
Science of Computer Programming 93 (2014) 39–64

Contents lists available at ScienceDirect

Science of Computer Programming

journal homepage: www.elsevier.com/locate/scico

Making refactoring safer through impact analysis
Melina Mongiovi a,∗, Rohit Gheyi a, Gustavo Soares a, Leopoldo Teixeira b,
Paulo Borba b

a Department of Computing and Systems, Federal University of Campina Grande, Campina Grande, PB, 58429-900, Brazil
b Informatics Center, Federal University of Pernambuco, Recife, PE, 50740-540, Brazil

h i g h l i g h t s

• We proposed a tool to evaluate whether a refactoring is safer through impact analysis.
• Our tool, SafeRefactorImpact, found some behavioral changes previously undetected.
• We compared the benefits of impact analysis when evaluating behavior preservation.

a r t i c l e i n f o

Article history:
Received 2 February 2012
Received in revised form 20 August 2013
Accepted 1 November 2013
Available online 21 November 2013

Keywords:
Refactoring
Change impact analysis

a b s t r a c t

Currentlymost developers have to applymanual steps and use test suites to improve confi-
dence that transformations applied to object-oriented (OO) and aspect-oriented (AO) pro-
grams are correct. However, it is not simple to do manual reasoning, due to the nontrivial
semantics of OO and AO languages. Moreover, most refactoring implementations contain a
number of bugs since it is difficult to establish all conditions required for a transforma-
tion to be behavior preserving. In this article, we propose a tool (SafeRefactorImpact)
that analyzes the transformation and generates tests only for the methods impacted by
a transformation identified by our change impact analyzer (Safira). We compare SafeR-
efactorImpactwith our previous tool (SafeRefactor) with respect to correctness, perfor-
mance, number of methods passed to the automatic test suite generator, change coverage,
and number of relevant tests generated in 45 transformations. SafeRefactorImpact iden-
tifies behavioral changes undetected by SafeRefactor. Moreover, it reduces the number
of methods passed to the test suite generator. Finally, SafeRefactorImpact has a better
change coverage in larger subjects, and generates more relevant tests than SafeRefactor.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Refactoring is the process of changing a program to improve its internal structure without changing its external behavior
[1–3]. During software evolution, developers may apply refactorings to evolve the object-oriented (OO) or aspect-oriented
(AO) code, or to extract part of the OO code into aspects to improve modularity and reduce complexity of existing software
systems. AO programming aims at increasing modularity by allowing the separation of crosscutting concerns [4], such as
persistence and exception handling. AspectJ [5] is a general purpose AO extension to the Java language. Existing Integrated
Development Environments (IDEs), such as Eclipse and NetBeans, offer some support to refactor OO programs, but limited
or no support to refactor AO programs.

Schäfer et al. [6] presented a number of Java refactoring implementations in a tool called JastAdd Refactoring Tools
(JRRT). They translated a Java program to an enriched language that is easier to specify and check conditions, and apply
the transformation. Monteiro and Fernandes [7] proposed 27 refactorings that we can use to introduce aspects and improve
the design of AO programs. Cole and Borba [8] formally specified AO behavior-preserving transformations, and use them

∗ Corresponding author.
E-mail addresses:melina@copin.ufcg.edu.br (M. Mongiovi), rohit@dsc.ufcg.edu.br (R. Gheyi), gsoares@dsc.ufcg.edu.br (G. Soares), lmt@cin.ufpe.br

(L. Teixeira), phmb@cin.ufpe.br (P. Borba).

0167-6423/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.scico.2013.11.001

http://dx.doi.org/10.1016/j.scico.2013.11.001
http://www.elsevier.com/locate/scico
http://www.elsevier.com/locate/scico
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2013.11.001&domain=pdf
mailto:melina@copin.ufcg.edu.br
mailto:rohit@dsc.ufcg.edu.br
mailto:gsoares@dsc.ufcg.edu.br
mailto:lmt@cin.ufpe.br
mailto:phmb@cin.ufpe.br
http://dx.doi.org/10.1016/j.scico.2013.11.001

40 M. Mongiovi et al. / Science of Computer Programming 93 (2014) 39–64

for deriving AO refactorings. Wloka et al. [9] proposed tool support for extending currently OO refactoring implementations
for considering aspects. However, they may contain bugs since specifying and implementing refactorings is difficult. For
instance, most of the current Java refactoring implementations do not check all preconditions, allowing non-behavior-
preserving transformations [10,11]. In fact, for complex languages such as Java, proving refactoringswith respect to a formal
semantics constitutes a challenge [12]. This problem is even worse with the presence of aspects (see Section 2). Moreover,
a number of useful refactorings [13] implemented by Eclipse, such as Extract Method, do not consider aspects. In practice,
developers have to applymanual steps and use test suites to guarantee behavior-preservation. However, Rachatasumrit and
Kim [14] found that refactorings are not well tested. Their investigation identified that existing regression test cases cover
only 22% of impacted entities. Moreover, they found that 38% of affected test cases are relevant for testing the refactorings.
So, we need a more practical way to help developers during refactoring activities.

In this article, we propose a tool (SafeRefactorImpact) that analyzes a transformation applied to a Java or AspectJ
program, and generates test cases for the methods impacted by it. Our change impact analysis identifies the methods
impacted by a transformation by comparing two versions of a program, before and after the transformation. We decompose
the coarse-grained transformation into smaller transformations, and analyze the impact of each of them separately. We
formalize the impact of a number of small-grained transformations. We implemented this approach in a change impact
analyzer called Safira. The goal of the change impact analysis [15] step is to avoid the problems identified by Rachatasumrit
and Kim [14]. We extend our previous work [16] by including the change impact analysis step in SafeRefactor, and
comparing both versions of the tool.

We evaluated SafeRefactor and SafeRefactorImpact in 45 transformations. We compared the tools with respect to
correctness (whether the tools identify the behavioral changes), time to analyze a transformation, number of methods
considered for test generation, change coverage (the percentage of methods impacted that the test suite exercises), and
relevant tests (the percentage of tests that exercises at least one impacted method). We also analyzed the influence of
the time limit passed to the automatic test suite generator. First, we evaluated eight defective refactorings that change
program’s behavior in the presence of aspects, performed by Eclipse 4.2 with AJDT 2.2.3. We also evaluated 23 design
patterns implemented in Java and AspectJ [17]. Then, we tested two JML compilers implemented using AspectJ [18,19].
In this case, our tools compare the behavior of two JML programs as test inputs. Moreover, we evaluate four transformations
that modularize exception handling in aspects, applied to two programs [20] (20 and 23 KLOC). Finally, we also evaluate
eight transformations applied to different versions of JHotDraw (ranging from 28 to 79 KLOC) from its SVN repository. Some
of these transformations introduce behavioral changes undetected by SafeRefactor [21].

We found that SafeRefactorImpact detects behavioral changes that SafeRefactor could not detect [21]. Moreover,
SafeRefactorImpact is less dependent on the time limit passed to the automatic test suite generator than SafeRefactor.
Due to the change impact analysis, SafeRefactorImpact reduces the number of methods passed to the automatic test suite
generator compared to SafeRefactor. So, it has better results when analyzing transformations applied to larger programs.
Furthermore, SafeRefactorImpact is faster than SafeRefactorwhen analyzing transformations applied to small programs.
For transformations applied to larger programs, the tools have similar performance. Finally, SafeRefactorImpact has a
better change coverage than SafeRefactor in larger subjects, and most of the generated test cases in all transformations
are relevant. In summary, the main contributions of this article are the following:

• extend SafeRefactor to generate test cases only for the methods impacted by the transformation (Section 3);
• compare SafeRefactor and SafeRefactorImpact with respect to correctness, time, number of methods considered for

test generation, change coverage and relevant tests in 45 transformations (Section 4).

We organized this article as follows. Section 2 presents amotivating example. Section 3 proposes a technique for checking
OO and AO programs based on change impact analysis. We evaluate this approach, comparing with SafeRefactor in 45
transformations (Section 4). Finally, we relate our work to others (Section 5), and present concluding remarks (Section 6).

2. Motivating example
In this section, we present a defective refactoring performed by Eclipse 4.2 with AJDT 2.2.3 that introduces a behavioral

change.
Consider the class A, its subclass B, and the aspect AspectA presented in Listing 1. The class C extends B, which declares the

method test . Moreover, AspectA declares the method n in B through an intertype declaration. By using Eclipse to apply the
(aspect-aware) Rename Intertype Declaration refactoring to B.n, changing its name to B.k, we have as a result the program
presented in Listing 2. Eclipse changed the intertype’s name and updated its references. However, this transformation
introduces a behavioral change: the test method in the target program now yields 20 (Listing 2) instead of 10 (Listing 1).
After the transformation, test calls B.k, instead of the A.k method.

Suppose that the developer has a test suite consisting of the test cases presented in Listing 3. It contains three test cases
test1, test2, and test3 that callmethods A.k, B.test , and C .x, respectively. As explained before, the transformation changed the
behavior of the method B.test . Then, test2 exposes the behavioral change in the modified program. However, the other tests
(test1 and test3) are not relevant to test the transformation because themethods A.k and C .x are not impacted by the change.

Running all test cases may be time consuming, since only some test cases may be relevant to test the transformation.
Rachatasumrit and Kim [14] found that existing regression tests exercise only 22% of refactored methods and fields and
only 38% of tests are relevant to refactorings. In the previous example, the test suite only contains 33% of relevant tests.

M. Mongiovi et al. / Science of Computer Programming 93 (2014) 39–64 41

Listing 1. Original program
class A {

public int k () {
return 10;

}
}
class B extends A {

public int t e s t () {
return k () ;

}
}
class C extends B {

public int x () {
return 30;

}
}
aspect AspectA {

public int B . n () {
return 20;

}
}

Listing 2.Modified program
class A {

public int k () {
return 10;

}
}
class B extends A {

public int t e s t () {
return k () ;

}
}
class C extends B {

public int x () {
return 30;

}
}
aspect AspectA {

public int B . k () {
return 20;

}
}

Fig. 1. Applying the Rename Intertype Declaration refactoring of Eclipse 4.2 with AJDT 2.2.3 leads to a behavioral change.

Furthermore, the testsmay not exercise all entities impacted by the change. Therefore, to evaluatewhether a transformation
preserves the program behavior, it is important to test only the methods impacted by the transformation.

Listing 3
Test suite of the program presented in Listing 1.

public void test1 () {
A a = new A() ;
long k = a . k () ;
assertTrue (k == 10);

}
public void test2 () {

B b = new B () ;
long i = b . t e s t () ;
assertTrue (i == 10);

}
public void test3 () {

C c = new C () ;
long x = c . x () ;
assertTrue (x == 30);

}

3. SafeRefactorImpact

In this section, we present an overview of SafeRefactorImpact, whose objective is to detect behavioral changes during
refactoring activities considering OO and AO constructs.

SafeRefactorImpact uses change impact analysis to generate tests only for the entities impacted by a transformation.
By comparing two versions of a program, it identifies the methods impacted by the change (Step 1.1). We implemented a
tool, called Safira, to perform the change impact analysis, which identifies the public and common impacted methods in
both program versions from the impacted set (Step 1.2). Next, SafeRefactorImpact generates a test suite for the previous
methods identified using an automatic test suite generator (Step 2). Since the tool focuses on identifying methods in
common, it executes the same test suite before (Step 3.1) and after the transformation (Step 3.2). Finally, the tool evaluates
the results after executing the test cases: if the results are different, the tool reports a behavioral change, and yields the
test cases that reveal it. Otherwise, we improve confidence that the transformation is behavior preserving (Step 4). Fig. 2
illustrates the described process.

In what follows, we describe the change impact analysis (Section 3.1) and test generation steps (Section 3.2) of
SafeRefactorImpact. Then, we explain the approach using an example in Section 3.3. Finally, we describe a test data
adequacy criteria [22] useful in the refactoring context, and define when a test case is relevant in Section 3.4.

3.1. Change impact analysis

In this section, we explain the change impact analysis performed by SafeRefactorImpact. The goal is to analyze the
original andmodified programs, and yield the set of methods impacted by the change. First, we decompose a coarse-grained
transformation into smaller transformations (Step 1). For each small-grained transformation, we identify the set of impacted
methods. We formalized the impact of small-grained transformations in laws (Step 2). Then, we collect the union of the
impacted methods set of each small-grained transformation (Step 3). Moreover, we also identify the methods that exercise
an impacted method directly or indirectly (Step 4). Finally, we yield the set of impacted methods by the transformation,
which is the union of directly and indirectly impacted methods (Step 5).

42 M. Mongiovi et al. / Science of Computer Programming 93 (2014) 39–64

Fig. 2. SafeRefactorImpact’s technique.

Table 1
Small-grained transformations considered by Safira.

3.1.1. Identifying small-grained transformations
We decompose the transformation into a set of small-grained transformations to analyze the impact of each one

separately in the resulting program. We do so since it is simpler to analyze the impact of a small-grained transformation.
Other change impact analyzers, such as Chianti [23] and FaultTracer [24], follow a similar approach.

