
S

L
a

b

a

A
R
R
A
A

K
S
C
S

1

w
c
e
t
t
e
t
e
B
e
i
u
A

c
s
2
2
a
a
r

p

0
h

The Journal of Systems and Software 86 (2013) 1038– 1053

Contents lists available at SciVerse ScienceDirect

The Journal of Systems and Software

j ourna l ho me page: www.elsev ier .com/ locate / j ss

afe composition of configuration knowledge-based software product lines

eopoldo Teixeiraa,∗, Paulo Borbaa, Rohit Gheyib

Informatics Center, Federal University of Pernambuco, Brazil
Department of Computing Systems, Federal University of Campina Grande, Brazil

 r t i c l e i n f o

rticle history:
eceived 21 January 2012
eceived in revised form 12 October 2012
ccepted 3 November 2012
vailable online 12 December 2012

a b s t r a c t

Mistakes made when implementing or specifying the models of a Software Product Line (SPL) can result
in ill-formed products — the safe composition problem. Such problem can hinder productivity and it
might be hard to detect, since SPLs can have thousands of products. In this article, we propose a language
independent approach for verifying safe composition of SPLs with dedicated Configuration Knowledge
models. We translate feature model and Configuration Knowledge into propositional logic and use the
eywords:
oftware Product Lines
onfiguration Knowledge
afe composition

Alloy Analyzer to perform the verification. To provide evidence for the generality of our approach, we
instantiate this approach in different compositional settings. We deal with different kinds of assets such
as use case scenarios and Eclipse RCP components. We analyze both the code and the requirements for a
larger scale SPL, finding problems that affect thousands of products in minutes. Moreover, our evaluation
suggests that the analysis time grows linearly with respect to the number of products in the analyzed
SPLs.
. Introduction

A Software Product Line (SPL) is defined as a set of soft-
are systems generated from reusable assets, that share common

haracteristics but are sufficiently distinct from each other (Pohl
t al., 2005). To accomplish this, some SPL approaches use Fea-
ure Models (FMs) (Kang et al., 1990), which describe domains
hrough commonalities and variabilities; and Configuration Knowl-
dge (CK) (Czarnecki and Eisenecker, 2000), which relates features
o assets, driving product generation. We can make such knowl-
dge explicit in a model (Bonifácio and Borba, 2009; Borba, 2009;
orba et al., 2012), or through annotations over SPL assets (Kästner
t al., 2008; Czarnecki and Pietroszek, 2006). It can also be made
mplicit by the implementation mechanism, such as feature mod-
les or containment hierarchies (Batory, 2004; Thaker et al., 2007;
pel et al., 2008, 2010).

In this context, safe composition is a property, or technique to
heck such property, that guarantees that all SPL products are
afe accordingly to a particular property (Czarnecki and Pietroszek,
006; Thaker et al., 2007; Delaware et al., 2009; Kästner and Apel,
008). In this article, we use the term to denote checking the

bsence of unresolved dependencies. For example, it is undesir-
ble that a class Account is absent in a product with class Bank that
eferences it. We present a formal definition in Section 2. Some

∗ Corresponding author.
E-mail addresses: lmt@cin.ufpe.br (L. Teixeira),

hmb@cin.ufpe.br (P. Borba), rohit@dsc.ufcg.edu.br (R. Gheyi).

164-1212/$ – see front matter © 2012 Elsevier Inc. All rights reserved.
ttp://dx.doi.org/10.1016/j.jss.2012.11.006
© 2012 Elsevier Inc. All rights reserved.

approaches avoid the need of synthesizing the entire SPL to ver-
ify safe composition (Thaker et al., 2007; Apel et al., 2008, 2010;
Delaware et al., 2009; Czarnecki and Pietroszek, 2006). They solve
it in the context of SPLs structured using a single language, through
implicit CK models and annotations over assets.

Here we focus on a dedicated CK model, which modularizes the
configuration information, relating features to assets (Bonifácio and
Borba, 2009; Borba, 2009), and enables language independence.
Assets might be classes, aspects, use cases, property files, and so
on. CK evaluation against a selected feature configuration yields the
assets needed to build a product. Mistakes made when specifying
the assets or this model might result in safe composition problems.
For example, incompatible entries in the CK lead to incompatible
assets in the resulting product, such as two different implementa-
tions of the same class.

To verify safe composition for SPLs with such CK models, which
we call CK-based SPLs, we propose an automated analysis that
performs the verification in a language-independent way, using
interfaces expressing dependencies between assets (Teixeira et al.,
2011). These interfaces can be calculated using standard or tailored
analysis. Given that such interfaces are available, we translate them
to the Alloy formal specification language (Jackson, 2006). To actu-
ally perform the verification we use the Alloy Analyzer (Jackson
et al., 2000) tool.

In particular, we extend our previous work (Teixeira et al., 2011)

in a number of ways. First, to give further evidence of the gen-
erality of our approach, we instantiate our approach in other
compositional settings, going beyond Java and AspectJ. We now
deal with different kinds of assets such as use case scenarios

dx.doi.org/10.1016/j.jss.2012.11.006
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:lmt@cin.ufpe.br
mailto:phmb@cin.ufpe.br
mailto:rohit@dsc.ufcg.edu.br
dx.doi.org/10.1016/j.jss.2012.11.006

tems and Software 86 (2013) 1038– 1053 1039

a
r
k
s
M
m
h
s
t
R
g
3
d
b
M
a
a
t
w
a
t
t
c
d
e
t
f
T
u
e
r
o
f
t
a
a

t
a
a
t
M
i
6

2

m
d
c
a
w
c
p
t
s

D
s

∀

p

of two features, for example. Evaluating the CK against a product
configuration yields a set of assets, used to build the corresponding
product.
L. Teixeira et al. / The Journal of Sys

nd Eclipse RCP components (McAffer and Lemieux, 2005), which
equire implementing new interface extractors and involve new
inds of dependencies that occur between different languages,
uch as XML and Java, for example. We also go beyond Mobile
edia (Figueiredo et al., 2008), an SPL which handles different
edia types in mobile devices, using a non academic SPL. This

elps us to show that safe composition problems happen in larger
cale industrial case studies, and that our approach is able to detect
hem. We do that analyzing both the code and the requirements for
elease 6 of TaRGeT (Ferreira et al., 2010), an SPL of automatic test
eneration tools, with 31 implemented features and approximately
2KLOC. In the code analysis, we detected that a single problem,
ue to a renaming refactoring, causes thousands of products to
e ill-formed. This confirms our previous findings using different
obileMedia releases, where few problems have an impact over

 good portion of products in the SPL. In TaRGeT, requirements
re structured using the Modeling Scenario Variability as Crosscut-
ing Mechanisms (MSVCM) (Bonifácio and Borba, 2009) approach,
hich enables generating product-specific use case scenarios. Our

nalysis found a number of problems that caused the majority of
he product-specific scenarios to be ill-formed. Finally, to handle
he scalability issues that come with larger case studies, we have
hanged our strategy for reporting ill-formed products. After we
etect a safe composition problem by analyzing a model of the
ntire SPL, we generate and analyze the models of all products
o identify the ill-formed ones. This way, we change our analysis
rom family-based to family-product-based (Thuem et al., 2012).
his change enabled us to analyze thousands of products in min-
tes, whereas we needed hours using our previous approach. Our
valuation now suggests that the analysis time grows linearly with
espect to the number of products in the analyzed SPLs. We also
bserve that the analysis time depends on the kinds of assets used
or implementing the SPL. By providing a new implementation of
he approach of the reporting ill-formed products phase of our
pproach, this work might be also useful to others interested in
nalyzing larger scale SPLs.

This text is organized as follows. In Section 2, we show how
he safe composition problem can happen with different kinds of
ssets, such as code and use case scenarios. Section 3 presents our
pproach for verifying CK-based SPLs using interfaces. Following
hat, in Section 4 we discuss the evaluation of our approach using

obileMedia and TaRGeT code assets and TaRGeT use case scenar-
os. We discuss related work in Section 5 and conclude with Section
.

. Motivating examples

In this section, we show how the safe composition problem
ight occur in both code and requirements assets. First, we intro-

uce a formal definition for safe composition. As discussed, safe
omposition is a property to verify that all SPL products are safe
ccording to a particular property. In this article, for a product p,
e use safe(p) to denote that p is absent of unresolved dependen-

ies. For example, in an object-oriented context this means that the
roduct does not include references to a class X which is absent in
he set of classes for the product. We could provide other meanings
uch as type-safety, for example.

efinition 1 (Safe Composition). For software product line PL, we
ay that PL satisfies the safe composition property when

product ∈ PL · safe(product)
�

To illustrate how safe composition problems can happen in
ractice, consider MobileMedia, an SPL that manipulates media on
Fig. 1. FM for MobileMedia (Figueiredo et al., 2008) release 7.

mobile devices (Figueiredo et al., 2008).1 It is implemented with
classes and aspects. For example, implementation of the Sorting
feature consists of modularizing in an aspect the code related to
its functionality. Each release adds new features and their corre-
sponding implementation. Fig. 1 illustrates how the FM evolved
until Release 7, using labels below features to show the release
that introduces a feature. For example, release 7 introduces Capture
Photo.

We denote mandatory features, such as Management, using
filled circles. The SMS feature is optional, as denoted by the blank
circle, so it might not be selected in some products. Child features
of Media form an OR group, denoted by a filled arc, which means
that we must select at least one. The FM denotes the set of possible
product configurations, that is, valid feature selections for an SPL.
A product configuration from this FM is as follows: {Music, Photo,
Sorting, SMS}.2

To enable automatic product generation, we use a CK (Czarnecki
and Eisenecker, 2000) to relate features to assets. In this arti-
cle, we use a dedicated model (Bonifácio and Borba, 2009; Borba,
2009; Zschaler et al., 2009). If not properly specified, a CK might
cause problems such as unresolved dependencies in the final prod-
uct (Thaker et al., 2007; Apel et al., 2008; Delaware et al., 2009;
Kästner and Apel, 2008). Such problems can happen because of
incompatible mappings in the CK, but it could also be the case
that, due to negligence, the developer forgets to add an entry to the
CK, for example forgetting to relate the X class with the X feature.
Therefore, when we generate a product containing the X feature, it
will likely be ill-formed, since it was expected that the X class would
be present, and some other classes would depend on it, resulting
in a unresolved dependency. We show an instance of this problem
in the following subsections, where we discuss how the safe com-
position problem might happen when using CK models to relate
features to both code and requirements.

2.1. Code assets

Focusing on code first, Fig. 2 presents part of the MobileMedia
CK. In this case, assets are classes and aspects. For instance, we asso-
ciate the SMS feature with the SMSAspect in the second row. This
aspect modularizes code related to the SMS functionality. Feature
expressions act as enabling conditions, and we can use standard
propositional logic operators to associate assets with the presence
1 http://mobilemedia.cvs.sourceforge.net/viewvc/mobilemedia/.
2 We omit mandatory features for brevity.

http://mobilemedia.cvs.sourceforge.net/viewvc/mobilemedia/

1040 L. Teixeira et al. / The Journal of Systems a

c
{
M
M
a
c
t
h
t
c
P
c
s

2

m
C
e
i
2
l
I
a
p
e

given scenario in the final product); (ii) evaluate advice (composes
Fig. 2. Part of the Configuration Knowledge for the code of the MobileMedia.

