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Abstract—Feature models and configuration knowledge drive
product generation in a Software Product Line (SPL). Mistakes
when specifying these models or in the implementation might
result in ill-formed products — the safe composition problem.
This work proposes an automated approach for verifying safe
composition for SPLs with explicit configuration knowledge
models. We translate feature models and configuration knowledge
into propositional logic and use SAT Solvers to perform the
verification. We evaluate our approach using seven releases of
the MobileMedia SPL, which generate up to 272 products in
the 7th release. We report safe composition problems related to
non-conformity with the feature model, bad specification of the
configuration knowledge, and implementation not envisioning the
full SPL scope, that affect over 40% of the products in the 7th
release.

I. INTRODUCTION

A software product line (SPL) is defined as a set of software
systems that share common characteristics, but are sufficiently
distinct from each other [1]. In a SPL, products are generated
from reusable assets [1]. To accomplish this, SPL approaches
use, in most cases, Feature Models (FMs) [2], which describe
a domain by representing common and variable features of an
SPL; and Configuration Knowledge (CK) [3], which relates
features to implementation assets, driving product generation.
We can explicit such knowledge in a model [4], [5], [6], in
annotations over SPL assets [7], [8], or it can be implicit by the
implementation mechanism followed, such as feature modules
or containment hierarchies [9], [10], [11], [12]. Errors when
specifying this model can result on incorrect products. Thus,
the safe composition problem [8], [10], [13], [14].

Safe composition is related to safe generation and the veri-
fication of properties for SPL assets: i.e., providing guarantees
that the product derivation process generate products with
particular properties [8], [10], [13], [14]. To keep the SPL
consistent and to detect errors early, it is important to make
sure that all products obey such properties. Since SPLs can
quickly scale to hundreds of products, it is often impractical,
time-consuming and error-prone to manually inspect FM,
CK, and implementation to understand dependencies between
assets for all products. Another option is to generate all
products, compile, and test them. While this is an useful and
safe approach, it does not scale. For example, in release 7
of the MobileMedia SPL [15], it would take around 4 hours
only to compile all 272 products. Additionally, anytime that

something changes, we would need to compile all products
again.

Some approaches avoid the need for synthesizing the entire
SPL to verify safe composition [10], [11], [12], [13]. However,
they are tailored to specific languages for implementing SPLs.
To enable multiple languages, we can use a dedicated CK
model. Such model relates features and their combinations to
assets [4], [5]. Assets might be classes, aspects, configuration
files, and so on. CK evaluation against a valid feature selection
drives product generation. Such evaluation yields the set of
assets needed to build a product. However, mistakes made
when specifying this model might result in safe composition
problems. For example, missing entries in the CK lead to
missing assets in the resulting product.

In this paper we present an approach to verify safe compo-
sition of SPLs with such dedicated CK models, that we call
CK-based SPLs. To enable the verification, we use explicit
interfaces in the CK, expressing dependencies between assets.
Such dependencies are extracted from the assets, and need
to be satisfied for all SPL products. To actually perform
the verification, we use the formal specification language
Alloy [16] and its associated tool support — Alloy Analyzer
— which provides automatic analysis of Alloy specifications.
Our tool automatically translates the FM and CK to our Alloy
encoding. When it detects safe composition problems in a
SPL, it reports the list of problematic products based on
counterexamples returned by the Alloy Analyzer.

We evaluate our approach using the first seven releases
of the Mobile Media SPL [15]1, which handles different
media types in mobile devices. The FM is available from
documentation and the CK is defined in the build files used for
compiling SPL products. For releases 1-5 which are smaller
SPLs (in release 5: 16 products, 14 features, where 4 are
optional), the tool does not report safe composition problems.
However, for releases 6 and 7, containing 48 and 272 products,
respectively, it identifies safe composition problems. Problems
relate to different sources: non-conformity with the FM, bad
CK specification, and implementation not envisioning the full
SPL scope. In release 6, time for verifying and reporting all
problematic products is around 4 seconds, while in release 7,
it takes 34 seconds, which is less than the average time for

1Detailed results at http://www.cin.ufpe.br/∼lmt/sbes2011/
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compiling a single MobileMedia product. Errors found affect
almost 17% of the products in release 6 and almost 43% of
the products for release 7.

In our earlier work, we presented a general theory for SPL
refinement [6]. In it, we define an SPL as a tuple formed by
FM, CK, and code assets, in which all products that can be
generated are well-formed — safe composition. In this work,
we propose and implement a way to check well-formedness.
This is important as an initial step towards tool support for
SPL refactoring.

In summary, the main contributions of this work are the
following:

• Extension of an existing CK model [4], [5] to enable safe
composition verification (Section III);

• An approach for verification of CK-based SPLs (Sec-
tion IV-A);

• Tool support implementation, using the Alloy Analyzer,
to detect errors in an SPL and to report ill-formed
products (Section IV-B);

• Evaluation of the proposed approach using seven releases
of an SPL (Section V).

II. MOTIVATING EXAMPLE

To enable automatic generation of products, we need to re-
late features to assets. This is established by the Configuration
Knowledge (CK) [3]. For instance, consider the Expression
Product Line (EPL), an SPL where products consist of inter-
preters for evaluating arithmetic expressions [17]. Figure 1
displays the FM for EPL. A FM represents, in terms of
features, the possible choices that the customer can make for
a product. That is, the possible products which the SPL can
generate. It In this case, it allows 6 product configurations,
which are valid feature selections. Each has at least one
operation (Add or Sub) and must work with one specific type
only (Integer or Double).