As an example, if a transformation adds a method to a program, we consider it as the AM small-grained transformation.
Another example is the CMB small-grained transformation, which modifies any part of a method body (adding, removing
or changing a statement in a method body). Moreover, the CMM and CFM small-grained transformations add, remove or
change amethod and fieldmodifier, respectively. Finally, the CFI and CSFI small-grained transformations add or remove field
initializers or change the initialization value of instance and static fields, respectively. Table 1 describes all small-grained
transformations considered by our approach.

3.1.2. Identifying impacted methods
After decomposing the coarse-grained transformation into smaller ones, we identify the impacted methods. We formal-

ized the impact of each small-grained transformation described in Table 1. We grouped them into laws. Each law defines
two small-grained transformations (from left to right and vice-versa) and declares two templates of programs. The meta-
variables cds, fds andmds define a set of class, field andmethod declarations, respectively. Each law specifies howwe obtain
the set of impacted methods when applying it in a particular direction.

Next, we specify the impact of adding or removing a method. Law 1 adds the method m in the class C when applying
it from left to right, and removes the method when applying it from right to left. The set of impacted methods is the same
in both directions, hence we use ↔ to specify the impacted set for both directions. If the class B is Object , and C does not
have a subclass, the set of impacted methods is C .m. Otherwise, other methods may be impacted due to overloading and
overriding. For example, suppose that C has a superclass different from Object implementing m, and has a subclass D that
does not implement m. Before the transformation, D.m calls B.m. However, it calls C .m after the transformation. So, D.m
may change its behavior. We consider as impacted all methods that inheritm from C . We denote the subclass relation by <.

Law 2 adds the field f in the class C when applying it from left to right, and removes the field when applying it from right
to left. If the class B is Object , and C does not have a subclass, the set of impacted methods is defined by all methods that call
C .f . Otherwise, if there is a field in the hierarchy that inherits f from C , the methods that use it are also impacted.

M. Mongiovi et al. / Science of Computer Programming 93 (2014) 39–64 43

Law 1. ⟨Add/Remove Method⟩

cds
class C extends B {

fds;
mds;

}

⇔

cds′
class C extends B {

fds′;
mds′;
m(. . .) {. . .}

}

(↔) {n:Method | ∃ E:Class | (F < E ∧ E ≤ C) ∧ (n ∈ methods(cds′) ∪ mds′) ∧ n = E.m}, where F is the closest subclass of C
such that it redeclaresm.

Law 2. ⟨Add/Remove Field⟩

cds
class C extends B {

fds;
mds;

}

⇔

cds′
class C extends B {

fds′;
mds′;
T f ;

}

(↔) {n:Method | ∃ E:Class | (F < E ∧ E ≤ C) ∧ (n ∈ methods(cds′) ∪ mds′) ∧ E.f ∈ commands(n)}, where F is the closest
subclass of C such that it redeclares f .

We specified other laws for the small-grained transformations presented in Table 1 similarly. After decomposing the
coarse-grained transformation into smaller ones, we identify the impacted methods of each of them using our laws. The
set of directly impacted methods is the union of the impacted set of each small-grained transformation. After that, we also
identify the set of indirectly impacted methods that exercise an impacted method directly or indirectly. Finally, the union
of directly and indirectly impacted methods defines the resulting set of impacted methods.

We implemented the change impact analyzer in a tool called Safira. It takes as input two Java or AspectJ programs (the
original program and the program modified by a transformation) and reports the set of methods that can change behavior
after the transformation. It uses ASM,1 a framework to analyze and manipulate Java bytecode, to identify small-grained
transformations and methods impacted. Since the tool analyzes the Java bytecode and the AspectJ compiler translates an
AspectJ program to Java bytecode, we do not specify laws for AspectJ constructs.

3.2. Test generation

From the impacted methods set identified by Safira, we identify the public and common methods in both program
versions. We pass them to an automatic test suite generator. Finally, we execute the same generated test suite before and
after the transformation. If the results are different, we show a test case exposing the behavioral change. Otherwise, we
improve confidence that the transformation is behavior preserving.

SafeRefactorImpact uses Randoop [25,26] to automatically generate a test suite for Java programs. Randoop randomly
generates unit tests for classes and methods within a time limit. A unit test typically consists of a sequence of methods
and constructor invocations that creates and mutates objects with random values, plus an assertion. Randoop executes
the program to receive feedback gathered from executing test inputs as they are created, to avoid generating redundant
and illegal inputs. It creates method sequences incrementally, by randomly selecting a method call to apply and selecting
arguments from previously constructed sequences. Then, it executes and checks each sequence against a set of contracts.
For instance, a non-null object must be equal to itself. Our tool uses Randoop default contracts.

3.3. Example

Consider the transformation presented in Fig. 1. SafeRefactorImpact receives as input the programs shown in Listings 1
and 2. First, it decomposes the transformation into two small-grained transformations: AM (add method k in class B) and
RM (remove method n from class B). Next, it identifies the methods impacted by each small-grained transformation. In AM,
the impactedmethods are the addedmethod B.k and the inheritedmethod C .k. In RM, the impact methods are the removed
method B.n and the inherited method C .n. So, the set of impacted methods is B.k, C .k, B.n and C .n. Moreover, we must
also consider the indirectly impacted methods that exercise at least one impacted method. The method B.test exercises
B.k, introduced by the aspect after the transformation. As C .test inherits B.test , it is also impacted. So, the set of impacted
methods identified by Safira is B.k, C .k, B.n, C .n, B.test and C .test .

1 http://asm.ow2.org/.

http://asm.ow2.org/

44 M. Mongiovi et al. / Science of Computer Programming 93 (2014) 39–64

Next, SafeRefactorImpact identifies the public and common impactedmethods. Notice that B.n and C .n are not declared
in the resulting program. So, our tool only generates tests for B.k, C .k, B.test and C .test . Using a time limit of one second,
it generates 155 unit tests for these methods. Finally, it runs the test suite on both program versions, and evaluates the
results. All tests pass in the original program but some of them do not pass in the resulting program. Listing 4 shows one
of the generated test cases that reveal the behavioral change. The test case passes in the original program, since the value
returned by B.test is 10, but fails in the modified program since the value returned by B.test is 20 in this version. Therefore,
SafeRefactorImpact reports a behavioral change.

Listing 4
An unit test revealing a behavioral change in the transformation presented in Fig. 1.

public void t e s t () {
B b = new B () ;
long x = b . te s t () ;
assertTrue (x == 10);

}

The main difference between SafeRefactor [16] and SafeRefactorImpact is the change impact analysis step.
SafeRefactor only considers the common methods between both versions of the program. Some of them may not
be impacted by the transformation. In the previous example, besides considering the same methods identified by
SafeRefactorImpact to generate tests, SafeRefactor also generates test cases for the common methods C .x and A.k, which
are not impacted by the transformation. It generates test cases considering thosemethods (see Listing 5). However, such test
cases are not relevant for analyzing the transformation since they only exercise methods that are not impacted. Executing
SafeRefactor using a time limit of one second, we observe that only 66% of the test cases generated by SafeRefactor are
relevant. The other test cases do not exercise an impacted method. On the other hand, due to the change impact analysis,
SafeRefactorImpact does not generate such kind of non-relevant test cases.

Listing 5
A non-relevant unit test generated by SafeRefactor used to evaluate the transformation presented in Fig. 1.

public void t e s t () {
C c = new C () ;
long x = c . x () ;
assertTrue (x == 30);

}

For transformations applied to small programs, thismay not be a problem. However, for transformations applied to larger
programs, SafeRefactor may need to increase the time limit to detect behavioral changes, since it can generate test cases
that do not exercise the entities impacted by a transformation. Moreover, it might also face limitations of automatic test
suite generators, if it passes a large number of methods to them.

SafeRefactor and SafeRefactorImpact check the observable behavior with respect to randomly generated sequences of
method and constructor invocations. They only contain calls to methods in common. If the original and modified programs
have different results for the same input, they do not have the same behavior. There are other equivalence notions. For
instance, Opdyke [1] compares the observable behavior of two programs with respect to the main method (a method in
common). If it is called twice (original and modified programs) with the same set of inputs, the resulting set of output
values must be the same.

3.4. Change coverage and relevant tests

Based on Rachatasumrit and Kim [14] findings, refactorings are not well tested. They found that existing regression test
suitesmay not cover the impacted entities, and a number of test casesmay not be relevant for testing the refactorings. Based
on this work, we define two metrics for evaluating the test suites generated by SafeRefactorImpact and SafeRefactor:
Change Coverage and Relevant Tests.

The change coverage represents the percentage of impactedmethods exercised by the test suite.We consider as impacted
a method identified in Safira’s analysis. We define change coverage (C) as C =

#E
#I , where I is the set of impacted methods,

and E is the set of impacted methods exercised by the test suite.
We define a test case as relevant if and only if it successfully executes an impacted method identified by Safira. It is

important to mention that if a test case throws an exception before or during the method execution, it is not considered
relevant. We define the percentage of relevant test cases (R) as R =

T
S , where S is the number of test cases, and T is the

number of test cases that successfully execute at least an impacted method.
Considering the transformation presented in Fig. 1, suppose that the test suite consists of the test cases presented in

Listings 4 and 5. The first test case calls the method B.test , that calls A.k in the original program and B.k in the modified one.
The second test case calls themethod C .x. The set of impactedmethods by this transformation is: B.k, C .k, B.n, C .n, B.test and
C .test . The test suite exercises two out of six impacted methods. So, the change coverage is: C =

2
6 = 33%. Since the second

test case does not exercise any impacted method, it is not relevant. So, the percentage of relevant tests in this example is:
R =

1
2 = 50%. Notice that some impacted methods do not belong to both programs, such as B.n and C .n, and they are not

called by other methods. Sometimes it is not possible to generate tests for them since SafeRefactorImpact generates a test
suite that must execute in both versions of the program.

M. Mongiovi et al. / Science of Computer Programming 93 (2014) 39–64 45

4. Evaluation

In this section, we present our experiment [27] to compare two approaches for identifying behavior-preserving
transformations. First, we present the experiment definition (Section 4.1) and planning (Section 4.2). Then Sections 4.3–
4.6 describe the subjects and results. We describe some threats to validity in Section 4.7. Finally, Section 4.8 summarizes
the main findings. All experimental data are available online.2

4.1. Definition

We have structured the experiment definition using the goal, question, metric (GQM) approach in order to collect and
analyze meaningful metrics to measure the proposed process. The goal of this experiment is to analyze two approaches
(SafeRefactor and SafeRefactorImpact) for the purpose of evaluation with respect to identifying behavior preserving
transformations from the point of view of researchers in the context of Java and AspectJ transformations. In particular,
our experiment addresses the following research questions:

• Q1. Do SafeRefactorImpact and SafeRefactor detect the same behavioral changes?
For each approach, we measure the number of behavioral changes detected in a given time limit.

• Q2. Is SafeRefactorImpact faster than SafeRefactor to evaluate a transformation?
For each approach, we measure the total time to evaluate a transformation.

• Q3. Does SafeRefactorImpact consider less methods in common to generate tests than SafeRefactor?
For each approach, we measure the number of methods in common passed to the automatic test suite generator to

evaluate a transformation.
• Q4. Does SafeRefactorImpact generate a test suite with better change coverage than SafeRefactor?

For each approach, we measure the change coverage of the test suite, that is, the percentage of methods impacted by
the transformation identified by Safira that the test suite executes to evaluate the transformation.

• Q5. Does SafeRefactorImpact use a test suite to evaluate a transformation with more relevant test cases than
SafeRefactor?

For each approach, we measure the percentage of relevant test cases in a test suite to evaluate a transformation. A
test case is relevant if and only if it successfully executes at least one method impacted by a transformation identified by
Safira.

4.2. Planning

In this section, we describe the hypothesis formulation, subjects used in the experiment, the experiment design, and its
instrumentation.

4.2.1. Hypothesis formulation
In order to answer the research questions Q2, Q3, Q4, and Q5 we formulate, respectively, the following statistical

hypotheses:

• To answer Q2, concerning the time to evaluate a transformation:

H0 : TimeSRI ≥ TimeSR (1)
H1 : TimeSRI < TimeSR (2)

• To answer Q3, concerning the number of methods identified to generate tests:

H0 : NumberOfMethodsSRI ≥ NumberOfMethodsSR (3)
H1 : NumberOfMethodsSRI < NumberOfMethodsSR (4)

• To answer Q4, concerning the change coverage of the generated tests:

H0 : ChangeCoverageSRI ≤ ChangeCoverageSR (5)
H1 : ChangeCoverageSRI > ChangeCoverageSR (6)

• To answer Q5, concerning the percentage of relevant tests:

H0 : RelevantTestsSRI ≤ RelevantTestsSR (7)
H1 : RelevantTestsSRI > RelevantTestsSR (8)

2 http://www.dsc.ufcg.edu.br/˜spg/scp_experiments.html.

http://www.dsc.ufcg.edu.br/~spg/scp_experiments.html

46 M. Mongiovi et al. / Science of Computer Programming 93 (2014) 39–64

We perform statistical analysis for each group of subjects that contains at least eight transformations. We use Shapiro-
test [28] to analyze data normality because it is more adequate for small samples. Then, if the data are normal, we use T -test
[29], otherwise we use Wilcoxon-test [30]. We use the level of significance 0.5.