For example, evaluating the CK from Fig. 2 for the product
onfiguration {SMS, Music} yields the following set of assets:
MainUIMidlet, MediaData, SMSAspect, MusicMediaAccessor,
usicAspect, . . .}. However, SMSAspect references both Image-
ediaAccessor and PhotoViewScreen classes, which are only

ssociated with the Photo feature. The FM in Fig. 1 allows product
onfigurations where we select the SMS feature, but do not select
he Photo feature. In these cases the corresponding products would
ave unresolved dependencies, which are undesirable, according
o Definition 1. A possible solution to this problem would be to
hange the FM, including the constraint stating that SMS requires
hoto. This way, no products would have unresolved dependen-
ies. Errors of this kind can happen if we do not have a way to check
afe composition for the SPL without synthesizing all products.

.2. Requirements

A number of approaches for managing variability in require-
ents documents have been proposed (Eriksson et al., 2005;

zarnecki and Antkiewicz, 2005; Bonifácio and Borba, 2009; Alférez
t al., 2009). Here, we focus on the Modeling Scenario Variabil-
ty as Crosscutting Mechanisms (MSVCM) (Bonifácio and Borba,
009) approach. MSVCM specifies use case scenarios in a tabu-

ar notation, with columns for user actions and system responses.

t specifies variant behavior in aspectual use cases, parameters
nd non mandatory scenarios. In this context CK evaluation yields
roduct-specific use case scenarios, useful, for example, to gen-
rate functional tests. For instance, still using MobileMedia as an

SC01
Scenario: Re produ ce me dia.
Description: This sce nario all ows a mo bil e phon e
Fro m Step: Start
To Step: End
Flow of events:

Step Us er Action
SC01.1 Us er selects an existi ng folde r

optio ns mediacontent .
SC01.2 Us er vi ews the content of th

bum.
SC01.3 Us er selec ts one file fro m the

mediacontent files.

Fig. 3. MSVCM specification of the comm

ADV01
Advice: Se t as Fav orite.
Description: Se t med ia content as favorite.
Type: aft er
Poi ntcut: @Favorit es
Flow of events:

Step Us er Action
ADV01.1 Us er sets med ia as favorit e.

Fig. 4. MSVCM specification of
nd Software 86 (2013) 1038– 1053

example, Fig. 3 specifies a common usage behavior of users repro-
ducing content. It consists of a sequence of steps that describe the
functional behavior of the intended system.

We can associate scenarios to features. Thus, a particular use
case scenario might exist in some products and not in others. We
can use the from and to step for defining alternative scenarios.
MSVCM also proposes other constructs. For example, in step SC01.1
from Fig. 3, we reference the mediacontent parameter. This param-
eter allows instantiating the scenario for different configurations
of the Media feature. We could then have instantiated scenarios
where mediacontent is replaced by Video, Audio, for example. We
relate parameters to features in the CK, detailed in Fig. 5. Use case
scenario parameterization allows fine grained configuration of sce-
narios that share the same behavior and differ in relation to the
values of a specific concept.

To specify other kinds of variations on scenarios, MSVCM uses
aspectual use cases. This makes it possible to express variations in
the behavior (represented as a sequence of steps) of an existing sce-
nario. For example, see the @Favorites annotation in step SC01.3.
It basically indicates a point that is supposed to be affected by an
aspectual use case. In this case, such use case specifies a variation
associated to the optional feature Favorites, which enables users to
set media as favorite, and also to view the list of favorite media.
Fig. 4 presents the aspectual use case that changes the behavior in
particular points of the specification. It quantifies over the defined
annotation, so, when evaluated, we compose it wherever the anno-
tation happens. In this example, we include the ADV01.1 step after
all points where the @Favorites annotation appears. When gen-
erating the product-specific use case scenarios, annotations are
removed.

While we use the same FM from Fig. 1, the CK for requirements
is slightly different from the one in Fig. 2, since we have to com-
pose use case scenarios to generate a product specification. Instead
of associating features with assets, we have features associated
to three types of transformations: (i) select scenario (includes a
an advice through join points); and (iii) bind parameter (replaces
parameterized text by feature data). Fig. 5 shows the CK for our
example. Since we associate the scenario SC01 with the root feature,

use r to star t the re productio n of co nte nt.

Syst em Respons e
from The devic e populate s the lis t of

availa ble co nte nt in an album.
e al- -

list of Media is displ ayed on th e screen.
@Favorites

on usage scenario for EPL products.

Syst em Respons e
Syst em inc lude s med ia in the fa-
vorit es list.

 the advice for Favorites.

L. Teixeira et al. / The Journal of Systems a

i
t
t
s
w
t

s
u
s
C
w
a
o

p
s
C
F
t
m
i
p
s
t
M

h
T
i
e

Fig. 5. CK used for managing requirements variability in MobileMedia.

t is always included in the resulting specification. The mediacon-
ent parameter is bound to the Media feature. When we evaluate
he CK, it replaces the mediacontent parameter with the features
elected under Media. Finally, we associate the Favorites feature
ith the ADV01 advice. That is, we only compose the advice into

he specification when we select the Favorites feature.
Evaluating the CK in this context yields product-specific use case

cenarios. For example, evaluating the CK from Fig. 5 for the prod-
ct configuration {Photo, Music, Favorites} yields the result we
how in Fig. 6. Notice that, in the resulting SC01 scenario, through
K evaluation, the ADV01.1 step is woven into the scenario, since
e selected the Favorites feature and thus evaluated the ADV01

dvice. Also, the mediacontent parameter is bound to the children
f the Media feature, Photo and Music in this example.

Use case scenarios can be composed using references to steps,
arameter names, and pointcuts. As with code, we can have unre-
olved dependencies if we make a mistake when specifying the
K or the scenarios. For example, recall that in step SC01.1 from
ig. 3 we reference the mediacontent parameter. Suppose that in
he CK from Fig. 5, due to the feature name we mistakenly refer to
edia, instead of mediacontent, when defining the bind parameter

n the second row. Then, the parameter would be unbound and the
roduct-specific use case scenario generated would be incorrect,
ince it would not contain any information about the media con-
ent available. By Definition 1, the SPL is unsafe. We show further

SVCM examples in Section 4.2.2.
It is undesirable to generate ill-formed products, but it might
appen due to mistakes when designing and implementing the SPL.
o ensure productivity and avoid unexpected maintenance costs,
t is important to verify safe composition without synthesizing the
ntire SPL (Thaker et al., 2007; Delaware et al., 2009). Generating

SC01
Scenario: Re produ ce me dia.
Description: This sce nario all ows a mo bil e phon e
Flow of events:

Step Us er Action
SC01.1 Us er selects an existi ng folde r

optio ns Photo , Music.
SC01.2 Us er vi ews the content of th

bum.
SC01.3 Us er selec ts one file fro m the

Photo, Musi c files.
ADV01.1 Us er sets med ia as favorit e.

Fig. 6. Resulting scenario af

Fig. 7. Associating feature expressions wi
nd Software 86 (2013) 1038– 1053 1041

all SPL products for verifying is often impractical, since there are
SPLs that can generate thousands of products or take too long to
build products (Batory et al., 2006). The next section describes our
approach to verify safe composition in CK-based SPLs, in a language
independent way. We illustrate how we could use it to detect the
problem in Section 2.1, but we can also instantiate the approach to
detect problems in requirements, as we discuss in Section 4.2.2.

3. Safe composition of CK-based Software Product Lines

In this section we introduce our approach for verifying safe
composition of CK-based SPLs. To enable the verification, we use
dependencies between assets in the form of provided and required
interfaces. Consequently, for each CK item we also have provided
and required interfaces. Fig. 7 exemplifies this, illustrating how
we can associate feature expressions from the CK in Fig. 2 to pro-
vided and required interfaces. In this example, since we deal with
code assets, interfaces are asset names, representing dependencies
between classes and aspects. For requirements, we use as interfaces
scenario names, steps, parameter names, pointcuts and annota-
tions. Although we focus on the code example in this section, the
same concepts work for requirements and other kinds of assets,
given that we have provided and required interfaces. With such
interfaces, we can verify safe composition of an SPL without build-
ing all products. Intuitively, we only need to verify, for all product
configurations, that all required interfaces are provided, therefore,
no unresolved dependencies happen in any product. This is com-
pliant with Definition 1.

In what follows we discuss the issue of extracting interfaces
from assets in Section 3.1. Then, in Section 3.2 we use the motivat-
ing example to discuss the intuition behind the verification process.
Finally, in Section 3.3 we show how we formalize the safe compo-
sition verification using Alloy, and how we can retrieve ill-formed
product configurations when needed.
3.1. On extracting interfaces

This work proposes a language independent way of computing
safe composition, give that provided and required interfaces are

use r to star t the re productio n of co nte nt.

Syst em Respons e
from The devic e populate s the lis t of

availa ble co nte nt in an album.
e al- -

list of Media is displ ayed on th e screen.

Syst em inc lude s med ia in the fa-
vorit es list.

ter evaluating the CK.

th required and provided interfaces.

1042 L. Teixeira et al. / The Journal of Systems and Software 86 (2013) 1038– 1053

F
c

a
p
n
t
w
c
K
a
b
c
2
u
p
u
t

i
r
p
i
c

e
c
d
y
t
a
I
i

L

m
w
a
a
i
i
i
n
t
e
c
o
a
s
t

ig. 8. Part of the CK for TaRGeT PL, illustrating the selection of the Word to XML
onverter.

vailable, whether automatically derived or manually informed. To
erform the verification, we only check the interfaces. Thus, we do
ot propose a new way of extracting interfaces, since the deriva-
ion process is an orthogonal concern, and it is not the focus of this
ork. The provided and required interfaces can often be automati-

ally derived from assets (Thaker et al., 2007; Delaware et al., 2009;
ästner and Apel, 2008; Apel et al., 2010). The derivation process
lso has limitations. For instance, TaRGeT is an SPL of model-
ased test generation tools that generate functional tests from use
ase specifications written in a structured language (Ferreira et al.,
010). It can use different kinds of input files to generate tests from
se case scenarios with the notation described in Section 2.2. A
ossible input type is Microsoft Word. Therefore, to process the
se cases and generate tests, the tool must convert the document
o XML.

Fig. 8 shows that when we select the MS Word feature, we must
nclude the converter in the final product. Listing 1 shows the code
esponsible for loading and running the executable. If we have a
roduct that attempts to load this file without it being provided,

t will result in an error at runtime, not possible to detect when
ompiling the product.

We found other similar examples in the TaRGeT SPL (Ferreira
t al., 2010). Currently, there are no widely available tools that
an perform such analysis, and building one that does so might
epend on the customer needs, resources and a cost–benefit anal-
sis. Therefore, our approach assumes that sometimes it is useful
o complement the interfaces manually, since we can implement
n SPL using different kinds of assets, instead of a single language.
t might not be possible to extract all desirable interfaces automat-
cally.

isting 1. Class that executes the Word to XML converter.
public class WordDocumentProcessing {

. . .
public static final String EXE = “DocToXmlConverter.exe”;
. . .
try {

p = Runtime.getRuntime().exec(DLL FOLDER +EXE);
}
catch (Exception e) {. . .}
. . .

