maintenance, pages 369–378.
IEEE Computer Society, 2005.

[18] C. Krueger. Easing the transition to software mass customization. In
4th International Workshop on Software Product-Family Engineering,
volume 2290 of LNCS, pages 282–293. Springer-Verlag, 2002.

[19] J. Liu, D. Batory, and C. Lengauer. Feature oriented refactoring of
legacy applications. In ICSE’06, pages 112–121. ACM, 2006.

[20] S. Owre, J. Rushby, and N. Shankar. Pvs: A prototype verification
system. In 11th International Conference on Automated Deduction,
pages 748–752. Springer-Verlag, 1992. ISBN 3-540-55602-8.

3 http://www.cin.ufpe.br/spg

[21] K. Pohl, G. Böckle, and F. van der Linden. Software Product Line
Engineering: Foundations, Principles and Techniques. Springer, 2005.

[22] D. B. Roberts. Practical Analysis for Refactoring. PhD thesis,
University of Illinois, 1999.

[23] A. Sampaio and P. Borba. Transformation laws for sequential object-
oriented programming. In PSSE, volume 3167 of Lecture Notes in
Computer Science, pages 18–63. Springer, 2004.

[24] L. M. Teixeira. Verification and refactoring of configuration knowl-
edge for software product lines. MSc Dissertation, Federal University
of Pernambuco (UFPE), 2010.

[25] T. Thüm, D. S. Batory, and C. Kästner. Reasoning about edits to
feature models. In ICSE, pages 254–264. IEEE, 2009. ISBN 978-
1-4244-3452-7.

[26] S. Trujillo, D. Batory, and O. Diaz. Feature refactoring a multi-
representation program into a product line. In GPCE’06, pages 191–
200. ACM, 2006.

[27] F. van der Linden, K. Schmid, and E. Rommes. Software Product Lines
in Action: the Best Industrial Practice in Product Line Engineering.
Springer, 2007.

10 2011/7/8

	Introduction
	Motivating Example
	Product Line Refinement and Safe Evolution
	Safe Evolution Templates for PLs
	Template 1 – Split Asset
	Split Asset – Code Transformations

	Template 2 – Refactor Asset
	Template 3 – Add New Optional Feature
	Template 4 – Add New Mandatory Feature
	Template 5 – Replace Feature Expression
	Other Templates

	Analyzing Product Line Safe Evolution
	Results
	Threats to Validity

	Related Work
	Conclusions