4.2.2. Selection of subjects
We evaluated SafeRefactor and SafeRefactorImpact in eight defective refactorings applied by Eclipse, 23 design

patterns implemented in Java andAspectJ, in the bytecode generated by two JavaModeling Language (JML) [31] compilers for
two programs, and 12 transformations applied to real OO and AO programs. In Sections 4.3–4.6, we give more details about
them. Experienced developers and researchers in the OO and AO fields applied the transformations, which have different
granularities, to programs with different sizes (ranging from 10 LOC to 79 KLOC).

The transformations change OO (classes, methods, fields, inheritance, overloading, overriding, packages, accessibility)
and AO (aspects, intertype declarations, pointcuts, advices) constructs. We analyzed local and global transformations. Some
of them affect classes, aspects and method signatures, while others change blocks of code only within methods.

4.2.3. Experiment design
In our experiment, we evaluate one factor (approaches for detecting behavior-preserving transformations) with two

levels (SafeRefactor and SafeRefactorImpact). We choose a paired comparison design for the experiment, that is, we
apply both treatments to all subjects.We evaluate the approaches on 45 transformations. The results can be ‘‘Yes’’ (behavior-
preserving transformation) and ‘‘No’’ (non-behavior-preserving transformation).

4.2.4. Instrumentation
We ran the experiment on a 2.7 GHz core i5 with 8 GB RAM and running Mac OS 10.8. We used the command line

interfaces of SafeRefactor 1.1.4 and SafeRefactorImpact 1.0 using Java 1.6. They receive as parameters the original and
the target program path, and the time limit to generate tests. We used Safira 1.0, which uses ASM 3.0. We used a time limit
of 0.2 s, 0.5 s and 0.2 s to generate tests for subjects described in Sections 4.3–4.5, respectively. These limits are enough to
test transformations applied to small programs. We used a time limit of 20 s for subjects described in Section 4.6. Both tools
use Randoop 1.3.3, configured to avoid generating non-deterministic test cases.

Since we do not know beforehand which versions contain behavior-preserving transformations, the first and third
authors of this article compared the results of all approaches in all transformations to establish a baseline to check the
results of each approach. For instance, if SafeRefactor yielded ‘‘Yes’’ and SafeRefactorImpact ‘‘No’’, the authors checked
whether the test case showing the behavioral change reported by SafeRefactorImpactwas correct. If so, the correct result
was ‘‘No’’.

4.3. Defective refactorings

Next we evaluate SafeRefactor and SafeRefactorImpact in a number of non-behavior-preserving transformations
applied by Eclipse refactorings to small toy examples created by us.

Selection of subjects

Eclipse JDT is a popular Java IDE with a number of automated OO refactorings. It also offers refactoring support for
AspectJ through the AspectJ Development Tools module (AJDT). For instance, since AJDT 2.1.0 delivery in 2010, the Rename
refactorings of Eclipse are aspect-aware. Each subject contains a small set of classes, pointcuts, advices, and intertype
declarations. Each subject contains one aspect and at most four classes. For instance, the example shown in Section 2
is similar to Subject 5 of our evaluation. We evaluate eight transformations applied by Eclipse 4.2 using AJDT 2.2.3 that
introduce behavioral changes in AO programs. We found them based on our experience in finding bugs in OO refactoring
tools [10]. Table 2 describes the transformations applied.

In Subjects 1–5, we apply Eclipse refactoring implementations that are aspect-aware. In some aspect-aware refactorings
(Subjects 2 and 3), Eclipse does not update pointcuts, leading to behavioral changes. Pointcuts can use wildcards, which
might impose additional challenges when checking preconditions. The behavioral changes in Subjects 4 and 5 are due to
OO features, such as overloading and overriding. On the other hand, in Subjects 6–8, we apply different kinds of useful OO
refactorings (Push Down Method, Pull Up Method, and Inline Method) performed by Eclipse that are unaware of aspects.
In practice, refactoring tools have limited support for AO refactorings. So, developers may have to manually perform a
transformation or use an OO refactoring implementation to automate part of the transformation, and manually check
whether it preserves behavior.

Operation

We compared SafeRefactor and SafeRefactorImpact using a time limit of 0.2 s passed to Randoop. SafeRefactor
and SafeRefactorImpact correctly identified all behavioral changes but one, Subject 2, that only SafeRefactor identified.
SafeRefactorImpact evaluated the subjects faster than SafeRefactor. The change impact analysis is also useful to reduce

M. Mongiovi et al. / Science of Computer Programming 93 (2014) 39–64 47

Table 2
A catalog of transformations performed by Eclipse that introduce behavioral changes in the presence of aspects.

Table 3
Results using a time limit of 0.2 s. Methods = number of methods passed to Randoop to generate tests; time = the total time of the analysis in seconds;
change coverage = the percentage of impacted methods covered; relevant tests = the percentage of relevant tests; result = it states whether the
transformation is behavior-preserving.

the set of common methods passed to Randoop in all subjects by an average of 60%. Furthermore, both tools have almost
the same change coverage in all subjects but Subject 4. Finally, all test cases generated by SafeRefactorImpact are relevant
to test the change different from SafeRefactor. Table 3 summarizes the results.

Discussion

SafeRefactorImpact does not detect the behavioral change in Subject 2, since Safira does not performdata flow analysis.
So, SafeRefactorImpact may not generate test cases containing some getter methods that may be useful to expose the
behavioral change. SafeRefactorImpact has a parameter that, when enabled, allows us to consider all gettermethods during
the test suite generation. By enabling this parameter, SafeRefactorImpact correctly identifies the behavioral change in
Subject 2. However, when using such option, the number of methods passed to the test suite generator may increase in
some transformations.

SafeRefactorImpact is faster than SafeRefactor, since it generates test cases considering lessmethods. SafeRefactorIm-
pact uses ASM to perform analysis on the programs instead of reflection. Both tools achieved 100% change coverage in
Subject 3. By inspecting the test cases, we observed that for some impacted methods, Randoop generated test cases that
throw IllegalArgumentException when invoking them. Since the impacted methods are not executed in those test
cases, SafeRefactorImpact cannot yield 100% of change coverage in some subjects. Finally, notice that SafeRefactor gen-
erates less relevant test cases than SafeRefactorImpact even for transformations applied to small programs. For example,
in Subject 1, only 20% of the generated tests are relevant.

Table 4 describes the statistical analysis results. The column Shapiro test indicates the Shapiro–Wilk test results.
When we ran the Shapiro-test in relevant tests data of SafeRefactorImpact an error occurred, because all data are equal
(100% of relevant tests). Then, we consider it as non-normal. Notice that only the change coverage data of SafeRefactor
and SafeRefactorImpact are normal. Columns T -test and Wilcoxon-test present the results of the tests to evaluate the
hypothesis presented in Section 4.2.1.

Due to non-normality of data, we use the Wilcoxon-test for number of methods, time, and percentage of relevant tests
data. It reached small p-values to all of them: 4.5×10−4, 2.3×10−4 and 2.0×10−4, respectively. The results give us evidence
that SafeRefactorImpact reduces time, identifies less methods, and generates more relevant tests than SafeRefactor. To
evaluate change coveragewe use T -test due to normality of data. It reached a p-value of 0.25which indicates that the change
coverage of SafeRefactorImpact is less than or similar to the change coverage of SafeRefactor. Then, we execute another
test (T -test) assuming a null hypothesis that the change coverage is equal for both tools. It reached a p-value of 0.51, which
indicates that there is no statistical difference between the change coverage of SafeRefactor and SafeRefactorImpact.

48 M. Mongiovi et al. / Science of Computer Programming 93 (2014) 39–64

Table 4
Statistical analysis for defective refactoring data. The Shapiro test = analyze data normality; T -test = evaluate hypothesis test when data are normal;
Wilcoxon-test = evaluate hypothesis test when data are non-normal; result = final results of the statistical analysis; SR = SafeRefactor; SRI =

SafeRefactorImpact.

Table 5
Design patterns implemented in Java and AspectJ.

4.4. Design patterns

In this section, we evaluate SafeRefactor and SafeRefactorImpact to check the equivalence between OO implementa-
tions of design patterns and their correspondent AO versions.

Selection of subjects

Hannemann and Kiczales [17] implemented 23 design patterns [32] in Java. The same patterns are also implemented in
AspectJ. They compared themwith respect to locality, reusability, composability, and (un)pluggability. For Hannemann and
Kiczales [17], the OO and AO implementations are equivalent. Table 5 describes the design patterns evaluated.

Operation

We compared SafeRefactor and SafeRefactorImpact using a time limit of 0.5 s passed to Randoop. SafeRefactorImpact
correctly identified behavioral changes in 5 out of 23 the design patterns implementations [17]. SafeRefactor identified all
of these behavioral changes but one (the Mediator design pattern), which can only be detected using a time limit of three
seconds. Hannemann and Kiczales [17] did not expect to introduce behavioral changes in the Mediator, Prototype, State,
Template and Visitor design patterns. SafeRefactorImpact evaluated the subjects faster than SafeRefactor. The change
impact analysis reduces the set of common methods passed to Randoop in Subjects 13, 14 and 22. Both tools have almost
the same change coverage except for Subjects 9, 18 and 30, but SafeRefactorImpact generated more relevant tests than
SafeRefactor. Table 6 summarizes the results.

Discussion

Hannemann and Kiczales [17] implementedOO andAO versions of the Queue data structure to illustrate the State pattern
(Subject 28). This pattern allows an object to behave differently according to its internal state. They implemented the Queue
class to represent a queue and the abstract class State representing the queue states (Empty, Normal, and Full), as
depicted by Fig. 3. Each queue must contain at most three elements.

M. Mongiovi et al. / Science of Computer Programming 93 (2014) 39–64 49

Table 6
Results using a time limit of 0.5 s. Impacted methods = number of methods identified by Safira; methods = number of methods passed to Randoop to
generate tests; time = the total time of the analysis in seconds; change coverage = the percentage of impacted methods covered; relevant tests = the
percentage of relevant tests; result = it states whether the transformation is behavior preserving.

Fig. 3. The class diagram of a Queue using the State design pattern.

In the OO version, the state transitions are performed in each class representing a possible state. For instance, the
following code snippet shows the insert method from the Empty class, which changes the queue’s state to normal, and
adds an element.

public boolean inse r t (Queue queue , Object arg) {
Normal nextState = new Normal () ;
queue . setState (nextState) ;
return nextState . inser t (context , arg) ;

}

On the other hand, they implemented the state transitions in an aspect in the AO version. The aspect declares the state
objects (empty, normal, full), and an advice makes the state transition after the invocation of the insertmethod.

public aspect QueueStateAspect {
protected Empty empty = new Empty () ;
protected Normal normal = new Normal () ;
protected Fu l l f u l l = new Fu l l () ; . . .
after (Queue queue , State qs , Object arg) :

ca l l (boolean State + . inser t (Object)) && . . . {
i f (qs == empty) {

50 M. Mongiovi et al. / Science of Computer Programming 93 (2014) 39–64

normal . inser t (arg) ;
queue . setState (normal) ;

} . . .
}

}

Both tools detected a behavioral change. Listing 6 shows a test case generated by SafeRefactor that reveals a behavioral
change. It instantiates the q1 queue and adds one element to it. Next, it instantiates another queue q2 and add three
elements. The OO version correctly inserts all elements. However, the last element cannot be inserted into the queue in
the AO version. The r4 variable yields false. It states that the queue is full (it contains three elements).

Listing 6
A unit test revealing a behavioral change in the State pattern.

public void t e s t () {
Queue q1 = new Queue () ;
boolean r1 = q1 . inser t (‘ ‘ element1 ’ ’) ;
Queue q2 = new Queue () ;
boolean r2 = q2 . inser t (‘ ‘ element1 ’ ’) ;
boolean r3 = q2 . inser t (‘ ‘ element2 ’ ’) ;
boolean r4 = q2 . inser t (‘ ‘ element3 ’ ’) ;
assertTrue (r1 == true) ;
assertTrue (r2 == true) ;
assertTrue (r3 == true) ;
assertTrue (r4 == true) ;

}

Aspects are singleton by default in AspectJ [5]. Notice that the fields of the QueueStateAspect aspect are only
instantiated when the aspect is created. Therefore, all queues share the same state. Normal contains an array for storing
three elements. When we insert an element in q1, it is inserted in this array. However, when we create q2, this array is not
cleared. Therefore, we can only include two elements in q2. To avoid this problem, they could have instantiated an aspect
for every new queue instance. AspectJ allows per-object aspects by using the perthis and pertarget keywords [5].

We also found a behavioral change in theMediator pattern implementations. Developers implemented a GUI application
and used the mediator pattern to deal with changes to GUI components that require updates. In the OO version, they
implemented this pattern as a field of the component, which must be set by using a setter method.