}

Finally, these interfaces also depend on the variability imple-
entation mechanism and language used in the SPL. The CK model
e use enables us to deal with multiple languages for implementing

n SPL. In some cases, there are not interface extraction techniques
vailable. For example, to analyze TaRGeT requirements, we had to
mplement our own analysis, to extract the provided and required
nterfaces. So, our approach can be used together with different
nterface extraction techniques. We can use more precise mecha-
isms such as type systems, as well as analysis that do not capture
oo much information, therefore providing less precision. We could
ven use tailored analysis that could capture advanced dependen-
ies, such as the one we show in Listing 1. Therefore, depending

n which interface extraction technique we use together with our
pproach, we might have the same precision as an SPL-aware type
ystem (Delaware et al., 2009; Schaefer et al., 2011). To perform
he verification, we only require that such interfaces are available.
Fig. 9. Propositional logic codification rules for CK.

This way, we can verify SPLs implemented using different kinds of
assets, ranging from code to requirements, as we detail in Section
4.

3.2. Intuition for the verification

While the FM gives us the domain constraints, represented by
the set of product configurations, the CK specifies some constraints
and can be used to derive the provided and required interfaces of
the assets. Fig. 7 presents how we associate feature expressions
to interfaces. As discussed, the CK associates features, like SMS,
to assets, such as SMSAspect, or transformations over assets, such
as select scenario SC01. Each of these has provided and required
interfaces. Therefore, for each CK item, we have the associated pro-
vided and required interfaces.

Given that we have such interfaces, we can translate them to
a logical proposition. For each CK item, we generate propositions
based on the associated required and provided interfaces. In this
case, each interface name is an atom in the proposition. Fig. 9 illus-
trates the codification rules. For example, for the CK item related to
the SMS feature, the proposition representing the provided inter-
face is given as in the following:

SMS ⇒ SMSAspect.

If we select the SMS feature in a product configuration, the fea-
ture expression SMS evaluates to true, and SMSAspect is provided.
We translate required interfaces likewise, based on the conjunction
of the required interfaces. For the same CK item, the proposition
representing the required interfaces is

SMS ⇒ ImageMediaAccessor ∧ PhotoViewScreen ∧ MediaData . . .

We use the conjunction (
∧

) of the provided propositions for
each CK item to express the provided interfaces for the entire CK.
We build the required proposition in the same way. We then relate
both propositions to represent the CK constraints (constraintsCK).
The idea is that, for all SPL products, required interfaces should
be provided. If this is the case, safe composition of the SPL is
guaranteed, since for all products there would be no unresolved
dependencies.

To check the entire SPL, we use the FM, since it represents the
set of product configurations. Rules for translating a FM into propo-
sitions have been discussed previously (Batory, 2005), so we omit
the details here. Every feature relationship (root, optional, manda-
tory, alternative, or) has a specific translation to propositional logic,
representing its semantics. So, we could represent the release 6 of
the FM from Fig. 1 with the proposition that follows:

semanticsFM :

MM ∧ (MM ⇔ Management) ∧ (MM ⇔ Media)

∧(Management ⇒ Sorting) ∧ (Management ⇒ SMS)

∧(Management ⇒ Copy) ∧ (Management ⇒ Favorites)
∧(Media ⇔ (Music ∨ Photo)).

To verify safe composition, we need to check if all products are
absent of unresolved dependencies (see Definition 1). To do so,

L. Teixeira et al. / The Journal of Systems a

Table 1
Meaning of Alloy operators as used in this work.

Operator Meaning

and ∧
or ∨
one a signature has one element
+ ∪

w
c
l
e
i

s

I
r
u
l

3

fi
o
a
i
t
s
b
w
u
e
o
t

g
s
f
w
a
i
o
e
T

S
o
e
i
a

·

l
e
a
o
F
F

in ∈
extends ⊆

e relate the propositions semanticsFM and constraintsCK. Domain
onstraints (FM) must satisfy implementation constraints (CK),
ikewise previous works (Czarnecki and Pietroszek, 2006; Thaker
t al., 2007; Batory, 2005). The proposition we then need to check
s the following:

emanticsFM ⇒ constraintsCK.

f this proposition evaluates to true, we have that all products
espect the provided and required interfaces, that is, for all prod-
cts there are no unresolved dependencies. If not, we have that at

east one product has unresolved dependencies.

.3. Formalization

Alloy is a formal object-oriented modeling language, based on
rst-order logic, that gives a mathematical notation for specifying
bjects and their relationships (Jackson, 2006). Alloy specifications
re similar to Object Constraint Language (OCL) and Unified Model-
ng Language (UML) class diagrams, but Alloy has a simpler syntax,
ype system and semantics, being designed for automatic analy-
is. Moreover, Alloy is a fully declarative language. We use Alloy
ecause it has a formal semantics. Besides, due to its tool support,
hich can perform automatic analysis over specifications, we can
se it with off-the-shelf SAT solvers. We also had previous experi-
nce using it in the context of FMs and SPLs, performing analysis
ver thousands of features (Gheyi et al., 2006). Table 1 summarizes
he meaning of Alloy operators used throughout the text.

An Alloy specification contains a number of signature para-
raphs (sig). We can think of Alloy in terms of set theory. So, a
ignature paragraph introduces a new set of objects. The following
ragment illustrates signature declarations for the boolean idiom
e use and declarations for features and interfaces. We define an

bstract signature Bool, and two signatures True and False extend-
ng it. The extends keyword means that these are disjoint subsets
f Bool. The one keyword denotes multiplicity, so there is always
xactly one instance of a signature. Therefore, every Bool is either
rue or False.

abstract sig Bool {}
one sig True, False extends Bool {}
We define features, such as SMS, and interfaces, such as

MSAspect, using the in keyword. By using it together with the
ne keyword, we declare that features and interfaces are singleton
lements of Bool, and can assume True or False values. We do it
n this way since depending on the product configuration, features
nd interfaces can be included (True) or not (False).

one sig MM, Management, Media, Photo, · · ·SMS in Bool {}
one sig SMSAspect, ImageMediaAccessor, PhotoViewScreen

 · ·in Bool {}
In Alloy, predicates (pred) are named formulae. If all constraints

isted in the body are satisfied, the predicate evaluates to true, oth-
rwise to false. We use predicates to represent the FM and CK

s propositions, encoded using the rules discussed in the previ-
us section. The following fragment specifies the semantics of the
M from Release 6 of MobileMedia. The predicates for specifying
M relationships, such as root and optional, have been previously
nd Software 86 (2013) 1038– 1053 1043

specified, since we reuse a theory for encoding FMs in Alloy (Gheyi
et al., 2006). For example, we declare the or relationship using two
arguments: the parent feature, and the set of features, declared
using the +union set operator.

pred semanticsFM[] {
root[MM] and
mandatory[Media,MM] and mandatory[Management,MM] and
orGroup[Media, Photo+Music] and
optional[SMS, Management] and optional[Sorting, Management] and
optional[Copy, Management] and optional[Favorites, Management]

}
We specify in the constraintsCK predicate the implementation

constraints. The provided and required predicates follow the rules
in Fig. 9. That is, associating feature expressions with the conjunc-
tion of the provided or required interfaces for CK items. While the
structure of the constraintsCK function is always the same, that is,
provided ⇒ required, the predicates for provided and required vary
according to the SPL used. We detail part of the provided predi-
cate for the release 6 of MobileMedia in what follows, and omit
the required for brevity, since we use the same rationale for con-
structing it — conjunction of the interfaces. We see that the first
row of the provided[] predicate states that, when MM is selected
in a product configuration, interfaces such as MainUIMidlet and
MediaController are provided, that is, set to a True value.

pred provided[] {
selected[MM] ⇒ provide[MainUIMidlet+MediaController+··] and
selected[SMS] ⇒ provide[SMSAspect+SmsMessaging+··] and
selected[Photo] ⇒ provide[ImageMediaAccessor+··] and
selected[Music] ⇒ provide[MusicAspect+MusicMediaAccessor+··] and
. . .

}
pred required[] {. . .}
pred constraintsCK[] {

provided[] ⇒ required[]
}

To determine safe composition for an SPL, we need to check if
all products are well-formed. We do this relating the FM and the
CK, as the previous section discusses. To check this in Alloy, we use
assertions (assert). Assertions are claims that something must be
true due to the rest of the model. We verify (or falsify) assertions
using the check command, that searches for counterexamples of
an assertion. A counterexample, in our context, is an assignment of
features and interfaces to True and False that violates the assertion.
We must specify a scope, the maximum size of each signature in
the model that will be considered. To actually check the assertion,
we use the Alloy Analyzer tool (Jackson et al., 2000). The analysis
is sound and complete up to the given scope. The following frag-
ment illustrates how we use Alloy to specify the assertion and its
verification, providing an implementation for Definition 1.

assert verifySPL {
semanticsFM[] ⇒ constraintsCK[]

}
check verifySPL for 2

There are two possible results for a check command. If it cannot
find counterexamples, the assertion is said to be true for the scope
defined. When the tool finds a counterexample, this means that
there is at least one ill-formed product configuration in the SPL.

In the first part of Section 2 we show that the Release 6
of MobileMedia has products with unresolved dependencies. So,
when checking the verifySPL assertion for this SPL, we find a coun-
terexample. Since this is an assignment of features and interfaces
to True and False that violates the assertion, we can examine it to
retrieve the ill-formed product configuration. Fig. 10 illustrates a
possible counterexample returned by the Alloy Analyzer, with the

feature names highlighted in bold. We have two boxes, represent-
ing the two possible values that our features and interfaces can
assume, True or False. Features in the True box are selected, while
features in the False box are not. So, this counterexample is related

1044 L. Teixeira et al. / The Journal of Systems and Software 86 (2013) 1038– 1053

F
2

t
c
b
t
u
s
t
r

t
s
t
b
p
w
c
i
f
f

w
M
s
I
t
t
t
f
4

4

f
p
t
u
s
d
o
i
c
t

r
4
6
f
d
r
w

configuration. Fig. 12 illustrates this problem. This aspect depends
on OptionalFeatureAspect. This is due to a precedence declaration,
used to organize the order in which aspects should apply. There are
ig. 10. Possible counterexample returned by the Alloy Analyzer (Jackson et al.,
000) when checking the verifySPL assertion for Release 6 of MobileMedia.

o the product configuration {SMS, Music}. The other names in the
ounterexample are interface names. The ones included in the True
ox are provided, while the ones in the False box are not — see
hat the ImageMediaAccessor and PhotoViewScreen classes show
p in the False box. These classes are the source of this problem,
ince they are referenced by the SMSAspect, related to the SMS fea-
ure. In Section 4.3, we further discuss our alternative approach for
eporting ill-formed product configurations.