We use a separated model (CK) to relate feature expressions
to assets [4], [5]. Figure 1 presents the EPL CK. In this case,
assets are classes and aspects. For instance, in the seventh
row of the CK in Figure 1, we see AddDoubleTypeAspect
related to the joint selection of the Add and Double features.
This aspect intercepts the program during the Add operation,
changing the type from Integer to Double. CK Evaluation
against a product configuration yields a set of assets, used to
build the product. As an example, evaluating this CK for the
product configuration

{EPL, Value Type, Double, Operations, Add}
yields the following set of assets:

{Program.java,Expression.java,Value.java,
DoubleValue.java,DoubleTypeAspect.aj,AddExp.java,
BinaryExp.java,AddDoubleTypeAspect.aj}.

Depending on the approach adopted for SPL develop-
ment [18], there are different times and roles in charge of
specifying the CK. For example, if we use the proactive
approach [18], where a good portion of the SPL is designed

EPL

Value Type

Integer Double

Operations

Add Sub

Feature Expression Assets
EPL Program.java, Expression.java

Integer ∨ Double Value.java
Integer IntegerValue.java
Double DoubleValue.java, DoubleTypeAspect.aj

Add ∨ Sub BinaryExp.java

Sub SubExp.java
Sub ∧ Double SubDoubleTypeAspect.aj

Add AddExp.java
Add ∧ Double AddDoubleTypeAspect.aj

mandatory

alternative
(xor)

optional

Fig. 1. Feature Model and Configuration Knowledge for the Expression PL.

up front, an architect specifies in the CK how assets imple-
ment features and their interaction. In the case of reactive
and extractive approaches [18], the developer responsible for
implementing the feature also specifies and updates the CK.

If not properly specified, a CK might lead to safe compo-
sition problems [10], [11], [13], [14]. For example, we might
forget to include an entry, include incompatible entries in it. In
the set above, AddDoubleTypeAspect references the AddExp
class, which depends on IntegerValue. Figure 2 illustrates
this dependency, relating assets to their respective feature
expression. From the FM, we know that products cannot
contain both integer and double types. Consequently, products
with the Double feature miss the IntegerValue class, since it
is only associated with the Integer feature. We consider them
ill-formed products, since an asset name (AddExp) present in
the set yielded by CK evaluation references other asset name
(IntegerValue), absent in that set.

Class/Aspect

Feature
Expression

AddDoubleType 
Aspect AddExp IntegerValue

Add ∧ Double Add Integer

Fig. 2. Dependency diagram between some classes and aspects of the
Expression Product Line and the relation with feature expressions on the CK.

It is undesirable to generate ill-formed products, but it might
happen due to mistakes when designing and implementing
a SPL, such as mentioned above. A brute-force approach of
generating all SPL products for verifying safe composition is
often impractical, since there are SPLs that can generate thou-
sands of products [19]. Even in SPLs with fewer products, this
might be expensive, as we discuss in Section V-E. To ensure
productivity and avoid unexpected maintenance costs when
developing a SPL, it is important to verify safe composition
of SPLs without synthesizing the entire SPL [10], [13]. Next
section describes our general approach for safe composition
of CK models, illustrating how we could use it to detect the



problem presented in this section.

III. SAFE COMPOSITION OF CK-BASED SOFTWARE
PRODUCT LINES

To detect problems such as the ones mentioned in the
previous section, we now introduce our approach for safe
composition of CK-based SPLs. We use explicit interfaces
for CK items (rows) to enable the verification. Therefore,
for each CK item we have provided and required interfaces.
Interfaces are explicit to comprehend semantic dependencies
and other restrictions, like the inclusion of an asset depending
on the final size of the generated product, besides typing
dependencies, which can be inferred from existing assets, as
in [10], [13]. Figure 3 illustrates another view of the CK in
Figure 1. We now have columns for the provided and required
interfaces. In this example, interfaces are asset names2, repre-
senting dependencies between assets. When evaluating the CK
against a product configuration, we can also yield the provided
and required interfaces.

Feature Expression Assets

EPL Program.java, 
Expression.java

Integer IntegerValue.java

Double DoubleValue.java, 
DoubleTypeAspect.aj

Add AddExp.java

Add ∧ Double AddDoubleTypeAspect.
aj

Provided

Program, Expression

IntegerValue

DoubleValue, 
DoubleTypeAspect

AddExp

AddDoubleTypeAspect

Required

Expression, Value

Value

DoubleValue, Expression, Value

BinaryExp, Expression, 
IntegerValue, Value

DoubleTypeAspect, AddExp, 
DoubleValue, Expression, Value

Integer ∨ Double Value.java

Add ∨ Sub BinaryExp.java

Sub SubExp.java

Sub ∧ Double SubDoubleTypeAspect.
aj

Value

BinaryExp

SubExp

SubDoubleTypeAspect

Expression

Expression

BinaryExp, Expression, 
IntegerValue, Value

DoubleTypeAspect, SubExp, 
DoubleValue, Expression, Value

Fig. 3. Extended CK for the Expression Product Line, with required and
provided interfaces.

So, for EPL, in the case of the product configuration
{EPL, Value Type, Double, Operations, Add},

discussed in Section II, CK evaluation yields the following set
of provided interfaces:

{Program, Expression, Value, DoubleValue,
DoubleTypeAspect, BinaryExp, AddExp,
AddDoubleTypeAspect}.

The set of required interfaces yielded by CK Evaluation for
the same product configuration is:

{Expression, Value, DoubleValue, BinaryExp, In-
tegerValue, DoubleTypeAspect, AddExp}.

When comparing yielded interfaces for this product, it is
noticeable that it requires IntegerValue, which is not provided.
Therefore, we consider this product ill-formed, due to this
non-satisfied dependency. A possible solution to this problem
would be to refactor the implementation to remove this depen-
dency. Another solution that would not involve changing the
implementation would be to associate the IntegerValue class
with the feature expression Add ∧ Double.

2For simplicity and space, we remove file extensions from names on the
provided and required columns.