Both tools generated test cases that instantiate the Button object, which contains a mediator field, and apply changes
to the object, as shown in Listing 7.

Listing 7
A unit test revealing a behavioral change in the Mediator pattern.

public void t e s t () {
Button var1 = new Button (‘ ‘ ’ ’) ;
var1 . c l icked () ;

}

The mediator field should handle the change performed by method clicked. However, the test case does not set a
mediator to the Button object (it should be set by using the setMediator method). Therefore, it throws the exception
NullPointerException. On the other hand, Hannemann and Kiczales [17] implemented themediator as an aspect in the
AO version, which has already been instantiated when the change is performed. Therefore, the tools successfully executed
this test in the AO version.

Notice that SafeRefactor cannot detect this behavioral change. The time limit of 0.5 s passed to Randoop is not enough
to generate tests considering 714 methods. So, it does not generate relevant test cases and cover the change different from
SafeRefactorImpact.

Finally, we found simple behavioral changes in three design patterns (Subjects 25, 30 and 31). Some methods yield
different Stringmessages.

Both tools have a low change coverage. The number of impacted methods (see Column Impacted Methods in Table 6)
identified by Safira is larger (90%) than the number of methods passed to Randoop by SafeRefactorImpact. The
transformation adds or removesmost impactedmethods. Then, SafeRefactorImpact cannot pass them to Randoop because
they do not belong to both versions of the program. As mentioned before, our goal is to generate a test suite to be executed
before and after the transformation. Furthermore, some methods contain parameter types declared in external libraries,
such as Java AWT, in some subjects. Randoop does not generate test inputs for them unless we pass them as parameters, or
somemethod being tested yields an object of the library’s type. In Subject 13, all test cases generated by SafeRefactorImpact
throw exceptions before executing the impacted method. We may increase the time limit, or this may indicate a limitation
of the test suite generator that cannot handle some kinds of Java constructions, such as GUI elements. So, the tool does
not generate relevant tests to exercise the change in this subject. In Subjects 13 and 22, a similar scenario happens in
SafeRefactor.

Notice that SafeRefactor identifies a number of commonmethods to generate tests. In Subjects 9, 13, 14 and 22, there are
some classes that extend Java Swing and Java AWT classes. SafeRefactor generates tests for the inherited methods since

M. Mongiovi et al. / Science of Computer Programming 93 (2014) 39–64 51

Table 7
Statistical analysis for design patterns data. The Shapiro test = analyze data normality; Wilcoxon-test = evaluate hypothesis test when data are non-
normal; result = final results of the statistical analysis; SR = SafeRefactor; SRI = SafeRefactorImpact.

Table 8
Evaluation of two JML compilers. KLOC = non-blank, non-comment thousands of lines of code.

they belong to both versions of the program. SafeRefactorImpact only generates tests for the methods impacted by the
transformation. In some subjects, SafeRefactorImpact passed more methods in common to Randoop than SafeRefactor.
Different from SafeRefactor, SafeRefactorImpact takes into consideration methods that are moved from a class to an
aspect, that introduces it in the same class using an intertype declaration.

Table 7 describes the statistical analysis results. The column Shapiro test consists of Shapiro–Wilk test results. The results
indicate that all data are non-normal. Then, we use the Wilcoxon-test for all of them. The column Wilcoxon-test presents
the results of the test to evaluate the hypothesis presented in Section 4.2.1.

The tests reached small p-values to time and relevant tests data (1.4 × 10−9 and 1.0 × 10−3, respectively). The
results give us evidence that SafeRefactorImpact reduces time and generates more relevant tests than SafeRefactor. For
number of methods and change coverage, the tests reached p-values of 0.13 and 0.19, respectively. The result indicates
that SafeRefactorImpact identifies a number of methods greater than or similar to SafeRefactor and the change coverage
of SafeRefactorImpact is less than or similar to the change coverage of SafeRefactor. Then, we execute another test
(Wilcoxon-test) assuming a null hypothesis that the samples are equal to eachmetric. It reached a p-value of 0.27 for number
of methods and 0.38 for change coverage. Then, we conclude that there is no statistical difference between the number of
methods and change coverage of SafeRefactor and SafeRefactorImpact.

4.5. JML compiler

In this section, we evaluate SafeRefactor and SafeRefactorImpact by using them to test compilers. We check whether
program compiled by two different compilers has the same behavior.

Selection of subjects

JML is a behavioral interface specification language used to specify contracts, such as pre and post conditions and
invariants with annotations. The standard JML compiler (jmlc) reads a Java program annotated with JML and produces
instrumented bytecode with additional code to check the program correctness against restrictions imposed by the JML
specification.

Rebêlo et al. [18] propose a JML compiler (ajmlc) implemented using AspectJ to avoid using reflection, which was used
in jmlc. In this way, they could use JML with Java ME applications, which do not support reflection. Later, they proposed an
optimized version of this compiler (ajmlc optimized) [19]. They optimized the bytecode size and running time. Moreover,
they used refactorings based on AspectJ programming laws [8] to reason about the compilation process.

We evaluated the JML compilers implemented in AspectJ (ajmlc 0.5 and ajmlc optimized 1.1) using SafeRefactor and
SafeRefactorImpact. We use two Java programs annotated with JML (JAccounting and JSpider) as test inputs for the
compilers. For each input, SafeRefactor and SafeRefactorImpact compare the behavior of the programs yielded by these
compilers. Rebêlo et al. [18] state that the ajmlc and ajmlc optimized are equivalent. Table 8 describes the subjects.

Operation

We compared SafeRefactor and SafeRefactorImpact using a time limit of 0.2 s passed to Randoop. SafeRefactor and
SafeRefactorImpact correctly identified behavioral changes in both transformations (Subjects 32 and 33). Both tools take
almost the same time to evaluate the Subject 32. However, SafeRefactorImpact takes more time to evaluate Subject 33
since the change impact analysis is more expensive. Table 9 summarizes the results. Notice that the change impact analysis

52 M. Mongiovi et al. / Science of Computer Programming 93 (2014) 39–64

Table 9
Results using a time limit of 0.2 s. Impacted methods = number of methods identified by Safira; methods = number of methods passed to Randoop to
generate tests; time = the total time of the analysis in seconds; change coverage = the percentage of impacted methods covered; relevant tests = the
percentage of relevant tests; result = it states whether the transformation is behavior preserving.

is useful to reduce at least 27% of the set of methods passed to Randoop in SafeRefactorImpact. Moreover, both tools have
similar low change coverage. Finally, SafeRefactorImpact generates more relevant test cases than SafeRefactor.

Discussion

Different fromwhat Rebêlo et al. [18] expected, the programs compiled using the standard JML compiler (jmlc) and ajmlc
are not equivalent. They must check invariants after creating an object, and before and after a method call. By analyzing the
tests reported by our tools, we detected that ajmlc checks invariants before each constructor. This leads to false invariant
violation warnings. For example, consider the following class specifying a person.

public class Person {
private /∗@ spec_pub l i c @∗ / int height ;
/ / @invariant he ight > 0;
/ / @pre i > 0;
public Person (int i) {

this . height = i ;
} . . .

}

The class Person contains the field height, and a constructor that sets the height of each person. An invariant states
that each personmust have a height greater than 0. Moreover, the constructor of Person has a precondition specifying that
the i parameter must be greater than 0. Now, suppose that we would like to instantiate this class.

Person x = new Person (178) .

The previous code compiled by ajmlc optimized is normally executed. However, it throws a warning due to postcondition
violation when compiled by ajmlc. By analyzing the code generated by the compilers to check the constructor precondition,
we notice that ajmlc implements this check in an intertype declaration.

before (Person p , int i) : execution (Person .new()) {
boolean b = p . checkPrePerson (i) ; . . .

}
boolean Person . checkPrePerson (int i) {

return (i > 0) ;
}

An advice invokes the method checkPrePerson before the execution of the constructor. Notice that this method
belongs to Person. Therefore, by calling it, the invariants of this class will also be checked. However, since the constructor
was not initialized so far, the height attribute is still 0, leading to an invariant warning.

On the other hand, the ajmlc optimized changes the previous checking code by applying the Inline method intertype within
before-execution refactoring [19]. Next we show part of the resulting code.

before (Person p , int i) : execution (Person .new()) {
boolean b = (i > 0) ; . . .

}

Notice that they removed the intertype declaration. Therefore, ajmlc contains a bug.
Our tools also detected a behavioral change during a postcondition evaluation of a method declared in JAccount. In a

test case generated by our tools, the code compiled with ajmlc optimized throws the JMLEvaluationError exception,
as expected. However, the code compiled with ajmlc throws JMLInternalExceptionalPostconditionError. These
exceptions have different meaning. The former occurs when it throws an exception, such as NullPointerException,
during the postcondition evaluation. The latter notifies an internal exceptional postcondition violation.

Both tools have a low change coverage. Although we found behavioral changes in Subjects 32 and 33, we may exercise
more impacted methods by increasing the time limit. However, it is also important to mention that the test suite cannot
exercise most impacted methods detected by Safira since they do not belong to both versions of the program. Finally,
SafeRefactorImpact generates more relevant test cases than SafeRefactor.

M. Mongiovi et al. / Science of Computer Programming 93 (2014) 39–64 53

Fig. 4. Two alternative refactorings to modularize the exception handling code.

Table 10
Evaluation of transformations applied to case studies. KLOC = non-blank, non-comment thousands of lines of code of the programbefore the transformation.

4.6. Larger case studies

In this section, we evaluate SafeRefactor and SafeRefactorImpact to check the correctness of refactorings applied to
larger OO and AO programs than previous sections.

Selection of subjects

Taveira et al. [20] present two approaches tomodularize exception handlingmechanisms. They change anOOversion into
two equivalent ones: OO’ (a class modularizes the exception handling code) and AO (an aspect modularizes it), as depicted
by Fig. 4.

Eight programmers working in pairs performed the changes. They relied on refactoring tools, pair review, and unit tests
to assure behavior preservation. They refactored JHotDraw and CheckStylePlugin 4.2 using the proposed approach. Taveira
et al. [20] establish that the OO, OO’ and AO versions are equivalent. Subjects 34–37 are the OO to AO versions, and the OO’
to AO versions (see Fig. 4) of JHotDraw and CheckStylePlugin, respectively.

Soares et al. [21] used SafeRefactor to evaluate a number of transformations applied to JHotDraw from its repository.
We randomly selected them. We evaluate some of them in Subjects 38–45. It is important to mention that we consider
some transformations where SafeRefactor did not detect some behavioral changes identified by the manual inspection
[33]. Table 10 describes the transformations evaluated.

Operation

We compared SafeRefactor and SafeRefactorImpact using a time limit of 20 s passed to Randoop. SafeRefactorImpact
correctly evaluated all transformations but two (Subjects 38 and 39), while SafeRefactor correctly evaluated
seven transformations. The change impact analysis is useful to reduce the set of methods passed to Randoop in
SafeRefactorImpact. The reduction ranges from 75% to 99% of the methods considered by SafeRefactor in our evaluation.
Both tools took almost the same time to evaluate the subjects. As expected, SafeRefactorImpact has higher percentage of
change coverage in nine subjects, since it focuses on testing themethods impacted by the change. In the other three subjects,
they have almost the same change coverage. SafeRefactorImpact generates at least 95% of relevant tests. In Subjects 39,
43 and 44, SafeRefactor generates less than 10% of relevant tests since it passes more than 30,000 methods to Randoop
generate tests. Table 11 summarizes the results.

54 M. Mongiovi et al. / Science of Computer Programming 93 (2014) 39–64

Table 11
Results using a time limit of 20 s. Impacted methods = number of methods identified by Safira; methods = number of methods passed to Randoop to
generate tests; time = the total time of the analysis in seconds; change coverage = the percentage of impacted methods covered; relevant tests = the
percentage of relevant tests; result = it states whether the transformation is behavior preserving.

Discussion

In Subject 35, we evaluated the OO’ and AO versions, and both tools also detected this behavioral change. In our previous
work [11], we also found a behavioral change in the OO and OO’ versions of JHotDraw. To perform the OO refactoring,
developers extracted the code inside the try, catch, and finally blocks to methods in specific classes that handle
exceptions. They refactored some classes that implement Serializable.

class A implements Se r i a l i z ab l e {
Object clone () {

try { . . . }
catch (IOException e) { . . . }

}
}

Developers changed the clonemethod and introduced the handler attribute to handle exceptions. However, they forgot
to serialize this new attribute.

class A implements Se r i a l i z ab l e {
ExceptionHander handler ; . . .
Object clone () {

try { . . . }
catch (IOException e) {

handler . handle (e) ;
}

}
}
class ExceptionHandler { . . . }

Thus, the program throws an exception when the method clone tries to serialize the object. Therefore, they introduced
a bug in the code. On the other hand, developers extracted the exception handling code to aspects in the AO version. Since
in this version there was no need to introduce new fields in the classes to handle exceptions, this problem did not happen.
They used tools and a test suite to guarantee behavior preservation. However, as we previously mentioned, there is no good
tool support for refactoring AO code, so we can introduce behavioral changes even when applying small changes. Hence,
this may be the cause of the unintentional behavioral change introduced in the OO’ version.