In our context, the top-level signature we have is Bool. Although
here are a number of features and interfaces, they are all subset
ignatures of Bool, so they can be either True or False. Therefore,
he scope we use for checking our assertion does not need to be
igger than 2, in any scenario, since the specification is based on
ropositional logic, which is decidable. Thus, the Alloy Analyzer
orks as a theorem prover in this context, the analysis is sound and

omplete. The result of this check is a proof. If a counterexample
s found, the assertion does not hold, meaning that the SPL is ill-
ormed. If it cannot find counterexamples, we consider the SPL well-
ormed.

We have built a command-line tool in Java, using the Alloy API,
hich automates this verification process (Teixeira et al., 2012).
oreover, we have integrated this tool with Hephaestus, a tool

uite used for managing SPL variabilities (Bonifácio et al., 2009).
t is important to highlight that the tool automatically translates
he FM and CK formats used in Hephaestus to Alloy specifica-
ions, and verifies safe composition of the SPL. If it is ill-formed,
he tool reports the list of ill-formed product configurations. We
urther discuss specifics about the implementation in Section
.3.

. Evaluation

This section presents the evaluation of our approach using dif-
erent SPLs. We intend to evaluate whether the safe composition
roblem happens in different SPLs, implemented with a variety of
echniques, considering multiple kinds of artifacts, such as code and
se case scenarios, and if our approach is general enough to find
uch problems. Moreover, we also investigate if our tool scales to
eal with larger scale case studies that allow generating thousands
f products. For all SPLs evaluated, we collect the time for verify-
ng safe composition, the time for reporting all ill-formed product
onfigurations, and the number of ill-formed product configura-
ions.

First, we briefly discuss the analysis of the code for seven
eleases of the MobileMedia SPL (Figueiredo et al., 2008) in Section
.1. In Section 4.2.1 we detail the analysis of the code for release

 of the TaRGeT SPL, and in Section 4.2.2 we detail the analysis
or the use case scenarios from the same release. In Section 4.3 we

iscuss the performance of our analysis and our new approach for
eporting ill-formed product configurations. Finally, in Section 4.4
e discuss other issues related to this evaluation.
Fig. 11. Part of the association of feature expressions to interfaces for Release 7 of
MobileMedia (Figueiredo et al., 2008), illustrating the Capture Photo problem. Below
the figure we show in which build files this association appears.

4.1. MobileMedia

We have evaluated seven releases of the MobileMedia SPL,
which we first discuss in Section 2. Fig. 1 illustrates how the FM
evolved until Release 7. We extracted the CK from the existing build
files that were used to build products, which associated features
to classes and aspects. To extract dependencies between assets,
we have used Soot3 to analyze the code and retrieve the provided
and required interfaces. We express required interfaces as syntactic
dependencies between assets and provided interfaces as the asset
names. For this evaluation, we capture dependencies specific to
the MobileMedia artifacts, focusing on classes and aspects under
the lancs.mobilemedia package. Although we need this information,
it is important to remind that our approach is orthogonal to the
interface extraction part, as we discuss in Section 3.1.

The first release is not considered an SPL, since it is a single
product. Therefore, we just need to make sure that it is also a valid
AspectJ program, which is the case. When we perform the verifi-
cation for releases 2–5, the tool does not find any problems. These
releases are smaller and simpler, ranging from 1 product, in release
1, to 16, in release 5. All releases deal only with photos. Music and
video are only introduced in later releases. So, changes do not have
a great impact on existing assets, they mainly consist of adding new
assets. Release 6 introduces the ability to handle music. Both the
FM and CK were reorganized to support this change. New assets are
added, and existing ones are modified. This release has 3 KLOC. The
FM for this release allows 48 product configurations. Verification
for this release detects 8 ill-formed product configurations, due to
the dependency between SMS and Photo, discussed in Section 2.1.

4.1.1. Release 7
This release introduces another media type: Video. It also adds

the ability to capture photos and videos. The SPL size grows to
4 KLOC. The number of product configurations increases to 272.
When performing the verification for this release, we find 116 ill-
formed product configurations. Besides the problem caused by the
dependency between SMS and Photo, there are two new prob-
lems. Fig. 11 illustrates the problem related to the Capture Photo
feature, using a tabular view of the association of feature expres-
sions to interfaces. This feature provides the CapturePhotoAspect,
which depends on the PhotoViewController class, provided only
when we select Copy or SMS features. Therefore, a solution for
this problem is to change the feature expression to Copy ∨ SMS
∨ CapturePhoto.

Another problem happens with the aspect PhotoAndMusicAn-
dVideo, included when all media types are present in a product
3 http://www.sable.mcgill.ca/soot/.

http://www.sable.mcgill.ca/soot/

L. Teixeira et al. / The Journal of Systems a

F
o
p

a
t
t
∧
j

L

u
T
s
S
a
c
o
M
i
h
b
S
t
a

m
T
d
a

4

g
i
v
u
M
i
g
d
m
t

b
r
o
t

ig. 12. Part of the association of feature expressions to interfaces for Release 7
f MobileMedia (Figueiredo et al., 2008), illustrating the Photo ∧ Music ∧ Video
roblem. Below the figure we show in which build files this association appears.

spects that only have precedence declaration in its body. This is
he case of OptionalFeatureAspect, for example. Listing 2 shows
he code for this aspect, associated with the expression Sorting

 Favorites ∧ Copy ∧ SMS, thus, included in a product when we
ointly select all optional features.

isting 2. Code for OptionalFeatureAspect.aj.

package lancs.mobilemedia.optional;
import lancs.mm. . .CopyMultiMediaAspect;
. . .
public aspect OptionalFeatureAspect {

declare precedence: CopyMultiMediaAspect,
CopyAndVideo, FavouritesAspect,
SortingAspect, PersisteFavoritesAspect;

}

In this release, the only existing build file describing a prod-
ct containing all media types also contains all optional features.
his seems to be the reason for the inclusion of OptionalFeatureA-
pect in the precedence declaration of PhotoAndMusicAndVideo.
o, when compiling this product, there are no problems at
ll. However, if we consider other SPL products with feature
ombinations not previously tested, problems might happen, as
ur approach detected. A possible solution aligned with the
obileMedia implementation is to refactor the code, thus remov-

ng this precedence declaration from this aspect. We would
ave to create variations of this aspect to consider all possi-
le different combinations of Photo ∧ Music ∧ Video with the
orting, Favorites, Copy and SMS features. After restructuring
he code, we would also need to update the CK with these new
ssets.

Without such a tool, we could only find such problems if we
anually tried to generate a single SPL product that is ill-formed.

herefore, these problems could go unnoticed until later in the SPL
evelopment. The tool aids on finding problems faster, allowing
lso to develop solutions faster as well.

.2. TaRGeT

TaRGeT is an SPL of model-based test generation tools that
enerate functional tests from use case specifications written
n a structured language (Ferreira et al., 2010). Among other
ariations captured by a FM with 42 features, different prod-
cts support specifications and tests in different formats like
S Word, HTML and XML. In addition, other major features

nclude: a Controlled Natural Language, to avoid spelling and
rammatical errors; Test Case Selection, to filter test suites
ue to time or budget restrictions; Consistency Management, to
aintain the consistency of different test suites generated over

ime.
TaRGeT has a number of releases, but only in its 4th release it
ecame an SPL. We focus on release 6 since it has both the code and
equirements structured as an SPL. Also, the FM contains all kinds
f feature relationships, such as optional, or groups, and alterna-
ive groups, while in earlier releases, there was reduced variability.
nd Software 86 (2013) 1038– 1053 1045

Fig. 13 shows the TaRGeT FM for release 6, which is used to describe
variability for both the code and requirements. It has 31 imple-
mented features. The FM allows generating more than 60 thousand
products. Although some SPLs allow a large number of products to
be generated, in practice, companies focus on a reduced number of
products. In the case of TaRGeT, the main focus was to support a
reduced number of customer configurations. Nonetheless, to eval-
uate whether our approach scales to analyze the SPL as a whole,
we take into account all of TaRGeT product configurations in this
study. Moreover, in other contexts, for example, as in the Linux ker-
nel (Lotufo et al., 2010), there is the need to embrace all possible
products. In this cases, there is the need for maintaining the high
SPL configurability, thus it is important to evaluate whether our
approach scales, so we can apply it in such cases. Besides the imple-
mentation, TaRGeT also has its use case scenarios written using
MSVCM (Bonifácio and Borba, 2009), in the same way as the ones
we describe in Section 2.2. They describe the functional behavior of
the features. The two TaRGeT case studies, although from the same
release, are only related by the FM. In one case study we focus only
in the requirements and in the other we focus in the code.

4.2.1. Code assets
As an SPL of Eclipse based desktop applications, TaRGeT uses

Eclipse RCP plug-in mechanism (McAffer and Lemieux, 2005) to
implement most variations. Therefore, instead of implementing
features using only aspects, as MobileMedia does, it uses the exten-
sion point mechanism (similar to subtype polymorphism) of Eclipse
to implement variability. Fig. 14 shows that the common respon-
sibilities of the application are distributed in four distinct basic
plug-ins:

• Core plug-in: responsible for system start-up and setting up the
workspace and perspective of the RCP application.

• Common plug-in: implements basic entities to represent use
cases documents and test case suites. Besides that, it contains
parsers for different input formats and provides support to new
implementations for new input formats.

• Project Manager plug-in: contains operations and exceptions
to handling projects, test case generation algorithm, basic GUI
components to be extended in the implantation and support for
implementing variability to make TaRGeT compatible with dif-
ferent formats of input use case documents.

• Test Case Generation plug-in: generates test case suites in dif-
ferent formats and provides support to extend TaRGeT with new
implementations for different output formats.

TaRGeT also uses other variability implementation mechanisms,
including AspectJ aspects to implement some feature interaction.
Some features — including Language, Environment and Brand-
ing — are implemented using a combination of property files, and
auxiliary files, such as images. Finally, some conditional compila-
tion is used in property files. However, since there are not many
files using this technique, we have eliminated the tags by generat-
ing all variants of these files. The total code size is approximately
32KLOC.

Release 6 already has the FM and CK structured using Hep-
haestus (Bonifácio et al., 2009). Therefore, unlike the MobileMedia
case, we did not have to derive the CK, since it already existed.
It consists of feature expressions associated to assets, which can
be classes, aspects, property files, images, and so on. CK evalu-
ation generates the build files needed for creating an executable
product.
To obtain the provided and required interfaces, in a similar way
to the MobileMedia evaluation, we automatically calculated the
syntactic dependencies between classes and aspects used to imple-
ment the features. However, we also refined interfaces manually

1046 L. Teixeira et al. / The Journal of Systems and Software 86 (2013) 1038– 1053

on im

t
p
o
a
fi
e

s
p
i
f
D
i
a
c
u
c
t

Fig. 13. TaRGeT FM for release 6. Higher resoluti

o capture indirect dependencies, given that we had no special
urpose tool for inferring this kind of dependence, such as the
nes we mention in Section 3.1. With this information, we are
ble to verify safe composition. As we discuss, the Alloy speci-
cation is automatically generated, once we have the interfaces
stablished.