With such interfaces, we are able to verify safe composition
of a product without building it. We only need to verify
that, after evaluating the CK for the product, all required
interfaces are being provided. Therefore, according to previous
works [5], [6], we consider an SPL well-formed when all of
its products are well-formed.

A good part of these interfaces can be automatically derived
from assets, as previous works already discuss [10], [13], [14],
[12]. The derivation process is an orthogonal concern, and it
is not the focus of this work. Such process can also have
limitations, when dealing with semantic dependencies. For
instance, in the case of dynamic class loading, where we only
know values at runtime. Besides that, we can implement an
SPL using different kinds of files, such as configuration files,
property files, where it might not be possible to extract all
interfaces automatically. Finally, these interfaces also depend
on the variability implementation mechanism used in the
SPL. Therefore, this work is not concerned with interfaces
extraction, since we adopt a CK notion that supports different
implementation languages and artifacts. To perform the verifi-
cation, we assume that these interfaces are available, whether
automatically derived from the assets or manually informed.

IV. VERIFICATION OF CK-BASED SOFTWARE PRODUCT
LINES

This section presents our approach for the automated ver-
ification of safe composition of CK-based SPLs, formalizing
the concepts presented in Section III. We translate both the
feature model (FM) and the configuration knowledge (CK)
into propositional formulae to evaluate whether a given SPL
is well-formed. We use Alloy [16], and the Alloy Analyzer to
encode FM and CK, perform the verification and report the
list of ill-formed products.

A. Intuition

While the FM gives us the domain constraints, represented
by the set of product configurations, the CK gives us the
implementation constraints, represented by provided and re-
quired interfaces. Figure 3 presents the extended CK for
EPL. As discussed, it associates feature expressions, like Add
∧ Double, to assets, such as AddDoubleTypeAspect. We
can translate the CK to a proposition. For each CK item,
we generate provided and required propositions. Figure 4
illustrates the codification rules. For example, for the CK item
associating the joint selection of Add and Double features,
the proposition representing the provided interface is

(Add ∧Double)⇒ AddDoubleTypeAspect.
The idea is that if the feature expression Add ∧ Double
evaluate to true, AddDoubleTypeAspect is provided. We
translate required interfaces likewise. For the same CK item,
the proposition representing the required interfaces is

(Add ∧ Double) ⇒ (DoubleTypeAspect ∧
AddExp ∧DoubleV alue ∧Expression ∧ V alue).

We use the conjunction (
∧

) of the provided propositions for
each CK item to express the provided interfaces for the entire



constraintsCK: Provided ck ⇒ Required ck

Provided ck: ∧Provided item

Required ck: ∧Required item

Provided item: (FeatExp ⇒ ∧Provided)

Required item: (FeatExp ⇒ ∧Required)

Fig. 4. Propositional logic codification rules for CK.

CK. We build the required proposition in the same way. We
then relate both propositions to represent the CK constraints
(constraintsCK). The idea is that for all products, required
interfaces should be provided.

Using this codification, a product is well-formed when it
satisfies constraintsCK. We can use propositions to repre-
sent product configurations, where we express non-selected
features with the negation symbol. For example, using the FM
in Figure 1, we can represent the product configuration

{EPL, Value Type, Integer, Operations, Add}
with the proposition below:

EPL ∧Operations ∧Add ∧ ¬Sub ∧
V alueType ∧ Integer ∧ ¬Double.

The constraintsCK proposition for EPL, when checked against
this product configuration, simplifies to

(Program ∧ Expression ∧ V alue ∧
IntegerV alue ∧ BinaryExp ∧ AddExp)
⇒
(Expression ∧ V alue ∧ BinaryExp ∧
IntegerV alue).

Notice that after the simplification, for feature expressions
evaluated to false, required and provided interfaces are elim-
inated from the proposition. For example, since we did not
selected the Double feature, AddDoubleTypeAspect does
not appear in the left side of the implication — provided
interfaces. We also see that all interfaces required for this
product (right side of the implication) are provided (left side
of the implication). Therefore, the whole proposition evaluates
to true, which means that assets can be safely composed for
the product. Thus, it is considered a well-formed product.

For the same SPL, if we evaluate the product configuration
{EPL, Value Type, Double, Operations, Add},

represented by the logical proposition
EPL ∧Operations ∧Add ∧ ¬Sub ∧
V alueType ∧ ¬Integer ∧Double,

the constraintsCK proposition is then simplified to
(Program∧Expression∧V alue∧DoubleV alue∧
DoubleTypeAspect ∧ BinaryExp ∧ AddExp ∧
AddDoubleTypeAspect)
⇒
(Expression ∧ V alue ∧ BinaryExp ∧
IntegerValue ∧ DoubleTypeAspect ∧ AddExp ∧
DoubleV alue).

We now see that IntegerValue appears on the right side of
the implication. This means that this product configuration
requires this asset. However, IntegerValue does not appear
on the left side of the implication, since it is not being
provided. So, we cannot prove this proposition. Assets cannot
be safely composed for this product, since there is a non-
satisfied dependency. Therefore, this is an ill-formed product.

These examples illustrate how we can verify safe com-
position for single products using our approach. To check
the entire SPL, we use the FM, since it represents the set
of product configurations which are of interest to customers.
Rules for translating an FM into propositions have been
discussed previously [20]. Every feature relationship (root,
optional, mandatory, alternative) has a specific translation to
propositional logic, representing its semantics So, we represent
the EPL FM in Figure 1 with the following proposition:

semanticsFM : EPL
∧ (EPL⇔ Operations) ∧ (EPL⇔ V alueType)
∧ (Operations⇔ (Add ∨ Sub))
∧ (V alueType⇔ (Integer ∨Double))
∧ (V alueType⇔ ¬(Integer ∧Double)).