SafeRefactor and SafeRefactorImpact detect behavioral changes between the OO and AO versions of Check-
StylePlugin (Subjects 36 and 37) using a time limit of 20 s. Next, we describe the two behavioral changes found.
In the class FileMatchPattern, the method setMatchPattern contains a try-catch block that catches a
PatternSyntaxException and throws a CheckStylePluginException. Developers removed this try-catch
block and added an aspect to transform this exception into a SoftException, a kind of RuntimeException.
SoftException is then re-thrown as CheckStylePluginException. However, PatternSyntaxException is al-
ready a subclass of RuntimeException, and thus it is not softened by the aspects. In this way, after the transformation,
PatternSyntaxException is not caught and re-thrown as CheckStylePluginException, changing the behavior of
the program.

M. Mongiovi et al. / Science of Computer Programming 93 (2014) 39–64 55

We found a second behavioral change in the class ConfigurationType. Developers removed try-catch blocks that
catch IOException and re-throw CheckStylePluginException, and added an aspect to transform this exception into
a SoftException. An aspect should catch this exception and re-throw as CheckStylePluginException. However,
after the transformation, SoftException is not caught, changing the behavior of the program. It seems that developers
forgot to implement the last part of the transformation (catch the SoftException). These results corroborate with the
results found in a previous study [34], suggesting that the exception handling code in AO systemswithout good tool support
may be error-prone.

In Subjects 38 and 39, both tools do not identify behavioral changes using a time limit of 20 s. Randoop does not
generate tests that exercise the impacted methods that change behavior using this time limit. Different from SafeRefactor,
SafeRefactorImpact identifies the behavioral changes in both subjects using a time limit of 120 s, since it reduces by more
than 90% the number of methods passed to Randoop to generate tests.

In our previouswork [21],we evaluate Subjects 40–45using SafeRefactor and amanual inspection performedby experts
[33]. SafeRefactor does not identify the behavioral changes using a time limit of 20 s in Subjects 40, 42–45 different from
SafeRefactorImpact. However, it detects three of them (Subjects 40, 43 and 45) using a time limit of 120 s. Both manual
inspection [33] and SafeRefactor classified Subject 42 as behavior preserving. However, SafeRefactorImpact identified
a previously undetected behavioral change in Subject 42. Next we illustrate part of the original program of Subject 42. It
specifies a class declaring the method getAttribute, which returns an object. Notice that if the required object does not
exist in attributes, the method yields null.

class A {
HashMap<AttributeKey , Object > a t t r ibutes =

new HashMap<AttributeKey , Object > () ;
public Object getAttr ibute (AttributeKey name) {

return a t t r ibutes . get (name) ;
}

}

In the modified program presented next, the method getAttribute calls a method get of the class AttributeKey<T>
passing as a parameter the field attributes. Notice that the method checks if the required object exists in the Map. If it
does not exist, the method yields a default value instead of null in the original program.

class A {
HashMap<AttributeKey , Object > a t t r ibutes =

new HashMap<AttributeKey , Object > () ;
public <T> T getAttr ibute (AttributeKey <T> key) {

return key . get (a t t r ibu tes) ;
}

}

class AttributeKey <T> {
public T get (Map<AttributeKey , Object > a) {

T value = (T) a . get (this) ;
return (value == null && ! isNullValueAllowed) ?

defaultValue : value ;
}

}

SafeRefactor does not identify this behavioral change because Randoop does not generate tests to expose them using
the time limit of 120 s, since the number of methods to test is much greater (90%) than in SafeRefactorImpact. It is also
important to notice that finding behavioral changes is not an easy task, even when using a well defined manual inspection
conducted by experts [33,35]. It is a time consuming and error prone activity tomanually evaluatewhether a transformation
is behavior preserving in larger programs.

Both tools have a low change coverage. Randoop does not generate test cases to many methods because they depend
on classes from libraries that are not passed as parameter. Moreover, some methods have parameters, such as arrays, that
Randoop does not handle well when generating tests. Finally, there are some added and removed methods that are not
common to both versions of the program. In some subjects, SafeRefactorImpact does not yield 100% of relevant tests since
it may throw an exception before or while executing the impacted method in a test case. Finally, SafeRefactorImpact
is slower than or similar to SafeRefactor to evaluate these subjects, because the change impact analysis performed by
SafeRefactorImpact is more expensive in larger programs than the analysis of SafeRefactor. However, it detects some
behavioral changes undetected by SafeRefactor.

Table 12 describes the statistical analysis results. The column Shapiro test indicates the Shapiro–Wilk test results. Notice
that only the change coverage data of SafeRefactor and SafeRefactorImpact are normal. The column T -test andWilcoxon-
test present the results of the tests to evaluate the hypothesis presented in Section 4.2.1.

56 M. Mongiovi et al. / Science of Computer Programming 93 (2014) 39–64

Table 12
Statistical analysis for larger subjects data. The Shapiro test = analyze data normality; T -test = evaluate hypothesis test when data are normal; Wilcoxon-
test = evaluate hypothesis test when data are non-normal; result = final result of the statistical analysis; SR = SafeRefactor; SRI = SafeRefactorImpact.

Due to non-normality of data, we use the Wilcoxon-test for a number of methods, time, and percentage of relevant
tests. We use the T -test for change coverage due to data normality. The tests reached small p-values to number of methods,
change coverage and relevant tests (1.6× 10−4, 4.7× 10−3, and 1.3× 10−5, respectively). The results give us evidence that
SafeRefactorImpact identifies less methods to generate tests, has a better change coverage, and generates more relevant
tests than SafeRefactor. The test reached a p-value of 0.44 indicating that SafeRefactorImpact is slower than or similar
to SafeRefactor. Then, we execute another test (Wilcoxon-test) assuming a null hypothesis that the time of both tools is
equal. It reached a p-value of 0.88, which indicates that there is no statistical difference between the time to evaluate a
transformation between SafeRefactor and SafeRefactorImpact.

4.7. Threats to validity

There are some limitations to this study. Next we describe some threats to the validity of our evaluation.

4.7.1. Construct validity
We created the baseline by comparing the approaches’ results, sincewe did not know beforehandwhich versions contain

behavior-preserving transformations to evaluate the correctness of the results of each approach.
With respect to SafeRefactor and SafeRefactorImpact, they do not evaluate the developer’s intention to refactor, but

whether a transformation changes behavior. Moreover, in the closed world assumption, we have to use the test suite
provided by the program that is being refactored. SafeRefactorImpact follows an open world assumption, in which every
public method can be a potential target for the test suite generated by Randoop. Randoop may generate a test case that
exposes a behavioral change. However, the test case may show an invalid scenario according to the software domain.

Our change coverage and the percentage of relevant testmetrics are based on the impactedmethods identified by Safira.
However, Safira may fail to identify some impacted methods, or include a method that does not change behavior. For
example, it may not include a method since it does not perform data flow analysis.

Safira does not analyze anonymous classes. It does not identify all impacted methods related to them. Moreover, Safira
does not perform data flow analysis. Due to this limitation, it does not identify the behavioral change in Subject 2. Although
it does not implement data flow analysis, SafeRefactorImpact has a parameter that allows us to include all common getter
methods in the test generation. However, this may decrease its performance, and require to increase the time limit.

4.7.2. Internal validity
Another threat is related to the time limit to generate the tests. The time limits used in SafeRefactor and SafeRefac-

torImpact may have influence on the detection of behavioral changes. We used the default values for most of Randoop
parameters. By changing them, we may improve SafeRefactor and SafeRefactorImpact results. Moreover, since Randoop
randomly generates a test suite, there might be different results each time we run the tool. We ran the experiment only
once. Due to the randomness nature of the tests, different executions may have different results. As future work, we plan to
execute the tools multiple times to improve the confidence on the results.

Finally, compilersmay have introduced behavioral changes during the optimization process [36]. Since SafeRefactorIm-
pact analyzes the Java bytecode, this may have an influence on the results if the compilers have bugs.

4.7.3. External validity
To mitigate threats to external validity, we evaluated different kinds of software, such as a GUI application (JHotDraw)

and an Eclipse Plugin (CheckStylePlugin), ranging from few lines of codes to thousands of lines of code. We also evaluate a
number of different refactorings targeting different OO and AO constructs.

Randoop does not deal with concurrency. In those situations, SafeRefactor and SafeRefactorImpact may yield non-
deterministic results. Also, they do not take into account characteristics of some specific domains. For instance, currently,
they do not detect the difference in the standard output (System.out.println) message. Neither could the tool generate tests
that exercise some changes related to the graphical interface (GUI) of JHotDraw.

M. Mongiovi et al. / Science of Computer Programming 93 (2014) 39–64 57

(a) Defective refactorings. (b) Design patterns. (c) Real subjects.

Fig. 5. Distribution of the total time to evaluate transformations by SafeRefactor and SafeRefactorImpact.

(a) Defective refactorings. (b) Design patterns. (c) Real subjects.

Fig. 6. Distribution of the number of methods identified by SafeRefactor and SafeRefactorImpact to generate tests.

4.8. Answer to the research questions

From the evaluation results, we make the following observations:

• Q1. Do SafeRefactorImpact and SafeRefactor detect the same behavioral changes?
No. SafeRefactorImpact does not identify the behavioral change in Subject 2 due to a limitation in Safira. If we

pass all getter methods as parameter in the test generation, SafeRefactorImpact detects it. Moreover, it does not detect
behavioral changes in Subjects 38 and 39 using a time limit of 20 s. If we increase the time limit to 120 s, it detects the
behavioral change different from SafeRefactor. On the other hand, SafeRefactorImpact detects behavioral changes in
Subjects 22, 40, 42–45 that SafeRefactor does not identify them using a time limit of 20 s. SafeRefactor detects the
behavioral changes in Subjects 40, 43 and 45 using a time limit of 120 s. SafeRefactorImpact finds a behavioral change
in Subject 42 undetected by SafeRefactor and a well defined manual inspection conducted by experts.

• Q2. Is SafeRefactorImpact faster than SafeRefactor to evaluate a transformation?
In the transformations applied to small programs, SafeRefactorImpact is faster than SafeRefactor. However, both

tools take almost the same time to evaluate transformations applied to larger programs. Fig. 5 illustrates the distribution
of the total time to evaluate transformations by SafeRefactor and SafeRefactorImpact in the subjects of defective
refactorings, designs patterns, and larger case studies.

• Q3. Does SafeRefactorImpact consider less methods in common to generate tests than SafeRefactor?
Yes. SafeRefactorImpact considers less methods in common to generate tests in all subjects except in some subjects

of design patterns, because in these subjects SafeRefactor does not consider some impactedmethods. In larger subjects,
SafeRefactorImpact reduces at least 75% of the methods to test. Fig. 6 illustrates the distribution of the number of
methods identified by SafeRefactor and SafeRefactorImpact to generate tests, in the subjects of defective refactorings,
designs patterns, and larger case studies.

• Q4. Does SafeRefactorImpact generate a test suite with better change coverage than SafeRefactor?
The test cases generated by SafeRefactorImpact increase the change coverage in larger subjects. For small ones,

there is no significant difference, but in most of the subjects, it is similar or better than SafeRefactor. Fig. 7 illustrates
the distribution of the change coverage of the tests generated by SafeRefactor and SafeRefactorImpact in the subjects
of defective refactorings, designs patterns, and larger case studies.

• Q5. Does SafeRefactorImpact use a test suite to evaluate a transformation with more relevant test cases than SafeR-
efactor?

Yes. SafeRefactorImpact generates more relevant tests in all subjects. Almost 90% of test cases generated by SafeR-
efactorImpact are relevant to evaluate the change. It only generates test cases that exercise an impacted method. Some

58 M. Mongiovi et al. / Science of Computer Programming 93 (2014) 39–64

(a) Defective refactorings. (b) Design patterns. (c) Real subjects.

Fig. 7. Distribution of the change coverage of the tests generated by SafeRefactor and SafeRefactorImpact.

(a) Defective refactorings. (b) Design patterns. (c) Real subjects.

Fig. 8. Distribution of the percentage of relevant tests generated by SafeRefactor and SafeRefactorImpact.

test cases are not relevant because they throw an exception before or while executing an impacted method. Fig. 8 il-
lustrates the distribution of the percentage of relevant tests generated by SafeRefactor and SafeRefactorImpact in the
subjects of defective refactorings, design patterns, and larger case studies.

5. Related work

In this section, we relate our work to a number of approaches proposed for refactoring OO (Section 5.1) and AO programs
(Section 5.2), change impact analysis (Section 5.3) and detecting behavioral changes (Section 5.4).