Although this SPL is larger than MobileMedia, we found a
ingle safe composition problem when analyzing the code. The
roblem happens with the ExceptionMonitoring aspect, included

n the product when we select the Monitoring and MS Word
eatures. Listing 3 shows that this aspect references the Phone-
ocument class, when defining a pointcut. Since TaRGeT was

nitially developed in a joint project with a company for gener-
ting test cases for mobile phones, the use case documents were

alled phone documents. This class represents a use case doc-
ment. It was later renamed as UseCaseDocument, since test
ases generated by TaRGeT can be used outside the mobile con-
ext.

Fig. 14. TaRGeT a
age at the online appendix (Teixeira et al., 2012).

Listing 3. ExceptionMonitoring aspect.

public aspect ExceptionMonitoring {
. . .
pointcut createWordDocumentObj(List<String>doc, boolean e):
execution(

public List<PhoneDocument>
WordProcessing.createFromWord(List<String>, boolean))

&& args(doc,e);
. . .

}

TaRGeT developers explained that the Monitoring feature was
not being used by any particular client of the tool. Therefore, the
problem went unnoticed by them, since no products containing
both Monitoring and MS Word features were being generated.

However, although a simple problem, it affected more than 18 thou-
sand products of the SPL. The solution to this problem consists on
renaming PhoneDocument to UseCaseDocument. This also rein-
forces the need for tools to help developers refactor SPLs (Borba,

rchitecture.

L. Teixeira et al. / The Journal of Systems and Software 86 (2013) 1038– 1053 1047

UC 155 SC 1
Scenario: Vis uali zing un known term s sy nonyms.
Description: Sh ows un known term s synonym s.
Fro m Step: UC 150#1M
To Step: End
Flow of events:

Step Us er Action Syst em Respons e
1M Choos e one un known term fro m the

use cas e docu ment in the Term
The selecte d ter m and it s sy nonyms
are dis played in the ’A dd Ne w Lex-
ical Term ’ dialo g box.

, describing the steps for visualizing unknown terms synonyms in TaRGeT.

2
r
I
s
t
c
t

4

d
w
r
t
p
T
f
S

r
f
F
a
n
p
i
f
t
m
p
e
c
t
s
i

b

combo.

Fig. 15. MSVCM Scenario for the Controlled Natural Language feature

009) without making such mistakes. After performing an SPL
efactoring, it is important to verify if safe composition is preserved.
t is also important to notice that we only analyzed a single and
table release from TaRGeT. In practice, the other safe composi-
ion problems that happened prior to this release, were found and
orrected between the commits using brute force, by individually
esting some of the SPL products.

.2.2. Requirements
Safe composition problems can also happen in requirements

ocuments, as we mention in Section 2. We can make mistakes
hen referring to parameters, scenarios, steps, and annotations. In

elease 6, TaRGeT’s requirements have also been structured with
he aim of exploring the inherent reuse associated with SPLs. In
articular, using the MSCVM approach (Bonifácio and Borba, 2009).
he FM used is the same as in Fig. 13, and the CK uses the trans-
ormations associated with use case scenarios that we discuss in
ection 2.2: select scenario; evaluate advice; and bind parameter.

For each of these transformations, we need the provided and
equired interfaces, to enable the verification. In this case, inter-
aces are scenario names, steps, parameter names, and annotations.
or example, Fig. 15 presents a use case scenario, therefore we use
s provided interfaces the scenario name (UC 155 SC 1), the sce-
ario steps, in this case a single one (UC 155#1M). Had we used
arameters or annotations, as in the motivating example, we would

nclude them in the provided interfaces as well. Required inter-
aces in this case, consist of the from and to steps. When we use
he bind parameter transformation, it requires that the parameter

ust exist to be bound. Finally, in the evaluate advice, we use the
ointcut definition as the required interface. We built an interface
xtractor which automatically extract the interfaces from the use
ase model and associate them with the feature expressions from
he CK. Thus, since we have the same structure of feature expres-

ions associated to interfaces, we use the same encoding described
n Section 3 to verify the SPL.

After running the analysis, unlike in the code version, a num-
er of problems were found, that resulted in most of the products

UC 01 SC 1
Scenario: Opening TaRGeT.
Description: Star t up the TaRGeT wit h .NE T an
Fro m Step: Start
To Step: End
Flow of events:

Step Us er Action
1M Star t the TaRGe T tool.

2M Wai t some seconds.

Fig. 17. MSVCM Scenario describing the steps for op
Fig. 16. Part of the MSVCM CK for TaRGeT, to illustrate the typographical error.

being defined as ill-formed. In contrast to the code analysis,
we believe that this number was high because this is the first
release where MSVCM was used, while in the code version, the
majority of the code has been used and tested throughout for-
mal and informal releases. Besides, TaRGeT developers did not
have tool support to help analyze the resulting MSVCM product-
specific use case scenarios, therefore, it was hard to detect such
problems, since such documents could contain over a hundred
pages. In what follows, we discuss some of the problems we
found.

References issues due to typographical errors happened more
than once. For example, Fig. 15 shows the use case scenario 1 of
UC 155, which belongs to the Controlled Natural Language fea-
ture (CNL), as Fig. 16 shows. We notice that in the from step field, it
references the step 1M from the use case scenario 1 from UC 150,
which belongs to the Consistency Management feature. It should
in fact reference the step 1M from UC 151, which also belongs to
the Controlled Natural Language feature. Therefore, in this exam-
ple, there are safe composition problems in all products that contain
the Controlled Natural Language feature without the Consistency
Management feature, which we detect by this unsatisfied depend-
ence. Other similar typographical mistakes happened throughout
the specification, which caused many products to be considered
ill-formed.

We also found another type of problem, when we try to bind

a parameter that does not exist in the resulting specification, in a
similar way to what we illustrated in the motivating example, in
Section 2.2. For example, see in Fig. 17 the scenario that describes

d Java runtim e enviro nment installed .

Syst em Respons e
The {bra nd} splas h scree n is dis-
played . Verif y the requir ements
docu ment to che ck the spla sh
screen.
The TaRGe T is starte d. No TaR-
GeT pr ojec t is opened . A ba ck-
groun d imag e is dis played (se e re-
quir ements docu ment fo r mor e de -
tails)

ening TaRGeT in the Windows environment.

1048 L. Teixeira et al. / The Journal of Systems a

F

o
J
M
w
n
a
T
c
H
t
A
T
a
e
c
s
t
c
e

f
s
X
t
b
e
X
a
o
g
i
t
f

f
e
b

ig. 18. Part of the MSVCM CK for TaRGeT, to illustrate the bind parameter problem.

pening TaRGeT in the Windows environment, with the.NET and
ava runtime environment installed. Fig. 18 shows part of the

SVCM CK, illustrating that this scenario is correctly associated
ith the Windows feature, child of the Environment feature. We
otice the brand parameter in the first step (1M). In Fig. 18, we
lso see that this parameter is bound to the Branding feature.
herefore, when generating the resulting scenarios, brand should
ontain the company name selected in the product configuration.
owever, there are no scenarios describing opening TaRGeT in

he Mac OS X environment, which was introduced in this release.
lso, there is no other scenario that uses the brand parameter.
herefore, in all products where we select the Mac OS X feature,
n alternative feature to Windows, we have an unresolved ref-
rence. We try to bind a parameter that does not exist. In this
ase, this single problem causes half of the SPL to be ill-formed,
ince Environment is a mandatory feature directly connected to
he root, with two mutually exclusive children. We could fix it by
reating a scenario to describe opening TaRGeT in the Mac OS X
nvironment.

Another problem we found more than once is related to optional
rom and to step fields. For example, Fig. 19 illustrates the use case
cenario 6 from UC 110. Fig. 20 show that it belongs to the Testlink
ML Output feature. We see in Fig. 19 that this scenario references

he step 2M from the use case scenario 1 of UC 110. This scenario
elongs to the On the Fly feature, as we can see in Fig. 20. How-
ver, the FM allows us to have products in which we select Testlink
ML Output and do not select On the Fly. Therefore, we reference

 step that is not being provided. What caused this problem is that
nly products with both Testlink XML Output and On the Fly were
enerated. Actually, to avoid this problem, we should have to mod-
fy the feature expression in the CK to Testlink XML Output ∧ On
he Fly, since this scenario only makes sense when we have both
eatures selected.
Finally, one other problem that we found is also related to the
rom step field, when referencing steps introduced by advices. For
xample, Fig. 21 shows the use case scenario 3 from UC 110, which
elongs to the Import Template feature. It references the step 1B

UC 110 SC 6
Scenario: Ge nerating Tes t Suite s thro ugh the On
Description: Generate s test suit e withou t generat
Fro m Step: UC 11 0 SC 1#2M
To Step: End
Flow of events:

Step Us er Action
1E Go to Tes t Case s ta b in th

The Fl y Ge neration Edito r
and cli ck on the Sav e Tes t
button.

2E The use r select s the No bu tto

3E Choos e an invali d .xl s templat
press Open.

Fig. 19. MSVCM Scenario describing the steps for op
nd Software 86 (2013) 1038– 1053

from the same UC 110. However, this step does not exist. It was
extracted to an advice. Therefore, the from step should be updated
to reference the step in the advice. This is another example where
an SPL refactoring tool would be useful, this time in a different
context.

4.3. Performance

As we mention in Section 3.3, we built a command-line tool for
verifying safe composition of CK-based SPLs. With this tool, it is
possible to verify whether an SPL is well-formed, and if it is ill-
formed, it can report the list of ill-formed product configurations.
We have executed the analyses on a 64-bit machine with a Intel
Core i5 CPU running at a 2.4 GHz frequency with 8 GB of memory,
256KB of L2 cache per core, and 3MB of L3 cache on the Mac OS X
10.7.4 operating system. We used the Alloy Analyzer API version
4.1.10.

Table 2 summarizes the time for analyzing whether each of
the MobileMedia and TaRGeT releases are well-formed, and the
time for reporting all ill-formed product configurations, if there are
safe composition problems. We list, for each SPL, the total number
of products and the number of ill-formed product configurations
reported by the tool. There are two columns reporting the time.
The Verify column lists the time spent to verify only whether the
SPL is well-formed or not. For each SPL, we ran the analysis 5 times
to obtain an average time, which we show in Table 2. In the Report
column, we list the average time, in seconds (s) or minutes (m),
spent by our tool to report the complete list of ill-formed prod-
uct configurations. This step is only necessary when the SPL is
ill-formed.

We separate the verify and report times because one might only
want to verify whether the SPL is safe. When our tool detects that
the SPL is ill-formed, the counterexample already indicates an ill-
formed product configuration. Therefore we could find the problem
source using this information, fix it and run the analysis again. For
example, if we used such practice with TaRGeT r6 code, we would
fix the 18,432 ill-formed product configurations at once, since they
were caused by a single problem. Thus, although knowing the exact
product configurations that are ill-formed can be useful, in this case
it would actually be redundant, since all of them expose the same
single problem. However, it is important to evaluate if our approach

scales to deal with thousands of products.