To perform safe composition verification for a CK-based
SPL, we relate these two propositions — semanticsFM and
constraintsCK. Domain constraints (FM) must satisfy imple-
mentation constraints (CK), as proposed in previous works [8],
[10], [20]. The proposition we then need to check is the
following:

semanticsFM ⇒ constraintsCK.
If this proposition evaluates to true, we consider the SPL well-
formed, since all product configurations respect the provided
and required interfaces. If it does not, we know that there
are safe composition problems in the SPL. The next section
describes how we formalize this intuition in Alloy, using
the Alloy Analyzer tool support to detect and report which
products are ill-formed.

B. Formalization

Based on the encoding presented in the previous section,
there are different ways that we can actually perform the
verification using SAT solvers. We use Alloy and the Alloy
Analyzer [16] due to its tool support, which can perform
automatic analysis over specifications. It also has a formal
semantics, and we can use it with different off-the-shelf SAT
solvers. We also had previous experience using it in the
context of FMs and SPLs, performing analysis over thousands
of features [21], [22]. In this section we illustrate how we
encode FMs and CK in Alloy. It is important to highlight that
translation of such models to Alloy is automatically performed.

An Alloy specification contains a number of signature
paragraphs. Each signature denotes a set of objects (similar
to a UML class), which we can associate to other objects by
relations declared in the signature body. So, a signature para-
graph introduces a new type. Alloy provides a restricted set of
primitive signatures, so it does not have boolean types natively.
However, we can use an idiom for expressing booleans. We



define an abstract signature Bool, and two signatures extending
it, True and False. The extends keyword means that these
are subtypes of Bool. The one keyword denotes that there is
always exactly one instance of a signature. Therefore, every
Bool is either True or False. We define features and assets by
defining subset signatures (see the in keyword). This means
that they are subsets of Bool. They can assume True or False
values. We do it in this way since features and assets can
be selected (True) or not (False), depending on the product
configuration. The following fragment illustrates signature
declarations for the boolean idiom we use and EPL features
and assets.

abstract sig Bool {}
one sig True, False extends Bool {}
one sig EPL, Operations, Add, Sub, ···Double in Bool {}
one sig Program, Expression, Value ···in Bool {}

In Alloy, we use predicates (pred) to package reusable
formulae. If all constraints listed in the body are satisfied, the
predicate evaluates to true. Otherwise it evaluates to false. We
use predicates to represent the FM and CK as propositions,
encoded using the rules discussed in the previous section.
The fragment below specifies the FM and CK for EPL. The
predicates for specifying FM relationships, such as root and
optional, have been previously specified, since we use a theory
for encoding FMs in Alloy [21]. For example, we declare
the alternative relationship using two arguments: the parent
feature, and the set of alternative features (declared using the
+ keyword to denote the set union operator). We specify cross-
tree constraints likewise. We specify the provided and required
predicates according to Figure 4, as detailed in Section IV-A3.

pred semanticsFM[] {
root[EPL]
mandatory[ValueType,EPL]
mandatory[Operations,EPL]
alternative[ValueType, Integer+ Double]
orGroup[Operations,Add+ Sub]
}
pred constraintsCK[] {

provided[] ⇒ required[]
}

To determine whether an SPL is well-formed, we need to
check if all products are well-formed. We do this relating
the FM and the CK, verifying that all product configurations
satisfy the implementation constraints. To check this in Alloy,
we use assertions. Assertions are questions about the model
that we wish to verify that are true up to a given scope. We
verify assertions using the check command, that searches for
counterexamples of an assertion. We must specify a scope, that
is the maximum size of the top-level signatures that Alloy will
use to search within. In our case, the top-level signature we
have is (Bool). Although there are many features and assets,
they are all subset signatures of Bool, so they can be either

3Hereby omitted for brevity.

True or False. Therefore, the scope we use for checking our
assertion is 2. The following fragment illustrates how we use
Alloy to specify the assertion and its verification.

assert verifySPL {
semanticsFM[] ⇒ constraintsCK[]
}
check verifySPL for 2

There are two possible results for a check command. If
it can not find counterexamples, the assertion is said to be
true for the scope defined. If it finds a counterexample, it is
presented to the user, and we can analyze it to understand
the problem. In Section II we discuss that EPL has ill-
formed products. So, when checking the assertion verifySPL
for EPL, we find a counterexample. Figure 5 illustrates a
possible counterexample returned by the Alloy Analyzer. It
is an assignment of features and assets to True and False
that violates the assertion. If we examine the feature names
(highlighted in bold), we notice that this counterexample is
related to the product configuration
{EPL, Value Type, Double, Operations, Add}.

False
(Integer, IntegerValue, Sub, 

SubDoubleTypeAspect, SubExp)

True
(Add, AddDoubleTypeAspect, AddExp, BinaryExp, Double, 

DoubleTypeAspect, DoubleValue, EPL, Expression, 
Operations, Program, Value, ValueType)

Fig. 5. Counterexample found when checking safe composition of the EPL.

So, from counterexamples, we are able to report the exact
product configurations that are not safely composed for the
SPL. Since in our context, the scope is well delimited — it
does not need to be bigger than 2 — the Alloy Analyzer works
as a theorem prover. The result of this check is a proof. If a
counterexample is found, the assertion does not hold, meaning
that the SPL is ill-formed. If it can not find counterexamples,
we consider the SPL well-formed. We have built a tool in Java,
using the Alloy API, that automates this verification process.
Moreover, we have integrated it into Hephaestus, a tool suite
used for managing SPL variabilities [23]. It automatically
translates the FM and CK formats used in Hephaestus to Alloy
specifications, and verifies safe composition of the SPL. If it
is ill-formed, the tool reports the list of ill-formed products.