5.1. Refactoring object-oriented programs

Preconditions are a key concept of research studies on the correctness of refactorings. Opdyke [1] proposed a number of
refactoring preconditions to guarantee behavior preservation. However, there was no formal proof of the correctness and
completeness of these preconditions. In fact, later, Tokuda and Batory [37] showed that Opdyke’s preconditions were not
sufficient to ensure behavior preservation. Roberts [38] automated the basic refactorings proposed by Opdyke.

Kim et al. [39] conducted surveys, interviews, and quantitative analysis to evaluate refactoring challenges and benefits at
Microsoft. Although participants of the survey mentioned that refactorings help on improving maintainability, 77% of them
mentioned regression bugs as risks for applying refactorings. Also, except for the rename refactoring,most of the participants
mentioned that theymanually perform refactorings, despite the awareness of automated tools. This study indicates that tool
support for refactoring should go beyond automated transformations. For example, they need to use a better tool support
for checking behavior preservation correctness, as we propose in this article.

Rachatasumrit and Kim [14] studied the impact of a transformation on regression tests by using the version history of Java
open source projects. Among the evaluated research questions, they investigate whether the regression tests are adequate
for refactorings in practice. They found that refactoring changes are not well tested: regression test cases cover only 22% of
impacted entities. Moreover, they found that 38% of affected test cases are relevant for testing the refactorings.We proposed
SafeRefactorImpact, that uses change impact analyses to guide the test suite generation for only testing the methods
impacted by a transformation. Most of the tests generated by our tool are relevant for evaluating the transformations
considered in our work. Although our tool has a low change coverage in larger subjects, it focuses only on generating tests
to run on both versions of the program. There are a number of added or removed methods that are not exercised indirectly.
So, it cannot generate tests for them.

Steimann and Thies [40] showed that by changing access modifiers (public, protected, package, private) in Java
one can introduce compilation errors and behavioral changes. They propose a constraint-based approach to specify Java

M. Mongiovi et al. / Science of Computer Programming 93 (2014) 39–64 59

accessibility, which favors checking refactoring preconditions and computing the changes of access modifiers needed to
preserve the program behavior. Such a specialized approach is useful for detecting bugs regarding accessibility-related
properties. On the other hand, our approach is general enough for detecting bugswith respect to other OO andAO constructs.

Tip et al. [41] proposed an approach that uses type constraints to verify preconditions of those refactorings, determining
which part of the code they may modify. Using type constraints, they also proposed the refactoring Infer Generic Type
Arguments [42], which adapts a program to use the Generics feature of Java 5, and a refactoring to migration of legacy
library classes [43]. Eclipse implemented these refactorings. Their technique allows sound refactorings with respect to type
constraints. However, a refactoring may have preconditions related to other constructs. Our tool may be helpful in those
situations.

Borba et al. [44] proposed a set of refactorings for a subset of Javawith copy semantics (ROOL). They prove the refactoring
correctness based on a formal semantics. Silva et al. [45] proposed a set of behavior preserving transformation laws for
a sequential object-oriented language with reference semantics (rCOS). They prove the correctness of each of the laws
with respect to rCOS semantics. Some of these laws can be used in the Java context. Yet, they have not considered all Java
constructs, such as overloading and field hiding. SafeRefactorImpactmay be useful when their work may not be applied.

Schäfer et al. [46] proposed refactorings for concurrent programs. They have proved the correctness based on the Java
memory model. Currently, we do not deal with concurrency, since SafeRefactorImpact can only evaluate sequential Java
programs. However, they have demonstrated that some useful refactorings are not influenced by concurrency. In those
situations, we can use SafeRefactorImpact.

Overbey and Johnson [47] proposed a technique to check for behavior preservation. They implement it in a library
containing preconditions for themost common refactorings. Refactoring engines for different languages can use their library
to check refactoring preconditions. The preservation-checking algorithm is based on exploiting an isomorphism between
graph nodes and textual intervals. They evaluate their technique for 18 refactorings in refactoring engines for Fortran 95,
PHP 5 and BC. In our approach, we use SafeRefactorImpact to evaluate whether any transformation is behavior-preserving.
Proving refactorings with respect to a formal semantics constitutes a challenge [12].

Soares et al. [48] proposed a technique to identify overly strong conditions based on differential testing [49]. If a tool
correctly applies a refactoring according to SafeRefactor and another tool rejects the same transformation, the latter has
an overly strong condition. In a sample of 42,774 programs generated by JDolly, they evaluated 27 refactorings of Eclipse,
NetBeans and JastAdd Refactoring Tools (JRRT) [6], and found 17 and 7 types of overly strong conditions in Eclipse and
JRRT, respectively. This approach is useful for detecting whether the set of refactoring preconditions is minimal. Later,
Soares et al. [10] introduced a technique to test refactoring tools and found more than 100 bugs in the best academic (JRRT)
and commercial Java refactoring implementations (Eclipse and NetBeans). This approach is based on a program generator
(JDolly) and SafeRefactor. In this work, we extend SafeRefactor to consider AO constructs, and use change impact analysis
to generate tests only for themethods impacted by a transformation. As a futurework,we intend to use SafeRefactorImpact
in this approach.

5.2. Refactoring aspect-oriented programs

Monteiro and Fernandes [7] proposed a catalog of 27 AO refactorings [2]. They can be useful for implementing aspect-
aware refactoring tools. However, they do not prove their soundness. We can apply their refactorings and use SafeRefac-
torImpact to improve confidence that the transformation is correct.

Wloka et al. [9] proposed a tool support for extending currently OO refactoring implementations for considering aspects.
They employ change impact analysis to identify pointcuts impacted by a transformation that can change the program
behavior. The tool can change pointcuts to preserve program behavior in some cases. SafeRefactorImpact does not apply a
transformation to a program. It only evaluates whether a transformation preserves behavior. Safira also considers aspects
during the analysis. Moreover, SafeRefactorImpact evaluates any kind of transformation, while their tool evaluates only
some Java refactorings, such as rename, move, extract and inline.

Binkley et al. [50,51] presented a human guided automated approach to refactor OO to AO program. They implement six
kinds of refactorings. Each refactoring defines a set of preconditions to guarantee behavior preservation. They refactored
four OO real systems to modularize it in aspects (JHotDraw, PetStore, JSpider and JAccouting). Hannemann et al. [52]
introduced a role-based refactoring approach to help programmers modularize crosscutting concerns into aspects. Malta
and Valente [53] presented a collection of transformations used to enable the extraction of crosscutting statements to
aspects. Each refactoring defines a set of preconditions. Their work may contribute for improving tool support for applying
refactorings to AO programs. However, they do not prove them sound with respect to a formal semantics. Developers can
use our tool together with their approaches to improve confidence that the transformation preserves behavior. Moreover,
SafeRefactorImpact can evaluate any kind of transformation.

Yokomori et al. [54] analyzed two software applications that have been refactored into aspects (JHotDraw and Berkeley
DB) to determine circumstances when such activities are effective at reducing component relationships and when they
are not. They found that AO refactoring is successful in improving the modularity and complexity of the base code. In our
work, we propose a tool based on change impact analysis to improve confidence that a transformation preserves behavior.
SafeRefactorImpact does not evaluate whether the resulting program improves the quality of the original program.

60 M. Mongiovi et al. / Science of Computer Programming 93 (2014) 39–64

Hannemann and Kiczales [17] implemented 23 design patterns [32] in Java and AspectJ. The study concludes that some
patterns are better implemented using OO constructs and others using AO constructs. Taveira et al. [20] modularized
exception handling in OO and AO codes by using test suite and pair programming. The study indicates that the AO version
promotes reuse of the exception handling code. We used SafeRefactorImpact to analyze some transformations they
evaluated, and found some behavioral changes that developers were unaware. SafeRefactorImpact does not evaluate
whether the resulting program improves the quality of the original program.

Van Deursen et al. [55] used an existing well-designed open-source system (JHotDraw) and modified it to an equivalent
AO version (AJHotDraw). In this article, we analyzed some transformations applied to JHotDraw collected from its SVN
repository history and from studies that aimed to modularize the exception handling mechanism.

Cole and Borba [8] formally specified AO programming laws (each law defines a bidirectional semantics-preserving
transformation) for AspectJ. By composing them, they derived AspectJ refactorings. Each law formally states preconditions.
They proved one of them sound with respect to a formal semantics for a subset of Java and AspectJ [56]. They can be useful
for implementing aspect-aware refactoring tools. However, they did not consider all AspectJ constructs and their catalog is
incomplete. In those situations, we can use our tool.

5.3. Change impact analysis

Law and Rothermel [57] proposed an approach based on static and dynamic partitioning and recursive algorithms of calls
graphs to identify methods impacted by a change. Different from Safira, the analysis estimates the change impact before
applying the transformation. Our change impact analyzer performs static analysis in any kind of transformation applied to
Java or AspectJ programs. In addition, it does not need additional information to evaluate a transformation.

Chianti [23] is a change impact analyzer tool for Java. Based on a test suite and the changes applied to a program, it
decomposes the change into atomic changes and generates a dependency graph. The tool indicates the test cases that are
impacted by the change. Only these test cases need to be executed again. Zhang et al. [24] proposed a change impact analyzer
tool (FaultTracer) that improves Chianti by refining the dependencies between the atomic changes, and addingmore rules to
calculate the change impact. Both tools receive two program versions as parameters, and decompose the change into small-
grained transformations, similar to Safira. However, different from Safira, Chianti and FaultTracer depend on a test suite to
assess the change impact. They execute the test cases, and identify the impacted test cases thatmust be executed again based
on the call graphs. SafeRefactorImpact automatically generates test cases for the methods impacted by a transformation.

Kung et al. [58] presented an approach to identify impacted classes due to structural changes in library classes of
OO languages. It is based on a reverse engineering approach that extracts information from the library classes and their
relationships. This information is represented in dependency graphs used to automatically identify changes and their effects.
Li and Offutt [59] conducted a study to evaluate how changes applied to OO programs can affect program classes. They
proposed an algorithm that computes the transitive closure of the program dependency graph. They analyze changes in a
program to identify impacted classes. Safira also identifies the methods impacted by a change.

Wloka et al. [60] proposed a tool called JUnitMX. It uses a change impact analysis tool to yield all entities impacted
by a transformation. After executing a test suite, it indicates whether the test suite exercises all entities impacted by a
transformation. If all test cases pass but they do not cover all entities impacted by a transformation, the tool yields an
yellow bar. The tool yields a green bar if and only if the test cases pass and exercise all entities impacted by a transformation.
Otherwise, it yields a red bar. As a future work, we intend to include this functionality in SafeRefactorImpact.

5.4. Detecting behavioral changes

Some tools statically check whether a transformation preserves behavior. For instance, Eclipse JDT and NetBeans
implement a number of refactorings. Each refactoring may contain a number of preconditions to ensure behavioral
preservation [1]. Later, JastAdd Refactoring Tools (JRRT) [61,62,6] implemented a number of refactorings by using formal
techniques. We evaluated 29 refactoring implementations of Eclipse JDT, NetBeans and JRRT using SafeRefactor and found
63 bugs related to behavioral changes [10]. Defining refactoring preconditions is a nontrivial task, which the literature has
treated in different ways [44,63,41,45,61,62,6,40]. These include analyses of some of the various aspects of a language,
such as: accessibility, types, name binding, data flow, and control flow. However, proving refactoring correctness for the
entire language constitutes a challenge [12]. In our approach, instead of static analysis, we use dynamic analysis to evaluate
whether a transformation preserves behavior. Moreover, we evaluate any kind of transformation different from previous
approaches.

Daniel et al. [64] proposed an approach for automated testing of refactoring engines using an automatic program
generator (ASTGen). To evaluate the refactoring correctness, they implemented six oracles that evaluate the output of
each transformation. For instance, the oracles check for compilation errors and warning messages. There is one oracle that
evaluates behavior preservation. It checks whether applying a refactoring to a program, and its inverse refactoring to the
target program yields the same initial program. If they are syntactically different, the refactoring engine developer has to
manually check whether they have the same behavior. For example, consider the classes A, B (subclass of A) and C (subclass
of B) presented in Listing 8. The class A declares the field k, which is initialized with 10. The class C has the field k hiding A.k,

M. Mongiovi et al. / Science of Computer Programming 93 (2014) 39–64 61

Listing 8. Original Program
public class A {

public int k = 10;
}
public class B extends A {
}
public class C extends B {

public int k = 20;
public int t e s t () {

return super . k ;
}

}

Listing 9.Modified Program
public class A {

public int k = 10;
}
public class B extends A {

public int k = 20;
}
public class C extends B {

public int t e s t () {
return super . k ;

}
}

Fig. 9. Pulling up a field introduces a behavioral change in Eclipse.

which is initialized with 20, and the method test calling super.k. This method yields 10. By using Eclipse JDT 4.3 to apply
the Pull Up Field refactoring to C .k moving it to class B, it yields the program presented in Listing 9. This transformation
introduces a behavioral change: the method test now calls B.k yielding 20 instead of 10 in the initial program. Applying the
Push Down Field refactoring to B.k in themodified programpresented in Listing 9, the resulted program is equal to the initial
program presented in Listing 8. So, their oracle does not detect this behavioral change, different from SafeRefactorImpact.