Previously (Teixeira et al., 2011), when our tool detected that
there was a safe composition problem in the SPL, we used the
Alloy Analyzer counterexample to retrieve an ill-formed product

The Fl y Ge neratio n.
ing th e requireme nts specificatio n docume nt.

Syst em Respons e
e On
view
Suite

The syste m ask s the use r if it wants
to ge nerat e the req uireme nts speci-
fication file.

n. The Tes t Case s Ge neratio n Sum-
mary pop up is dis play ed informi ng
the number of ge nerate d tes t cases
and the tota l tim e req uire d to com-
plete the proce ss.

e and A messag e is dis play ed informi ng
that the .xl s fil e is invalid and that
the tem plat e informatio n wil l not
be im port ed.

ening TaRGeT in the Windows environment.

L. Teixeira et al. / The Journal of Systems a

Fig. 20. Part of the MSVCM CK for TaRGeT, to illustrate the optional from step field
problem.

UC 110 Scenari o 3
Description: Generatin g test s without a template

Fro m Step: UC 110#1B

To Step: End

F

c
v
c
o
∧
t
i
w
o
r
H
i
m
o
i

w
o
p
f
u
w
v
i
t
w
a
t
n

T
S
#
i
R
c

Flow of events:...

ig. 21. Scenario 3 from UC 110, belonging to the Import Template feature.

onfiguration. Then we would remove it from the FM semantics and
erify it again. For example, we would find an ill-formed product
onfiguration, say product1[], and update our assertion. So, instead
f semanticsFM[] ⇒ constraintsCK[] we would use semanticsFM[]
¬ product1[] ⇒ constraintsCK[]. The updated assertion guaran-

ees that the product configuration already identified as ill-formed
s not taken into account anymore. After updating this predicate,

e would check the assertion again, iterating through this process
f updating assertions until there would be no counterexamples
eturned, that is, we found all ill-formed product configurations.
owever, this becomes inefficient as the SPL grows, since for each

ll-formed product configuration found, the assertion also grows,
aking the verification slower. The analysis for TaRGeT code took

ver 12 h to report all ill-formed product configurations, while for
ts requirements it took over 24 h.

In this article, we improve the results from our previous
ork (Teixeira et al., 2011), by changing how we report the list

f ill-formed product configurations, making our analysis family-
roduct-based instead of family-based (Thuem et al., 2012). In our
amily-product approach for reporting ill-formed product config-
rations, we first verify the entire SPL (family-based) to detect
hether there is a safe composition problem. If a problem exists, we

erify all product configurations individually against the CK. That
s, for each product configuration from the FM, we check the asser-
ion productn[] ⇒ constraintsCK[]. While this might seem inefficient,
e can run the analysis much faster, since the product predicates
re actually smaller than the FM predicate and do not grow with
he number of ill-formed product configurations. It is important to
otice that we do not actually build the products, but only generate

able 2
ummary of our analyses. # Products: the total number of products for the SPL.

 ill-formed: the total number of ill-formed product configurations found. Ver-
fy: average time, in seconds (s), to verify whether the SPL is well-formed or not.
eport: average time, in seconds (s) or minutes (m), to report all ill-formed product
onfigurations.

Products # ill-formed Verify Report

Real SPLs
MobileMedia r2 2 0 0.3 s –
MobileMedia r3 4 0 0.4 s –
MobileMedia r4 8 0 0.5 s –
MobileMedia r5 16 0 0.5 s –
MobileMedia r6 48 8 0.7 s 2.8 s
MobileMedia r7 272 116 0.9 s 7.4 s
TaRGeT r6 Code 64,512 18,432 1.2 s ∼13 m
TaRGeT r6 Reqs 64,512 64,512 1.2 s ∼20 m
Artificial SPLs
TaRGeT r7 Code 129,024 36,864 1.4 s ∼26 m
TaRGeT r8 Code 258,048 165,888 1.6 s ∼56 m
nd Software 86 (2013) 1038– 1053 1049

its abstractions (propositional formulae) using Alloy. With the new
implementation, instead of hours to analyze TaRGeT, we can report
all ill-formed product configurations in minutes, as we show in
Table 2.

Fig. 22 shows the time to report ill-formed product configura-
tions for the SPLs we analyzed. We see that although the number
of ill-formed product configurations grows thousands of times
between release 6 of MobileMedia and the requirements from
release 6 of TaRGeT, the report time does not follow the same
pattern. For example, from releases 6 and 7 of the MobileMedia
SPL, the number of ill-formed product configuration grows over
14 times, but the time for reporting all ill-formed product config-
urations grows less than 3 times. Comparing the different TaRGeT
releases, the number of ill-formed product configurations grows 3.5
times when we look at the code version versus the requirements
version. In its turn, the report time grows approximately 1.5 times.

To better understand how our approach handles even larger sit-
uations, we simulated adding new optional features to the code
version of TaRGeT. The last rows on Table 2 summarize the results
of the verification for each of the extra feature we added. First,
we added a new optional feature directly connected to the root,
doubling the number of products. The added feature did not intro-
duce any safe composition problem. Therefore, we also doubled
the number of ill-formed product configurations, to 36,864. The
time for reporting ill-formed product configurations on this SPL
roughly doubles, taking now approximately 26 min (see Fig. 22).
Then, we added another optional feature connected to the root, but
now introducing a safe composition problem, simulating the same
issue discussed in Section 4.2.1. The number of ill-formed prod-
uct configurations now rises to 165,888, which is basically half of
the products (since we added a problematic optional feature) plus
the other 36,864 carried from the previous artificial release. Time
for reporting all ill-formed product configurations now is 56 min
(see Fig. 22). Although the number of ill-formed product config-
urations rises 4.5 times, the time roughly doubles again, as we
doubled the total number of products in the SPL. Even though we
now take almost 1 h to report the ill-formed product configurations,
this would still be feasible to have as a nightly task in a software
company.

We see that the numbers do not seem to suggest that there is a
correlation between the report time and the number of ill-formed
product configurations in an SPL, but rather that there is a rela-
tionship between the total number of products and the analysis
time. It is to be expected that that the evaluation time doubles as
the number of products in the SPL doubles. This is an exponential
increase in complexity with respect to the number of products that
are described by an SPL, but our evaluation shows that the approach
works for SPLs of reasonable size. Even though we only simulated
adding new features, we did it by using the same pattern as found in
other existing features from TaRGeT. Also, we cannot conclude that
the analysis time for any SPL with the same number of products as
TaRGeT would be the same. We can notice that by comparing the
time for analyzing TaRGeT code and requirements. Even though
the total number of products is the same, the analysis time dif-
fers in a few minutes. This is due to the different kinds of assets
used to implement the SPL, which result in different structures of
the generated CK formulae, as well as to the number of ill-formed
product configurations, which is higher in the requirements ver-
sion. Therefore, even though we were able to analyze more than
250,000 products in less than an hour, it could be the case where
a smaller SPL might take long to analyze, due to complex depend-
encies between the assets. However, from our findings, we believe

that the analysis time grows roughly linearly with the total number
of products in the SPL.

Finally, using product configurations for reporting ill-formed
product configurations might also be interesting when considering

1050 L. Teixeira et al. / The Journal of Systems and Software 86 (2013) 1038– 1053

forme

S
t
c
t
i

4

g
M
c
f
t
l
b
t
e
u
i
a
t
c
s

i
fi
o
w
t
a

a
i
m
i
p
fi
p
w
a
p
f
l
p

t
a

Fig. 22. Time to report ill-

PL evolution. After refactoring a feature, we could then verify only
he products in which the feature is selected. The same reasoning
ould be applied to adding a new feature. Exploring this informa-
ion could be an optimization that could reduce the analysis time
n the context of larger scale SPLs.

.4. Discussion

A possible alternative approach for the verification would be to
enerate all products in a brute-force manner. However, in Mobile-
edia, for example, the average time for compiling a single product

onfiguration is around 50 s. For release 7, it would take almost 4 h
or generating and compiling all products. On the other hand, the
ool spends less than 6 s for verifying release 7 and reporting the
ist of 116 ill-formed product configurations. This reinforces the
enefits of using an automated approach for verifying safe composi-
ion (Czarnecki and Pietroszek, 2006; Thaker et al., 2007; Delaware
t al., 2009; Apel et al., 2010) instead of generating all SPL prod-
cts. Even though the tool spends minutes to retrieve the list of

ll-formed product configurations from TaRGeT, this still holds. The
verage time for generating a TaRGeT executable is around 30 s. We
hen would need more than 500 h to generate all products. In the
ase of requirements, we would need to generate over 60 thousand
pecifications to analyze.

For MobileMedia, it can be argued that the CK derivation process
ntroduced problems. However, for releases 6 and 7, there is a build
le with all features selected, containing almost all the associations
f feature expressions to assets, needed to extract the CK. Moreover,
e found problems related to associations of feature expressions

o assets documented in existing build files, as illustrated in Figs. 11
nd 12.

Still on MobileMedia, some problems might have happened
nd gone unnoticed due to the manner in which the SPL was
mplemented and tested. As we discuss in Section 4.2, the imple-

entation seems to be guided by a subset of product configurations,
nstead of envisioning the whole SPL scope. Therefore, develo-
ers made sure that the products described by the existing build
les were correct, but did not verify, even using brute-force, if all
roducts were correct. However, our evaluation shows that even a
ell-structured SPL such as TaRGeT also unveiled a problem that

ffected thousands of products. The safe composition analysis we
erform could then be used to detect problems and prioritize fixes
or products. It is also important to notice that while a single prob-
em in release 6 of MobileMedia affects few products, a single

roblem in the code from release 6 of TaRGeT affects thousands.

Our approach adopts a closed-world perspective in the sense
hat safe-composition verification requires the FM and provided
nd required interfaces for the assets referenced in the CK. On
d product configurations.

the other hand, we do not necessarily rely on the assets imple-
mentations. Depending on specific asset implementation languages
and associated extractors of required and provided interfaces,
changes to the implementation of a given asset might not require
safe-composition verification if the asset interfaces are preserved.
The three extractors we use in the case studies could actually
have extra functionality for managing asset interfaces in a mod-
ular way. Other forms such as guaranteeing that adding new
assets associated to new features preserves safe composition are
not language independent (for example, due to conflicting assets,
like two aspects (Kiczales et al., 2001) used as variability mecha-
nisms (Gacek and Anastasopoules, 2001), that introduce methods
with the same signature in the same class) and therefore cannot be
supported, in general, by our approach. That is why we classify our
approach as family-based, instead of feature-based (Thuem et al.,
2012).

Similarly to previous work that encode the constraints using
propositional logic (Czarnecki and Pietroszek, 2006; Thaker et al.,
2007; Batory, 2005), we limit our solution in both the domain
and implementation constraints. In the domain side, we cannot
use cardinality-based feature models (Czarnecki et al., 2005), for
example, since the use of range intervals and attributes enable the
FM semantics to generate infinite products. In the implementa-
tion side, we cannot express some kinds of constraints, such as
the version number of a given component must be higher than
1.2 (Tucker et al., 2007), or the memory consumption must lie
below 256 kilobytes (White et al., 2007). To handle these scenar-
ios, one should use constraint solver techniques (Benavides et al.,
2005; White et al., 2007). In practice, this extra power might not
be used in some cases, as we have experienced in the TaRGeT case
study, discussed in Section 4.