V. EVALUATION

This section presents an evaluation of our approach us-
ing the code assets for seven releases of the MobileMedia
SPL [15]. We investigate whether safe composition problems
happen in MobileMedia releases. If they do, we are also
interested whether our approach detects them in reasonable
time. Next sections present an overview of MobileMedia and
the results of applying the verification for each release. We also
discuss issues related to this evaluation, and provide an outline



of how other SPLs can use our approach for safe composition
verification.

A. MobileMedia Overview

MobileMedia is a SPL that manipulates photo, music, and
video on mobile devices [15], which has its releases publicly
available4. For each release, there are Java and AspectJ im-
plementations, both using the Model-View-Controller (MVC)
pattern. The Java versions handle variability through feature
expressions associated to conditional compilation tags, in a
fine-grained level. The AspectJ versions handle variability at
a coarse-grained level, using features associated to classes
and aspects. Using advices and inter-type declarations, aspects
intercept different parts of the program, scattered throughout
MVC roles. For example, implementation of the Sorting
feature consists of modularizing in an aspect all code related to
its functionality. We use the AspectJ versions of the first seven
MobileMedia releases, due to the similarity of their build files
with our present CK notion, which relates feature expressions
to assets [4], [5].

Each release consists in the inclusion of new features and
reorganization of others in the FM, besides the implementa-
tion. Figure 6 illustrates the FM for Release 7. Labels below
some features correspond to the release that introduces this
feature. For example, release 7 introduces Capture Photo.

Mobile 
Media

Media 
Management

Album 
Management

Sorting Favorites Copy 
Media

Delete 
Album

Create 
Album

Basic Media 
Operations SMS

Delete 
Media

Create 
Media

Edit Media 
Label

Music Video

Media 
Selection

Photo

Capture 
Photo

Capture 
Video

R2 R3 R4 R5 R7 R7

R6 R7

Fig. 6. FM for MobileMedia [15] release 7.

To generate a MobileMedia product, we use .lst build
files, containing a list of paths for source files that the
build task uses to compile. For example, consider part of
MobileMediaWithoutSorting.lst in Figure 7 (a),
and part of MobileMediaWithSorting.lst in Figure 7
(b). Both files are based on the product configurations from
Release 2, with and without the Sorting feature. These .lst
files contain annotations, starting with #, that relate a feature
expression with the set of assets that realize it, as we see in
the end of the MobileMediaWithSorting.lst file. We
notice that, in order to include functionality for the Sorting
feature in a product, we include the SortingAspect in the build
task.

So, build files describe specific SPL products. Annotations
that associate feature expressions to assets make these build
files a sort of product-specific CK. For each release, we derive

4http://mobilemedia.cvs.sourceforge.net/viewvc/mobilemedia/

 # MobileMedia
 lancs/mobilemedia/core/ui/MainUIMidlet.java
 lancs/mobilemedia/core/ui/controller/BaseController.java
 lancs/mobilemedia/core/ui/screens/PhotoListScreen.java
  ...
 lancs/mobilemedia/core/util/ImageUtil.java

 # MobileMedia
 lancs/mobilemedia/core/ui/MainUIMidlet.java
 lancs/mobilemedia/core/ui/controller/BaseController.java
 lancs/mobilemedia/core/ui/screens/PhotoListScreen.java
  ...
 lancs/mobilemedia/core/util/ImageUtil.java

 # Sorting
 lancs/mobilemedia/optional/sorting/SortingAspect.aj

(a) MobileMediaWithoutSorting.lst

(b) MobileMediaWithSorting.lst

Fig. 7. Build files for products from Release 2 of the MobileMedia SPL [15].

the CK for the SPL based on the available build files. For
releases 1 through 5, since there are not much variations,
there is a single build file (.lst) for each release, with a
complete mapping of feature expressions to assets for the
entire SPL. So, they already are a CK representation for
those releases. For releases 6 and 7, there are build files
describing only a subset of product configurations. Therefore,
we took special care when extracting the CK from these files,
using diff tools to compare the common and variable parts
between them. One thing that helped us to make sure that
this task was not introducing errors is that the name of some
aspects also references the feature expressions associated.
For example, PhotoAndMusicAndSMS aspect implements a
certain behaviour associated with the feature expression Photo
∧ Music ∧ SMS. Another thing worth mentioning is that for
both sixth and seventh releases, there is a build file describing a
product configuration with all features selected, which contains
the majority of associations of feature expressions to assets,
needed to extract the CK.

To enable the safe composition verification, we also need
to have provided and required interfaces for CK items. In
this evaluation, we considered required interfaces as syntactic
dependencies between assets and provided interfaces as the
asset names (classes and aspects). For this evaluation, we cap-
ture dependencies specific to the MobileMedia artifacts. We
only focus on classes and aspects under the lancs.mobilemedia
package, because these are the ones that the build files asso-
ciate with feature expressions. Thus, we do not capture Java
API and external libraries dependencies, for example. While
capturing these would make the provided and required sets
richer, the problems we found and discuss in this section would
still happen. Nonetheless, since we are only using a subset
of all actual dependencies, it is possible that there exist more
errors than those we found. So, given that we know all classes
and aspects names under the lancs.mobilemedia package, the
provided and required interfaces are automatically extracted
from the code using Soot5. While we need this information to

5Soot is a Java optimization framework that allows analyzing Java bytecode.
http://www.sable.mcgill.ca/soot/

http://mobilemedia.cvs.sourceforge.net/viewvc/mobilemedia/
http://www.sable.mcgill.ca/soot/


enable the use of our verification approach, it is important
to remind that we only need to perform this step because
MobileMedia does not have a CK with the interfaces already
specified.

With this information, we are able to perform safe com-
position verification for MobileMedia releases. The process
of generating an Alloy specification is automated, following
the codification rules already presented. For each release, we
check if, for all product configurations, the required interfaces
are being provided. Next sections detail results found when
analyzing the first seven releases of the MobileMedia SPL.