They evaluated the technique by testing 21 refactorings, and identified 21 bugs in Eclipse JDT and 24 in NetBeans
[64]. In Eclipse JDT, 17 bugs were related to compilation errors, 3 bugs were related to incomplete transformations (e.g.
the Encapsulate field refactoring did not encapsulate all field accesses), and 1 bug was related to the behavioral change.
Moreover, Gligoric et al. [65] evolved ASTGen and proposed UDITA. They found four new compilation error bugs in six
refactorings (two in Eclipse JDT and two in NetBeans). Later, Gligoric et al. [66] evolved the technique and found a number
of bugs in Java and C refactorings of Eclipse JDT and CDT, NetBeans and IntelliJ. However, they did not find bugs related
to behavioral preservation. We proposed a similar approach to test refactoring engines using SafeRefactor as an oracle to
detect behavioral changes [10]. While the oracles of previous approaches can only syntactically compare the programs to
detect behavioral changes, SafeRefactor generates tests that compare program behavior. We automatically found 63 bugs
related to behavioral changes in Eclipse JDT, NetBeans and JRRT (see one of them in Fig. 9).

Lahiri et al. [67] proposed a tool (SymDiff) for identifying behavioral changes. The tool translates the program to an
intermediate language (Boogie). For each pair of procedures (before and after the change), it statically checks partial
equivalence by using a program verifier for Boogie that exploits Satisfiability Modulo Theories solver Z3. They use the Z3
theoremprover to verify loop-free and call-free fragments. The precision of the tools relies on the soundness of the translator
that translates the target language to Boogie. They have a front-end for C programs. In our work, we automatically generate
a test suite to compare the behavior of two Java and AspectJ programs. We only generate tests for the entities impacted by
a transformation. When SymDiff cannot prove two procedures as equivalent, it generates a counterexample describing the
program trace. In our tool, we yield a test case to the user exposing the behavioral change.

Raghavan et al. [68] presented an automated tool called Dex for analyzing syntactic and semantic changes in C programs.
It creates an abstract semantic graph (ASG) representation of each program version, and then applies a graph differencing
algorithm to the resulting pair of ASGs. It consists of describing how to convert the ASG for the original version into the ASG
for the modified version by matching, inserting, deleting, updating, or moving nodes. Safira decomposes a coarse-grained
transformation into smaller ones, and calculates the impacted methods. Then, SafeRefactorImpact generates tests only for
the entities impacted by the transformation.

Person et al. [69] presented a symbolic execution technique to characterize the impact of program changes in terms
of behavioral changes. They defined two equivalence notions for programs: functional equivalence (the versions have the
same black-box behavior), and partition-effects equivalence (the versions have corresponding sets of paths through their
implementations). SafeRefactorImpact identifies a behavioral change when at least one test case passes in a program
version but it fails in the other one.

Lahiri et al. [70] proposed an approach to statically compare different versions of a programwith respect to a set of asser-
tions. They use previous versions of a program to reduce the cost of program analysis. They include this approach in SymDiff
and evaluate it. SafeRefactorImpact automatically generates a test suite for the entities impacted by the transformation to
compare behavior of two Java and AspectJ programs. It does not use previous versions of the program to perform analysis.

6. Conclusions

In this article, we propose a tool (SafeRefactorImpact) for checking whether an OO or AO transformation is behavior
preserving (Section 3). Moreover, it generates a test suite only for the methods impacted by the transformation.
It performs a change impact analysis using Safira to identify the impacted methods. We compared SafeRefactor
and SafeRefactorImpact in 45 transformations applied to programs with different sizes (10 LOC to 79 KLOC). The
transformations change a number of OO and AO constructs (classes, methods, fields, inheritance, overloading, overriding,
aspects, intertype declarations, pointcuts, advices). We found that SafeRefactorImpact detects behavioral changes
undetected by SafeRefactor. It has a better performance when analyzing transformations applied to small programs.

62 M. Mongiovi et al. / Science of Computer Programming 93 (2014) 39–64

Moreover, it significantly reduces the number ofmethods passed to Randoop. So, it is less dependent on the time limit passed
to Randoop to generate tests. Finally, it has a better change coverage in larger subjects and generates more relevant tests.

The goal of SafeRefactorImpact is to exercise only the entities impacted by the transformation to avoid the problems
found by Rachatasumrit and Kim [14], which state that refactorings are not well tested. SafeRefactorImpact generates
more relevant tests in all subjects. Although the change coverage is low in some subjects, it is important to remember that
SafeRefactorImpact only generates tests for the impactedmethods in common for both versions. Our goal is to compare two
program versions with respect to the same test suite, differently from Rachatasumrit and Kim [14]. A number of impacted
methods do not belong to both program versions and are not indirectly exercised in the subjects evaluated by our work.

SafeRefactorImpact detects some non-behavior-preserving transformations that SafeRefactor does not detect. In some
cases, even developers were not aware of the behavioral changes. Developers used refactoring tools and test suite to
improve confidence that the transformationswere correct. However, the Java/AspectJ semantics is nontrivial, which imposes
challenges in checking and performing refactorings. For instance, pointcuts may use wildcards making difficult to check
preconditions. A small transformation can have an impact on a number of different parts of the program. Therefore, it is not
simple to apply them without a good tool support.

The change impact analysis is useful because it reduced the number of methods passed for Randoop in most of the
subjects. In some cases, some methods dealing with user interface and file manipulation are not passed to Randoop. The
current version of Randoop does not work well with them [21]. By handling less methods and focusing on the impacted
ones, Randoop generates some tests that showed behavioral changes previously undetected by SafeRefactor.

As future work, we plan to evaluate our tool with more case studies. Moreover, we intend to improve the analysis
performance and include a data flow analysis in Safira. Additionally,we aimat defining other small-grained transformations
to reduce the set of impacted methods identified by Safira. We are also interested in evaluating other automatic test suite
generators in SafeRefactorImpact, such as EvoSuite [71] and Testful [72]. Finally, we intend to create an Eclipse plugin for
SafeRefactorImpact.

Acknowledgments

We gratefully thank Tiago Massoni, Sérgio Soares, Márcio Ribeiro, Henrique Rebêlo, Fernando Castor, Roberta Coelho,
Christiano Braga, José Fiadeiro, and the anonymous referees from the Brazilian Symposium on Programming Languages
and Science of Computer Programming for their useful suggestions. This work was partially supported by the National
Institute of Science and Technology for Software Engineering (INES), funded by CNPq grants 573964/2008-4, 304470/2010-
4, 480160/2011-2, 484860/2011-9, and 477943/2013-6.

References

[1] W. Opdyke, Refactoring object-oriented frameworks, Ph.D. Thesis, University of Illinois at Urbana-Champaign, 1992.
[2] M. Fowler, Refactoring: Improving the Design of Existing Code, Addison-Wesley Longman Publishing Company, Inc., Boston, MA, USA, 1999.
[3] T. Mens, T. Tourwé, A survey of software refactoring, IEEE Trans. Softw. Eng. 30 (2004) 126–139.
[4] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, J. Irwin, Aspect-oriented programming, in: Proceedings of the 11th European

Conference on Object-Oriented Programming, ECOOP’97, Vol. 1241, Springer-Verlag, 1997, pp. 220–242.
[5] R. Laddad, AspectJ in Action: Practical Aspect-Oriented Programming, Manning Publications Company, 2003.
[6] M. Schäfer, O. de Moor, Specifying and implementing refactorings, in: Proceedings of the 25th ACM International Conference on Object-Oriented

Programming, Systems, Languages, and Applications, OOPSLA’10, ACM, New York, USA, 2010, pp. 286–301.
[7] M. Monteiro, J. Fernandes, Towards a catalog of aspect-oriented refactorings, in: Proceedings of the 4th Aspect-Oriented Software Development,

AOSD’05, ACM, New York, NY, USA, 2005, pp. 111–122.
[8] L. Cole, P. Borba, Deriving refactorings for AspectJ, in: Proceedings of the 4th Aspect-Oriented Software Development, AOSD’05, ACM, New York, NY,

USA, 2005, pp. 123–134.
[9] J. Wloka, R. Hirschfeld, J. Hänsel, Tool-supported refactoring of aspect-oriented programs, in: Proceedings of the 7th Aspect-Oriented Software

Development, AOSD’08, ACM, New York, NY, USA, 2008, pp. 132–143.
[10] G. Soares, R. Gheyi, T. Massoni, Automated behavioral testing of refactoring engines, IEEE Trans. Softw. Eng. 39 (2) (2013) 147–162.
[11] G. Soares, R. Gheyi, D. Serey, T. Massoni, Making program refactoring safer, IEEE Softw. 27 (2010) 52–57.
[12] M. Schäfer, T. Ekman, O. de Moor, Challenge proposal: verification of refactorings, in: Proceedings of the 3rd Workshop on Programming Languages

Meets Program Verification, PLPV’09, ACM, New York, USA, 2008, pp. 67–72.
[13] G. Murphy, M. Kersten, L. Findlater, How are Java software developers using the Eclipse IDE? IEEE Softw. 23 (2006) 76–83.
[14] N. Rachatasumrit,M. Kim, An empirical investigation into the impact of refactoring on regression testing, in: Proceedings of the 28th IEEE International

Conference on Software Maintenance, ICSM’12, IEEE Computer Society, Washington, USA, 2012, pp. 357–366.
[15] B. Li, X. Sun, H. Leung, S. Zhang, A survey of code-based change impact analysis techniques, in: Software Testing, Verification and Reliability, 2012.
[16] G. Soares, D. Cavalcanti, R. Gheyi, Making aspect-oriented refactoring safer, in: Proceedings of the 15th Brazilian Symposium on Programming

Languages, SBLP’11, 2011, pp. 91–105.
[17] J. Hannemann, G. Kiczales, Design pattern implementation in Java and Aspectj, in: Proceedings of the 17th ACM SIGPLAN Conference on Object-

Oriented Programming, Systems, Languages, and Applications, OOPSLA’02, ACM, New York, NY, USA, 2002, pp. 161–173.
[18] H. Rebêlo, S. Soares, R. Lima, L. Ferreira, M. Cornélio, Implementing Java modeling language contracts with AspectJ, in: Proceedings of the 23rd Annual

ACM Symposium on Applied Computing, SAC’08, ACM, New York, NY, USA, 2008, pp. 228–233.
[19] H. Rebêlo, R. Lima, M. Cornélio, G.T. Leavens, A.C. Mota, C. Oliveira, Optimizing JML features compilation in Ajmlc using aspect-oriented refactorings,

in: Proceedings of the 13rd Brazilian Symposium on Programming Languages, SBLP’09, Brazilian Computer Society, 2009, pp. 117–130.
[20] J. Taveira, C. Queiroz, R. Lima, J. Saraiva, S. Soares, H. Oliveira, N. Temudo, A. Araújo, J. Amorim, F. Castor, E. Barreiros, Assessing intra-application

exception handling reuse with Aspects, in: Proceedings of the 23rd Brazilian Symposium on Software Engineering, SBES’09, IEEE Computer Society,
Washington, DC, USA, 2009, pp. 22–31.

[21] G. Soares, R. Gheyi, E. Murphy-Hill, B. Johnson, Comparing approaches to analyze refactoring activity on software repositories, J. Syst. Softw. 86 (4)
(2013) 1006–1022.

http://refhub.elsevier.com/S0167-6423(13)00282-7/sbref2
http://refhub.elsevier.com/S0167-6423(13)00282-7/sbref3
http://refhub.elsevier.com/S0167-6423(13)00282-7/sbref4
http://refhub.elsevier.com/S0167-6423(13)00282-7/sbref5
http://refhub.elsevier.com/S0167-6423(13)00282-7/sbref6
http://refhub.elsevier.com/S0167-6423(13)00282-7/sbref7
http://refhub.elsevier.com/S0167-6423(13)00282-7/sbref8
http://refhub.elsevier.com/S0167-6423(13)00282-7/sbref9
http://refhub.elsevier.com/S0167-6423(13)00282-7/sbref10
http://refhub.elsevier.com/S0167-6423(13)00282-7/sbref11
http://refhub.elsevier.com/S0167-6423(13)00282-7/sbref12
http://refhub.elsevier.com/S0167-6423(13)00282-7/sbref13
http://refhub.elsevier.com/S0167-6423(13)00282-7/sbref14
http://refhub.elsevier.com/S0167-6423(13)00282-7/sbref15
http://refhub.elsevier.com/S0167-6423(13)00282-7/sbref17
http://refhub.elsevier.com/S0167-6423(13)00282-7/sbref18
http://refhub.elsevier.com/S0167-6423(13)00282-7/sbref19
http://refhub.elsevier.com/S0167-6423(13)00282-7/sbref20
http://refhub.elsevier.com/S0167-6423(13)00282-7/sbref21

M. Mongiovi et al. / Science of Computer Programming 93 (2014) 39–64 63

[22] J. Goodenough, S. Gerhart, Toward a theory of test data selection, SIGPLAN Not. 10 (1975) 493–510.
[23] X. Ren, F. Shah, F. Tip, B.G. Ryder, O. Chesley, Chianti: a tool for change impact analysis of Java programs, in: Proceedings of the 19th ACM SIGPLAN

Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA’04, ACM, New York, USA, 2004, pp. 432–448.
[24] L. Zhang, M. Kim, S. Khurshid, FaultTracer: a change impact and regression fault analysis tool for evolving Java programs, in: Proceedings of the 20th

ACM SIGSOFT Foundations of Software Engineering, FSE’12, ACM, New York, USA, 2012, pp. 40:1–40:4.
[25] B. Robinson, M. Ernst, J. Perkins, V. Augustine, N. Li, Scaling up automated test generation: automatically generatingmaintainable regression unit tests

for programs, in: Proceedings of the 26th IEEE/ACM International Conference on Automated Software Engineering, ASE’11, IEEE Computer Society,
Washington, USA, 2011, pp. 23–32.