Finally, it could be argued that the manual effort involved to
use such an approach can outweigh the benefits. Usually, if there
is a systematic way of generating products from feature selections,
there is already some kind of mapping between features and assets,
which constitutes a CK. As we discuss, it might be the case where
it is implicit or different from the CK model used in this article. For
example, the Linux kernel uses a mixture of preprocessor directives
and special languages (Kconfig and KBuild) for handling variability
and the mapping between features and code (Lotufo et al., 2010).
Based on such available information, to use our approach, we would
need provided and required interfaces. Such interfaces are usu-
ally relevant elements of the languages used for implementing the
SPL. In the Java and AspectJ context, we used classes and aspect

names. In the requirements context, interfaces were scenario and
step names, parameters and annotations. A good part of this extrac-
tion can be automatically performed (Thaker et al., 2007; Delaware
et al., 2009; Apel et al., 2010; Czarnecki and Pietroszek, 2006).

tems a

H
n
r
i
w
p
o
t
a
c
f
p

5

e
s
m
e
e
T
i
f
i
g
s
q
o
a
D
a
c
g

s
T
f
v
a
t
m
m
i
g
a
p

f
l
w
w
a
a
e
2
l
s
v
i
c
s
a
t
l

L. Teixeira et al. / The Journal of Sys

owever, it might be the case where there is no extraction tech-
ique available for a language, as it was the case with MSVCM
equirements. Then, some effort might be needed to define and
mplement an extractor. Such an extractor can be also implemented

ith different precision levels, depending on the needs of develo-
ers. The decision about implementing extractors should depend
n an effort analysis, business reasons, and the potential benefits
hat the safe composition analysis can bring. Given that interfaces
re available, our tool can automatically translate the FM and CK
onstraints to Alloy and perform the verification, reporting the ill-
ormed product configurations, when there are safe composition
roblems.

. Related work

Thaker et al. present techniques for verifying type safety prop-
rties of AHEAD (Batory, 2004) product lines using FMs and SAT
olvers (Thaker et al., 2007). They extract properties from feature
odules and verify that they hold for all SPL members. Delaware

t al. formalizes this work using Lightweight Feature Java (LFJ), an
xtension of Lightweight Java with features (Delaware et al., 2009).
hey prove soundness of the underlying type system. Their focus
s on inferring type checking constraints from the language used
or implementing assets, while we have not focused in extracting
nterfaces from specific asset languages, but on verifying, in a lan-
uage independent way, possibly considering manually provided
emantic dependencies, interfaces provided to the CK. Thus, the
uality of our verification is dependent on such information. Since
ur main focus is not on inferring type constraints for a specific
sset language, we do not prove soundness of our formalization, as
elaware et al. does. However, our Alloy encoding provides sound
nd complete analysis, due to our scope being well-delimited. We
ould also integrate both approaches, by adapting the constraints
enerated to use as interfaces in our encoding.

Apel et al. propose Feature Featherweight Java (FFJ) as a type
ystem for feature oriented programming (FOP) (Apel et al., 2008).
hey use this type system to check whether a given composition of
eatures is safe, before compilation. They presented a condensed
ersion of FFJ in Apel et al. (2010), together with a soundness
nd completeness proof of the language. Similar to our approach,
hey perform analysis using SAT solvers, checking if SPL imple-

entation is well-typed. The type checker provides detailed error
essages, while our approach only provides the list of products

n which problems occur. However, our approach works in a lan-
uage independent way, and we have evaluated it in the context of
n industrial SPL, showing that it scales to deal with thousands of
roducts.

Apel et al. also propose the gDeep core calculus for uniform
eature composition (Apel and Hutchins, 2008). It aims to be a
anguage-independent pluggable type system, which can be used

ith different kinds of artifacts. In this way, it is similar to our
ork, since our CK model is not language-specific as well. However,

lthough we can interpret our analysis as a proof, we do not provide
 full formalization of our CK model. Apel et al. also present a ref-
rence checking algorithm for feature-oriented SPLs (Apel et al.,
010). Two variations of the algorithm are presented: global and

ocal. The global version, in a similar way as we do, generates a
ingle propositional formula that contains all references. The local
ersion creates a propositional formula for each reference, target-
ng efficiency, since it results in a number of smaller formulae that
an be cached and reused (Apel et al., 2010). They evaluate two

mall product lines written in different languages (Java and C). As

 future work, we intend to compare both approaches with respect
o expressiveness. Similarly to this article, both works focus on a
anguage independent solution. However, we evaluate and show
nd Software 86 (2013) 1038– 1053 1051

that our approach works in larger case studies, consisting of SPLs
implemented using multiple languages.

Schaefer et al. propose Delta-oriented Programming
(DOP) (Schaefer et al., 2010) as another way for implemen-
ting SPLs. Implementation uses delta modules that extend FOP
with the ability to remove classes, methods and fields. Similarly
as with our CK, a delta module can be associated with feature
expressions, separating when such implementation should be
applied and in which order, increasing reusability. They also
present a compositional type system (Schaefer et al., 2011) for
delta-oriented SPLs in Java using a core calculus for DOP. Con-
straints are inferred for each delta module. The type system is
proven correct and complete with respect to the core calculus
used. Similarly to what our work does for reporting ill-formed
product configurations, it verifies safe composition considering
the delta module constraints and an abstraction of each program
variant. Our work, as mentioned, works in a language independent
way. Therefore, as future work, we intend to investigate whether
we could use it for verifying SPLs implemented using DOP.

Czarnecki and Pietroszek present a well-formedness verifica-
tion approach for feature-based model templates (Czarnecki and
Pietroszek, 2006), which consists of an FM and an annotated model
expressed in some general modeling language. Annotations refer to
features and resemble the use of conditional compilation directives.
In a similar way as our work, they check FMs against constraints to
verify that no ill-formed template instances can be produced. They
also retrieve ill-formed product configurations from error messages
returned by the SAT solver counterexamples. These annotations
are equivalent to the feature expressions in our CK. A difference,
besides their work being specific to model templates, is that while
our CK information is modularized, in model templates it is scat-
tered throughout the SPL assets. However, we could integrate their
constraints with our approach, since all variability is associated to
feature expressions.

Also using annotations, Kaestner et al. propose the Color
Featherweight Java (CFJ) calculus (Kästner and Apel, 2008), moti-
vated by the Colored Integrated Development Environment tool
(CIDE) (Kästner et al., 2008). The mapping between features and
code occurs through a disciplined form of conditional compilation.
The calculus establishes type rules to ensure that only well-typed
programs can be generated. They prove that — given a well-typed
CFJ SPL — all possible variants are well-typed FJ programs. Code
annotated with two features has the same semantics of an and
(∧) operator. However, other types of feature expressions are not
supported. Kaestner et al. further extend this study, formalizing an
SPL-aware type system (Kästner et al., 2011). They discuss a solu-
tion for the alternative feature typing problem that happened with
CFJ and implement checks for full Java in CIDE, conducting case
studies to evaluate their approach. Kenner et al. developed Type-
Chef (Kenner et al., 2010), a type checker that aims at identifying
errors in SPLs implemented with the C preprocessor. Comparing
to our work, the main difference between all of these annotation-
based works is that their CK is scattered throughout the code. In
the case of SPLs dealing with both coarse and fine-grained variabil-
ities, we could combine our approaches to address both variability
levels. This could help in contexts such as in the Photo ∧ Music ∧
Video problem, discussed in Section 4.1.1.

Alferez et al. propose an approach to check consistency between
features and use case scenarios that realize them (Alférez et al.,
2011). In their work, instead of the textual use case scenarios we
use, they work with use case and activity diagrams. They customize
scenarios with the Variability Modeling Language for Requirements

(VML4RE) (Alférez et al., 2009), a language that allows associating
feature expressions with actions that result in model transforma-
tions, similar to the MSVCM CK. They check constraints generated
from the diagrams and their associations with features against the

1 tems a

f
t
t
t
d
s
b
C
s
d
c

6

s
t
fi
c
t
t
i
d
i
w
r
i
a
p
B
u
a
e
o
C
s
a
c
s
t
i
f
t
S

m
b
a
a
i
W
t
2
c
T
T
a
w
s
i
s
s
i
t
t

052 L. Teixeira et al. / The Journal of Sys

eature model formula, likewise we do in this work. Unlike MSVCM,
he order of the variants influences in the composition process,
herefore they plan to research algorithms that take into account
he precedence order between variants and their application. Men-
onca et al. show that FMs pose no significant difficulty for SAT
olvers (Mendonca et al., 2009), justifying widespread use of SAT-
ased systems, such as the Alloy Analyzer. In this work, we add the
K to the encoding. However, the general CK formula structure is
imilar to that of FMs, which fit in the constraint class that Men-
onca et al. show that is easy to analyze. Therefore, our results also
onfirm their findings.

. Conclusions

In this article we propose an approach to verify safe compo-
ition of CK-based SPLs. We use dependencies between assets in
he form of required and provided interfaces to enable the veri-
cation (Teixeira et al., 2011). We also present tool support that
hecks safe composition of an SPL. If the SPL is ill-formed, the
ool reports the ill-formed product configurations. We give fur-
her evidence of the generality of our approach, instantiating it
n other compositional contexts, beyond Java and AspectJ, using
ifferent kinds of assets, such as use case scenarios. Besides evaluat-

ng seven releases of the MobileMedia SPL (Figueiredo et al., 2008),
e investigate safe composition problems in both the code and

equirements of the TaRGeT SPL (Ferreira et al., 2010). TaRGeT
s implemented using Eclipse RCP plug-ins technology. When
nalyzing the code, we found a problem related to an incom-
lete refactoring that affects more than 18 thousand products.
esides the code, TaRGeT also has its use case scenarios structured
sing the Modeling Scenario Variability as Crosscutting Mech-
nisms (MSVCM) (Bonifácio and Borba, 2009) approach. When
valuating the requirements, we found problems similar to the
nes found in code, such as unresolved dependencies and bad
K specification, which causes the majority of the product-
pecific scenarios to be considered ill-formed. Finally, we propose
n alternative implementation for reporting ill-formed product
onfigurations, which enables our approach to analyze SPLs con-
isting of thousands of products. Our evaluation numbers suggest
hat the analysis time depends on the kinds of assets used for
mplementing the SPL, due to the different number of inter-
aces that might result. We also observe that time for performing
he analysis grows linearly with the number of products in the
PL.