B. Releases 1-5

The first release is not considered a SPL, since it is a single
product. Therefore, we just need to make sure that it is also a
valid AspectJ program, which is the case. When we perform
the verification for releases 2 to 5, the tool does not find any
problems. These releases are smaller and simpler, ranging from
1 product, in release 1, to 16, in release 5. All releases deal
only with photos. Music and Video are only introduced in later
releases. So, changes do not have a great impact on existing
assets, they mainly consist of adding new assets.

C. Release 6

The release 6 introduces the ability to handle music. Both
the FM and CK were reorganized to support this change. New
assets are added, and existing ones are modified. This release
has 3 KLOC. The FM for this release allows 48 product
configurations, which now can handle either photos and music,
and both of them as well (see Figure 6). However, there are
only six build files available for this release. We use them to
extract the CK.

Verification for this release detects 8 ill-formed products.
The six pre-existent build files do not describe these products.
The MobileMedia developers have not generated or tested
them. Analysis of the ill-formed products revealed that a
single problem makes them ill-formed. Figure 8 illustrates that
the SMSAspect, which is associated with the SMS feature,
requires assets provided by the Photo feature. So, in the
case of product configurations where we select SMS and
Music, but not Photo, there are missing dependencies, which
cause them to be ill-formed. The ImageMediaAccessor and
PhotoViewScreen assets do not show up in other parts of
the CK. Filenames below the CK in Figure 8 represent the
existing build files where we find these association of features
with assets.

Release 5 introduces the SMS feature, providing func-
tionality for sending messages with photos. Since the SMS
implementation only send photos, but not music, which was
a functionality introduced in this release, there is an inconsis-
tency of the implementation with the FM for this release, that
allows product configurations to select SMS without Photo.
There is no constraint stating that SMS requires Photo. Then,
a possible solution to this problem would be to modify the
implementation to conform to the FM, so SMS can work with
both photos and music. Another solution would be to change

Feature Expression Provided Required

SMS

Photo

SMSAspect

ImageMediaAccessor, 
PhotoViewScreen, ...

..., ImageMediaAccessor, 
PhotoViewScreen, ...

MainUIMidlet, 
AbstractController, ...

... ... ...

... ... ...

MobileMedia01.lst,	  MobileMedia02a.lst,	  MobileMedia04.lst

Fig. 8. Part of the CK for Release 6 of MobileMedia [15], illustrating the
SMS problem.

the FM, including the constraint stating that SMS requires
Photo

D. Release 7

This release introduces another media type: Video. It also
adds the ability to capture photos and videos. The MobileMe-
dia SPL size grows to 4 KLOC. The number of product con-
figurations increases to 272. However, similarly as in release 6,
there are build files for only a subset of product configurations,
describing 10 specific products. Thus, we extract the CK from
the available build files. When performing the verification for
this release, we find 116 ill-formed products. Again, the 10
pre-existent build files do not describe these products. Besides
the SMS problem, which the previous subsection already
discusses, there are two new problems.

Figure 9 illustrates the Capture Photo problem. This re-
cently introduced feature provides the CapturePhotoAspect.
This aspect depends on the PhotoViewController class, pro-
vided only when we select Copy or SMS features. Therefore,
a solution for this problem is to change, in the CK, the feature
expression that provides PhotoViewController to Copy ∨
SMS ∨ CapturePhoto.

Feature Expression Provided Required

Capture Photo

Copy ∨ SMS

CapturePhotoAspect

PhotoViewController

..., PhotoViewController, ...

MainUIMidlet, 
AbstractController, ...

... ... ...

... ... ...

MobileMediaA03.lst,	  MobileMediaABC03.lst

Fig. 9. Part of the CK for Release 7 of MobileMedia [15], illustrating the
Capture Photo problem.

Another problem happens with the aspect PhotoAndMu-
sicAndVideo, included when all media types are present in
a product configuration. Figure 10 illustrates this problem
presenting part of the CK for this release. This aspect depends
on another aspect, OptionalFeatureAspect, associated to the
selection of all optional features.

This is due to a precedence declaration, used to organize
aspects application implementing MobileMedia variations. So,
every time that some combination of aspects is present on a
product, these precedence declarations organize their appli-
cation. In some releases, there are actually aspects that only
have precedence declaration in its body. This is the case of



Feature Expression Provided Required

Photo ∧ Music ∧ Video

Sorting ∧ Favorites
 ∧ Copy ∧ SMS

PhotoAndMusicAndVideo

OptionalFeatureAspect

OptionalFeatureAspect, 
PhotoAspect, ...

CopyMultiMediaAspect, 
FavouritesAspect, ...

... ... ...

... ... ...

MobileMediaABC03.lst

Fig. 10. Part of the CK for Release 7 of MobileMedia [15], illustrating the
Photo ∧ Music ∧ Video problem.

OptionalFeatureAspect, for example. Listing 1 illustrates the
code used in this aspect, associated with the feature expression
Sorting ∧ Favorites ∧ Copy ∧ SMS. In other words, it
is included in a product when we jointly select all optional
features for this release.