In our earlier work, we presented a general theory for SPL refine-
ent (Borba et al., 2012). In it, we define an SPL as a tuple formed

y FM, CK, and assets, in which all products that can be gener-
ted are well-formed. In this work, we propose and implement

 language independent way to check well-formedness. This is
mportant as an initial step towards tool support for SPL refactoring.

e plan to integrate our approach with a tool (Alves et al., 2008)
hat implements the general theory for SPL refinement (Borba et al.,
012) for checking refactorings (Borba, 2009). In this case we would
heck whether changes made to an SPL preserve well-formedness.
his could be useful to avoid errors such as the one detailed for
aRGeT code, where the class name was changed, whereas the
spect that referenced the class remained unchanged. As future
ork, we intend to investigate other representations in a case

tudy involving cardinality-based FMs and CK. Moreover, we also
ntend to evaluate how our solution scales compared to constraint
olver techniques, when the extra power from cardinality-based

ettings is not used. We also intend to evaluate our approach
n the context of SPLs implemented with conditional compila-
ion. Finally, we intend to explore ways where we can optimize
he reporting ill-formed product configurations phase, and also
nd Software 86 (2013) 1038– 1053

providing better guidance to the source of the safe composition
problem.

Acknowledgements

We thank the anonymous referees for the useful sugges-
tions and comments to improve this work. We would also
like to thank colleagues of the Software Productivity Group
(http://www.cin.ufpe.br/spg/) for helping to significantly improve
this work. Márcio Ribeiro provided an idea that helped us to
optimize the reporting ill-formed product configurations phase.
This work was partially supported by the National Institute
of Science and Technology for Software Engineering (INES),
(http://www.ines.org.br) funded by CNPq and FACEPE, grants
573964/2008-4 and APQ-1037-1.03/08. We also acknowledge
support from CNPq grants 304470/2010-4, 480160/2011-2, and
484860/2011-9. The first author is supported by the grant
MCT/CNPq/PGAEST 70/2009.

References

Alférez, M., Santos, J., Moreira, A., Garcia, A., Kulesza, U., Araújo, J., Amaral, V., 2009.
Multi-view composition language for software product line requirements. In:
SLE’09, pp. 103–122.

Alférez, M., Lopez-Herrejon, R.E., Moreira, A., Amaral, V., Egyed, A., 2011. Supporting
consistency checking between features and software product line use scenarios.
In: ICSR’11, pp. 20–35.

Alves, V., Calheiros, F., Nepomuceno, V., Menezes, A., Soares, S., Borba, P., 2008.
Flip: managing software product line extraction and reaction with aspects. In:
SPLC’08, p. 354.

Apel, S., Hutchins, D., 2008. A calculus for uniform feature composition. ACM Trans-
actions on Programming Languages and Systems 32 (5), 19:1–19:33.

Apel, S., Kästner, C., Lengauer, C., 2008. Feature Featherweight Java: a calculus
for feature-oriented programming and stepwise refinement. In: GPCE’08, pp.
101–112.

Apel, S., Scholz, W., Lengauer, C., Kästner, C., 2010. Language-independent reference
checking in software product lines. In: FOSD’10, pp. 65–71.

Apel, S., Kästner, C., Grösslinger, A., Lengauer, C., 2010. Type safety for feature-
oriented product lines. Automated Software Engineering 17, 251–300.

Batory, D., Benavides, D., Ruiz-Cortes, A., 2006. Automated analysis of feature mod-
els: challenges ahead. Communications of the ACM 49 (12), 45–47.

Batory, D., 2004. Feature-oriented programming and the AHEAD tool suite. In:
ICSE’04, pp. 702–703.

Batory, D., 2005. Feature models grammars, and propositional formulas. In: SPLC’05,
pp. 7–20.

Benavides, D., Martín-Arroyo, P.T., Cortés, A.R., 2005. Automated reasoning on fea-
ture models. In: CAiSE’05, pp. 491–503.

Bonifácio, R., Borba, P., 2009. Modeling scenario variability as crosscutting mecha-
nisms. In: AOSD’09, pp. 125–136.

Bonifácio, R., Teixeira, L., Borba, P., 2009. Hephaestus: A Tool for Managing Product
L ine Variabilities, pp. 26–34.

Borba, P., Teixeira, L., Gheyi, R., 2012. A theory of software product line refinement.
Theoretical Computer Science 455, 2–30.

Borba, P., 2009. An introduction to software product line refactoring. In: GTTSE’09,
pp. 1–26.

Czarnecki, K., Antkiewicz, M., 2005. Mapping features to models: a template
approach based on superimposed variants. In: GPCE’05, pp. 422–437.

Czarnecki, K., Eisenecker, U., 2000. Generative Programming: Methods, Tools, and
Applications. Addison-Wesley Professional.

Czarnecki, K., Pietroszek, K., 2006. Verifying feature-based model templates against
well-formedness OCL constraints. In: GPCE’06, pp. 211–220.

Czarnecki, K., Helsen, S., Eisenecker, U.W., 2005. Formalizing cardinality-based
feature models and their specialization. Software Process: Improvement and
Practice 10 (1), 7–29.

Delaware, B., Cook, W., Batory, D., 2009. Fitting the pieces together: a machine-
checked model of safe composition. In: ESEC/FSE’09, pp. 243–252.

Eriksson, M., Borstler, J., Borg, K., 2005. The PLUSS approach – domain modeling
with features, use cases and use case realizations. In: Proceedings of the 9th
International Conference on Software Product L ines, pp. 33–44.

Ferreira, F., Neves, L., Silva, M., Borba, P., 2010. TaRGeT: a model based product line
testing tool. In: CBSoft’10 – Tools Session, pp. 1–4.

Figueiredo, E., Cacho, N., Sant’Anna, C., Monteiro, M., Kulesza, U., Garcia, A., Soares,
S., Ferrari, F., Khan, S., Filho, F., Dantas, F., 2008. Evolving software product lines
with aspects: an empirical study on design stability. In: ICSE’08, pp. 261–270.

Gacek, C., Anastasopoules, M., 2001. Implementing product line variabilities. In: SSR,

pp. 109–117.

Gheyi, R., Massoni, T., Borba, P., 2006. A theory for feature models in Alloy. In: 1st
Alloy Workshop, pp. 71–80.

Jackson, D., Schechter, I., Shlyakhter, I., 2000. Alcoa: the alloy constraint analyzer.
In: ICSE, pp. 730–733.

http://www.cin.ufpe.br/spg/
http://www.ines.org.br

tems a

J

K

K

K

K

K

K

L

M

M

P

S

S

T

Rohit Gheyi is an assistant professor in the Department of Computer Science at
L. Teixeira et al. / The Journal of Sys

ackson, D., 2006. Software Abstractions: Logic Language and Analysis. The MIT Press,
Cambridge, MA.

ästner, C., Apel, S., 2008. Type-checking Software Product L ines – a formal
approach. In: ASE’08, pp. 258–267.

ästner, C., Apel, S., Kuhlemann, M., 2008. Granularity in software product lines. In:
ICSE’08, pp. 311–320.

ästner, C., Apel, S., Thüm, T., Saake, G., 2011. Type checking annotation-based prod-
uct lines. ACM Transactions on Software Engineering and Methodology (TOSEM)
21 (3), 14:1-14:39.

ang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S., 1990, November.
Feature-oriented domain analysis (FODA) feasibility study. Tech. rep. Carnegie-
Mellon University Software Engineering Institute.

enner, A., Kästner, C., Haase, S., Leich, T., 2010. TypeChef: toward type checking
#ifdef variability in C. In: FOSD’10, pp. 25–32.

iczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.,
2001. Getting started with AspectJ. Communications of the ACM 44 (10),
59–65.

otufo, R., She, S., Berger, T., Czarnecki, K., Wasowski, A., 2010. Evolution of the linux
kernel variability model. In: SPLC’10, pp. 136–150.

cAffer, J., Lemieux, J.-M., 2005. Eclipse Rich Client Platform: Designing, Coding, and
Packaging Java(TM) Applications. Addison-Wesley Professional.

endonca, M., Wasowski, A., Czarnecki, K., 2009. Sat-based analysis of feature mod-
els is easy. In: SPLC’09, pp. 231–240.

ohl, K., Böckle, G., van der Linden, F., 2005. Software Product Line Engineering:
Foundations, Principles and Techniques. Springer-Verlag.

chaefer, I., Bettini, L., Damiani, F., Tanzarella, N., 2010. Delta-oriented programming

of software product lines. In: SPLC’10, pp. 77–91.

chaefer, I., Bettini, L., Damiani, F., 2011. Compositional type-checking for delta-
oriented programming. In: AOSD’11, pp. 43–56.

eixeira, L., Borba, P., Gheyi, R., 2011. Safe composition of Configuration Knowledge-
based software product lines. In: SBES’11, pp. 263–272.
nd Software 86 (2013) 1038– 1053 1053

Teixeira, L., Borba, P., Gheyi, R., 2012. Online appendix. http://www.cin.
ufpe.br/ lmt/jss2012/

Thaker, S., Batory, D., Kitchin, D., Cook, W., 2007. Safe Composition of Product L ines.
In: GPCE’07, pp. 95–104.

Thuem, T., Apel, S., Kaestner, C., Kuhlemann, M., Schaefer, I., Saake, G., 2012, April.
Analysis strategies for software product lines. Tech. Rep. FIN-004-2012, Univer-
sity of Magdeburg, Germany.

Tucker, C., Shuffelton, D., Jhala, R., Lerner, S., 2007. OPIUM: optimal package
install/uninstall manager. In: ICSE’07, pp. 178–188.

White, J., Schmidt, D.C., Wuchner, E., Nechypurenko, A., 2007. Automating product-
line variant selection for mobile devices. In: SPLC’07, pp. 129–140.

Zschaler, S., Sánchez, P., Santos, J., Alférez, M., Rashid, A., Fuentes, L., Moreira, A.,
Araújo, J., Kulesza, U., 2009. VML* – a family of languages for variability man-
agement in software product lines. In: SLE’09, pp. 82–102.

Leopoldo Teixeira is a PhD student in the Informatics Center at Federal University
of Pernambuco. His research interests include software product line development,
evolution, and verification. He holds a MSc in Computer Science from the Federal
University of Pernambuco, and is a member of the ACM. More on Teixeira can be
found at http://www.cin.ufpe.br/ lmt.

Paulo Borba is Professor of Software Development at the Informatics Center of the
Federal University of Pernambuco, Brazil, where he leads the Software Productivity
Group. His main research interests are in the following topics and their integration:
software modularity, software product lines, and refactoring.
Federal University of Campina Grande. His research interests include refactorings,
formal methods and software product lines. He holds a Doctoral degree in Computer
Science from the Federal University of Pernambuco, and is a member of the ACM.
More on Gheyi can be found at http://www.dsc.ufcg.edu.br/ rohit.

http://www.cin.ufpe.br/~lmt/jss2012/
http://www.cin.ufpe.br/~lmt/jss2012/
http://www.cin.ufpe.br/~lmt
http://www.dsc.ufcg.edu.br/~rohit

	Safe composition of configuration knowledge-based software product lines
	1 Introduction
	2 Motivating examples
	2.1 Code assets
	2.2 Requirements

	3 Safe composition of CK-based Software Product Lines
	3.1 On extracting interfaces
	3.2 Intuition for the verification
	3.3 Formalization

	4 Evaluation
	4.1 MobileMedia
	4.1.1 Release 7

	4.2 TaRGeT
	4.2.1 Code assets
	4.2.2 Requirements

	4.3 Performance
	4.4 Discussion

	5 Related work
	6 Conclusions
	Acknowledgements
	References