Listing 1. Code for OptionalFeatureAspect.aj.
package l a n c s . mobi lemedia . o p t i o n a l ;
import l a n c s .mm . . . CopyMul t iMediaAspect ;
import l a n c s .mm . . . F a v o u r i t e s A s p e c t ;
import l a n c s .mm . . . P e r s i s t e F a v o r i t e s A s p e c t ;
import l a n c s .mm . . . S o r t i n g A s p e c t ;
import l a n c s .mm . . . SMSAspect ;
p u b l i c a s p e c t V i d e o A n d O p t i o n a l F e a t u r e s {

d e c l a r e p r e c e d e n c e : CopyMult iMediaAspect ,
CopyAndVideo , F a v o u r i t e s A s p e c t ,
S o r t i n g A s p e c t , P e r s i s t e F a v o r i t e s A s p e c t ;

}

In this release, the only existing build file describing a
product containing all media types also contains all optional
features. This seems to be the reason for the inclusion
of OptionalFeatureAspect in the precedence declaration of
PhotoAndMusicAndVideo. So, when compiling this product,
there are no problems at all. However, if we consider other
SPL products with feature combinations not previously tested,
problems might happen, as our approach detected. A possible
solution aligned with the MobileMedia implementation is to
refactor the code, thus removing this precedence declaration
from this aspect. We would have to create variations of this
aspect to consider all possible different combinations of Photo
∧Music ∧ Video with the Sorting, Favorites, Copy and SMS
features. After restructuring the code, we would also need to
update the CK with these new assets.

E. Discussion

A possible alternative approach for the verification would be
a brute-force one, as discussed in Section II. The average time
for compiling a single product configuration of MobileMedia
is around 50 seconds. For release 7, it would take almost 4
hours for generating and compiling all products, besides time
for testing them. On the other hand, time for verifying release
7 and reporting the list of 116 ill-formed products takes less
than 34 seconds, which is a reasonable time, since our main
focus was not efficiency. This reinforces the benefits of using
an automated approach for verifying safe composition [8],
[10], [13], [12] instead of generating all SPL products. The
larger the SPL, the bigger the benefits. Besides that, in order

TABLE I
SUMMARY FOR VERIFICATION OF MOBILEMEDIA RELEASES.

Release # Products ill-formed Products Time (s)
2 2 0 0.751
3 4 0 0.947
4 8 0 1.092
5 16 0 1.217
6 48 8 4.123
7 272 116 33.813

to compile all products, we would have to manually create
a build file for each product. Moreover, the majority of this
time is due to the steps needed to retrieve the list of ill-formed
products. Actually, it only takes a second, in average, to only
check if the SPL is well-formed, without reporting the ill-
formed products. Time for extracting the CK in releases 6
and 7 was between 30 and 40 minutes, by careful analysis
and comparison of the existing build files. Table I summarizes
the results of the verification for each of the MobileMedia
releases evaluated, with the CK already extracted.

It can be argued that the CK derivation process introduced
problems. However, for all releases, the build files document
the associations of feature expressions to assets, needed to
extract the CK. Moreover, we found problems related to
associations of feature expressions to assets documented in
existing build files, as illustrated in Figures 8, 9 and 10.

These problems might have happened and went unnoticed
due to the manner in which MobileMedia was implemented
and tested. The implementation seems to be guided by a subset
of product configurations, instead of envisioning the whole
SPL scope. Therefore, developers made sure that the products
described by the existing build files were correct, but did not
check, even using brute-force, if all products were correct.

Also, since in this evaluation we are extracting our interfaces
in a syntactic way, we are only capturing syntactic problems.
This is a particular weakness of the way we extracted these
interfaces, not of our verification approach. Had we used
a more powerful mechanism for deducing the interfaces, or
complemented them manually, our approach could find even
more errors in MobileMedia, not only syntactic problems. For
example, to ensure that the implementation of an interface is
provided.

Also, it is worth mentioning that the interface information
does not need to reside in the CK. So, we do not need to
change existing models, specially if we can compute most of
these interfaces in an automated way. For the sake of simplicity
and clarity, the examples used throughout the text have the
interfaces as part of the model. However, this approach is not
dependent on such a modification of the CK model. It only
depends on the existence of provided and required interfaces,
that we can relate to feature expressions.

Finally, we can generalize the steps used for verifying
safe composition of CK-based SPLs. Although we have only
discussed our approach in the context of verifying releases of
MobileMedia, we can use it in other SPLs, since we already
automated a good part of it. For example, we could generalize



them with the following steps:
1) If not existent, the developer should define a CK associ-

ating feature expressions to assets used in the SPL. Also
define what are provided and required interfaces in this
context.

2) The developers should also define the algorithm or
process for extracting provided and required interfaces
from SPL assets. A good part of this extraction can be
automatically performed [10], [13], [12], [8].

3) Translate the CK into Alloy. This is already automated
by our tool.

4) Perform the verification following the process discussed
in Section IV, which is also automated.

5) Finally, if there are ill-formed products, the developer
must debug the CK using counterexamples and provid-
ed/required sets to detect what is causing the problem.

VI. RELATED WORK

Thaker et al. presented techniques for verifying type safety
properties of AHEAD [9] product lines using FMs and SAT
solvers [10]. They extract properties from feature modules and
verify that they hold for all SPL members. These properties
are based on the AHEAD theory of program synthesis, and
some of them do not reveal actual errors, but rather designs
that smell bad. Delaware et al. formalized this work using an
object-oriented kernel language extended with features, called
Lightweight Feature Java (LFJ) [13], based on Lightweight
Java. They prove soundness of the underlying type system.
Their focus is on inferring type checking constraints from the
language used for implementation, while we have not focused
in extracting interfaces, but on verifying interfaces provided
to the CK. Thus, the quality of our verification is dependent
on such information. While we do not use a theorem prover to
prove soundness of our formalization, as Delaware et al. do,
our Alloy encoding provides sound and complete analysis, due
to our scope being well-delimited.

Apel et al. proposed Feature Featherweight Java (FFJ) as
a type system for feature oriented programming (FOP) [11].
They use this type system to check whether a given com-
position of features is safe, before compilation. They later
presented a condensed version of FFJ, proving soundness and
completeness, and also presenting an implementation of the
language (FFJP L) [12]. Similar to our approach, they perform
analysis using SAT solvers, checking if SPL implementation is
well-typed. The type checker provides detailed error messages,
while our approach only provides the list of products in which
problems occur. Apel et al. also proposed the gDeep core
calculus for uniform feature composition [24]. It aims to be
a language-independent pluggable type system, that can be
used with different kinds of artifacts. In this way, it is similar
to our work, since our CK model is not language-specific as
well, and we can extract interfaces from different kinds of
artifacts. However, although we can interpret our analysis as
a proof, we do not provide a full formalization of our CK
model. Finally, Apel et al. also proposed a reference checking
algorithm for feature-oriented SPLs [25]. Similarly as we do

with our CK model, they extend feature structure trees (FSTs)
with references. Two variations of the algorithm are presented:
global and local. The global version, in a similar way as we
do, generates a single propositional formula that contains all
references. The local version creates a propositional formula
for each reference, targeting efficiency, since it results in a
numer of smaller formulas that can be cached and reused [12].
They evaluate two small product lines written in different
languages (Java and C). As a future work, we intend to
compare both approaches with respect to expressiveness.

Schaefer et al. proposed a compositional type system for
Delta-oriented Programming (DOP) [26] SPLs in Java using a
core calculus. DOP uses delta modules to implement features,
that extend FOP with the ability to remove classes, methods
and fields. Similarly as with our CK, a delta module can be
associated with feature expressions. Constraints are inferred
for each delta module, and differently from our work, delta
modules are checked in isolation, instead of generating a single
proposition. The type system is proven correct and complete
with respect to the core calculus used. A difference from our
work is that due to the compositional type-checking, if new
modules are added, we only need to type-check the newly
added modules, while using our approach we would have to
check the entire SPL again.

Czarnecki and Pietroszek proposed a well-formedness ver-
ification approach for feature-based model templates [8]. A
feature-based model template consists of an FM and an
annotated model expressed in some general modeling lan-
guage such as UML or a domain-specific modeling language.
Annotations refer to features and resemble the use of condi-
tional compilation directives. Given a product configuration,
a template processor creates a template instance by evaluat-
ing presence conditions and removing elements when such
conditions evaluate to false. The idea is to prevent ill-formed
template instances. In a similar way, they check FMs against
constraints to verify that no ill-formed template instances can
be produced. They also retrieve ill-formed products from error
messages returned by the SAT solver counterexamples. These
annotations are equivalent to the feature expressions in our CK.
A difference is that while our CK information is modularized,
in model templates it is scattered throughout the SPL assets.

Also using annotations, Kaestner et al. proposed the Color
Featherweight Java (CFJ) calculus [14]. This formalization
was motivated by the Colored IDE tool (CIDE) [7], for refac-
toring legacy systems into SPLs. The mapping between fea-
tures and code occurs through a disciplined form of conditional
compilation. This calculus established type rules to ensure that
only well-typed programs can be generated. They formally
prove that given a well-typed CFJ SPL, all possible variants
are well-typed FJ programs, i.e., generation preserves typing.
Code annotated with two features has the same semantics of an
and (∧) operator. However, other types of feature expressions
are not supported, and the CK is scattered throughout the code.
In the case of SPLs with multiple variability mechanisms,
dealing with both coarse and fine-grained variabilities, we
could combine our approaches to address both levels of



variability. This could help in contexts such as in the Photo
∧ Music ∧ Video problem, discussed in Section V-D.

Mendonca et al. show that FMs pose no significant difficulty
for SAT solvers [27], justifying widespread use of SAT-based
systems, such as the Alloy Analyzer. We confirmed their
findings, performing analysis on FMs with the same encoding
used in this work, up to 10,000 features, in a few seconds [22].
In this work, we add the CK to the encoding. However, the
constraints on the CK formulae are similar to those in FMs.
Therefore, they fit in the constraint class that Mendonca et al.
show that is easy to analyze.

VII. CONCLUSIONS

In this work, we discuss safe composition of CK-based
SPLs. We extend an existing CK notion [4], [5], taking into
account required and provided interfaces expressing depen-
dencies between assets. Using these interfaces, we defined an
approach for safe composition verification of CK-based SPLs.
We have also developed a tool that automatically translates
FM and CK to Alloy, and checks whether an SPL is well-
formed. If it is not, it reports the ill-formed products. Since
we have a well-defined scope in this context, we use the Alloy
Analyzer as a theorem prover. That is, the analysis is sound
and complete.

We evaluate the approach using seven releases of the
MobileMedia SPL [15]. For releases 6 and 7, the tool identifies
safe composition problems related to non-conformity with the
FM, bad CK specification, and implementation not envisioning
the full SPL scope. It found errors that, in release 7, make 116
products invalid, out of the 272 possible. Analysis for this
release took almost 34 seconds, which is less than the average
time needed for compiling a single product.

As future work, we intend to evaluate our approach with
other SPLs from different domains, exploring metrics for
the evaluation. We also intend to investigate the use of
our approach in more complex SPL settings, with multiple
programming languages and with CK models where transfor-
mations go beyond asset selection. We also plan to integrate
our approach with a tool that implements a general theory for
SPL refinement [6] for checking refactorings [5]. In this case
we would check whether changes made to an SPL preserve
well-formedness. Finally, we intend to explore ways where we
can optimize the verification.
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[7] C. Kästner, S. Apel, and M. Kuhlemann, “Granularity in software
product lines,” in ICSE 2008, pp. 311–320, 2008.

[8] K. Czarnecki and K. Pietroszek, “Verifying feature-based model tem-
plates against well-formedness ocl constraints,” in GPCE 2006, pp. 211–
220, 2006.

[9] D. Batory, “Feature-oriented programming and the AHEAD tool suite,”
in ICSE ’04, pp. 702–703, 2004.

[10] S. Thaker, D. Batory, D. Kitchin, and W. Cook, “Safe composition of
product lines,” in GPCE 2007, pp. 95–104, 2007.
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