[26] C. Pacheco, S.K. Lahiri, M. Ernst, T. Ball, Feedback-directed random test generation, in: Proceedings of the 29th International Conference on Software
Engineering, ICSE’07, IEEE Computer Society, Washington, DC, USA, 2007, pp. 75–84.

[27] V. Basili, R. Selby, D. Hutchens, Experimentation in software engineering, IEEE Trans. Softw. Eng. 12 (7) (1986) 733–743.
[28] S. Shapiro, M. Wilk, An analysis of variance test for normality (complete samples), Biometrika 52 (3/4) (1965) 591–611.
[29] J. Box, Guinness, gosset, fisher, and small samples, Statist. Sci. 2 (1) (1987) 45–52.
[30] F. Wilcoxon, Individual comparisons by ranking methods, Biometrics Bull. 1 (6) (1945) 80–83.
[31] G. Leavens, A. Baker, C. Ruby, Preliminary design of JML: a behavioral interface specification language for Java, SIGSOFT Softw. Eng. Notes 31 (2006)

1–38.
[32] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of Reusable Object-Oriented Software, Addison-Wesley, 2005.
[33] E. Murphy-Hill, C. Parnin, A. Black, How we refactor, and how we know it, IEEE Trans. Softw. Eng. 38 (1) (2012) 5–18.
[34] R. Coelho, A. Rashid, A. Garcia, F. Ferrari, N. Cacho, U. Kulesza, A. Staa, C. Lucena, Assessing the impact of aspects on exception flows: an exploratory

study, in: Proceedings of the 22nd European Conference on Object-Oriented Programming, ECOOP’08, Springer-Verlag, Berlin, Heidelberg, 2008,
pp. 207–234.

[35] E. Murphy-Hill, C. Parnin, A.P. Black, How we refactor, and how we know it, in: Proceedings of the 31st International Conference on Software
Engineering, ICSE’09, IEEE Computer Society, Washington, DC, USA, 2009, pp. 287–296.

[36] X. Yang, Y. Chen, E. Eide, J. Regehr, Finding and understanding bugs in C compilers, in: Proceedings of the 32nd ACM SIGPLAN Programming Language
Design and Implementation, PLDI’11, ACM, New York, USA, 2011, pp. 283–294.

[37] L. Tokuda, D. Batory, Evolving object-oriented designs with refactorings, Autom. Softw. Eng. 8 (2001) 89–120.
[38] D. Roberts, Practical Analysis for Refactoring, Ph.D. Thesis, University of Illinois at Urbana-Champaign, 1999.
[39] M. Kim, T. Zimmermann, N. Nagappan, A field study of refactoring challenges and benefits, in: Proceedings of the ACM SIGSOFT 20th Foundations of

Software Engineering, FSE’12, ACM, New York, USA, 2012, pp. 50:1–50:11.
[40] F. Steimann, A. Thies, Frompublic to private to absent: refactoring Java programs under constrained accessibility, in: Proceedings of the 23rd European

Conference on Object-Oriented Programming, ECOOP’09, Springer-Verlag, Berlin, Heidelberg, 2009, pp. 419–443.
[41] F. Tip, A. Kieżun, D. Bäumer, Refactoring for generalization using type constraints, in: Proceedings of the 18th ACM SIGPLAN Conference on Object-

Oriented Programming, Systems, Languages, and Applications, OOPSLA’03, ACM, New York, NY, USA, 2003, pp. 13–26.
[42] R. Fuhrer, F. Tip, A. Kieżun, J. Dolby, M. Keller, Efficiently refactoring Java applications to use generic libraries, in: Proceedings of the 19th European

Conference on Object-Oriented Programming, ECOOP’05, Springer-Verlag, Berlin, Heidelberg, 2005, pp. 71–96.
[43] I. Balaban, F. Tip, R. Fuhrer, Refactoring support for class library migration, in: Proceedings of the 20th ACM SIGPLAN Conference on Object-Oriented

Programming, Systems, Languages, and Applications, OOPSLA’05, ACM, New York, NY, USA, 2005, pp. 265–279.
[44] P. Borba, A. Sampaio, A. Cavalcanti, M. Cornélio, Algebraic reasoning for object-oriented programming, Sci. Comput. Program. 52 (2004) 53–100.
[45] L. Silva, A. Sampaio, Z. Liu, Laws of object-orientation with reference semantics, in: Proceedings of the 6th IEEE International Conference on Software

Engineering and Formal Methods, SEFM’08, IEEE Computer Society, Washington, DC, USA, 2008, pp. 217–226.
[46] M. Schäfer, J. Dolby, M. Sridharan, E. Torlak, F. Tip, Correct refactoring of concurrent Java code, in: Proceedings of the 24th European Conference on

Object-Oriented Programming, ECOOP’10, Springer-Verlag, Berlin, Heidelberg, 2010, pp. 225–249.
[47] J. Overbey, R. Johnson, Differential precondition checking: a lightweight, reusable analysis for refactoring tools, in: Proceedings of the 26th IEEE/ACM

International Conference on Automated Software Engineering, ASE’11, ACM, New York, NY, USA, 2011, pp. 303–312.
[48] G. Soares, M. Mongiovi, R. Gheyi, Identifying overly strong conditions in refactoring implementations, in: Proceedings of the 27th IEEE International

Conference on Software Maintenance, ICSM’11, Washington, USA, 2011, pp. 173–182.
[49] W. Mckeeman, Differential testing for software, Digit. Tech. J. 10 (1) (1998) 100–107.
[50] D. Binkley, M. Ceccato, M. Harman, F. Ricca, P. Tonella, Automated refactoring of object-oriented code into Aspects, in: Proceedings of the 21st IEEE

International Conference on Software Maintenance, ICSM’05, IEEE Computer Society, 2005, pp. 27–36.
[51] D. Binkley, M. Ceccato, M. Harman, F. Ricca, P. Tonella, Tool-supported refactoring of existing object-oriented code into Aspects, IEEE Trans. Softw.

Eng. 32 (9) (2006) 698–717.
[52] J. Hannemann, G. Murphy, G. Kiczales, Role-based refactoring of crosscutting concerns, in: Proceedings of the 4th Aspect-Oriented Software

Development, AOSD’05, ACM, New York, NY, USA, 2005, pp. 135–146.
[53] M. Malta, M. Valente, Object-oriented transformations for extracting Aspects, Inf. Softw. Technol. 51 (1) (2009) 138–149.
[54] R. Yokomori, H. Siy, N. Yoshida, M. Noro, K. Inoue, Measuring the effects of aspect-oriented refactoring on component relationships: two case studies,

in: Proceedings of the 10th Aspect-Oriented Software Development, AOSD’11, ACM, New York, USA, 2011, pp. 215–226.
[55] A. vanDeursen,M.Marin, L.Moonen, AJHotDraw: a showcase for refactoring to aspects, in: Proceedings of theWorkshop on Linking Aspect Technology

and Evolution, LATE’05, 2005.
[56] L. Cole, P. Borba, A. Mota, Proving aspect-oriented programming laws, in: Proceedings of the 4th Foundations of Aspect-Oriented Languages, FOAL’05,

Technical Report, Department of Computer Science, Iowa State University, 2005, pp. 1–10.
[57] J. Law, G. Rothermel, Whole program path-based dynamic impact analysis, in: Proceedings of the 19th International Conference on Software

Maintenance, ICSM’03, IEEE Computer Society, Washington, USA, 2003, pp. 308–318.
[58] D. Kung, J. Gao, P. Hsia, F. Wen, Y. Toyoshima, C. Chen, Change impact identification in object-oriented software maintenance, in: Proceedings of the

International Conference on Software Maintenance, ICSM’94, IEEE Computer Society, British Columbia, Canada, 1994, pp. 202–211.
[59] L. Li, A.J. Offutt, Algorithmic analysis of the impact of changes to object-oriented software, in: Proceedings of the International Conference on Software

Maintenance, ICSM’96, IEEE Computer Society, Washington, USA, 1996, pp. 171–184.
[60] J. Wloka, E.W. Host, B.G. Ryder, Tool support for change-centric test development, IEEE Softw. (2010) 66–71.
[61] M. Schäfer, T. Ekman, O. de Moor, Sound and extensible renaming for Java, in: Proceedings of the 23rd ACM SIGPLAN Conference on Object-Oriented

Programming, Systems, Languages, and Applications, OOPSLA’08, ACM, New York, NY, USA, 2008, pp. 277–294.
[62] M. Schäfer, M. Verbaere, T. Ekman, O. Moor, Stepping stones over the refactoring rubicon, in: Proceedings of the 23rd European Conference on Object-

Oriented Programming, ECOOP’09, Springer-Verlag, Berlin, Heidelberg, 2009, pp. 369–393.
[63] M. Cornélio, Refactorings as Formal Refinements, Ph.D. Thesis, Federal University of Pernambuco, 2004.
[64] B. Daniel, D. Dig, K. Garcia, D. Marinov, Automated testing of refactoring engines, in: Proceedings of the 15th Foundations of Software Engineering,

ESEC-FSE’07, ACM, New York, NY, USA, 2007, pp. 185–194.
[65] M. Gligoric, T. Gvero, V. Jagannath, S. Khurshid, V. Kuncak, D. Marinov, Test generation through programming in UDITA, in: Proceedings of the 32nd

International Conference on Software Engineering—Vol. 1, ICSE’10, ACM, New York, NY, USA, 2010, pp. 225–234.
[66] M. Gligoric, F. Behrang, Y. Li, J. Overbey, M. Hafiz, D. Marinov, Systematic testing of refactoring engines on real software projects, in: Proceedings of

the 27th European Conference on Object-Oriented Programming, ECOOP’13, Springer-Verlag, Berlin, Heidelberg, 2013, pp. 629–653.
[67] S.K. Lahiri, C. Hawblitzel, M. Kawaguchi, H. Rebêlo, SYMDIFF: a language-agnostic semantic diff tool for imperative programs, in: Proceedings of the

24th Computer Aided Verification, CAV’12, Springer-Verlag, Berlin, Heidelberg, 2012, pp. 712–717.

http://refhub.elsevier.com/S0167-6423(13)00282-7/sbref22
http://refhub.elsevier.com/S0167-6423(13)00282-7/sbref23
http://refhub.elsevier.com/S0167-6423(13)00282-7/sbref24
http://refhub.elsevier.com/S0167-6423(13)00282-7/sbref25
http://refhub.elsevier.com/S0167-6423(13)00282-7/sbref26
http://refhub.elsevier.com/S0167-6423(13)00282-7/sbref27
http://refhub.elsevier.com/S0167-6423(13)00282-7/sbref28
http://refhub.elsevier.com/S0167-6423(13)00282-7/sbref29
http://refhub.elsevier.com/S0167-6423(13)00282-7/sbref30
http://refhub.elsevier.com/S0167-6423(13)00282-7/sbref31
http://refhub.elsevier.com/S0167-6423(13)00282-7/sbref32
http://refhub.elsevier.com/S0167-6423(13)00282-7/sbref33
http://refhub.elsevier.com/S0167-6423(13)00282-7/sbref34
http://refhub.elsevier.com/S0167-6423(13)00282-7/sbref35
http://refhub.elsevier.com/S0167-6423(13)00282-7/sbref36
http://refhub.elsevier.com/S0167-6423(13)00282-7/sbref37
http://refhub.elsevier.com/S0167-6423(13)00282-7/sbref39
http://refhub.elsevier.com/S0167-6423(13)00282-7/sbref40
http://refhub.elsevier.com/S0167-6423(13)00282-7/sbref41
http://refhub.elsevier.com/S0167-6423(13)00282-7/sbref42
http://refhub.elsevier.com/S0167-6423(13)00282-7/sbref43
http://refhub.elsevier.com/S0167-6423(13)00282-7/sbref44
http://refhub.elsevier.com/S0167-6423(13)00282-7/sbref45
http://refhub.elsevier.com/S0167-6423(13)00282-7/sbref46
http://refhub.elsevier.com/S0167-6423(13)00282-7/sbref47
http://refhub.elsevier.com/S0167-6423(13)00282-7/sbref49
http://refhub.elsevier.com/S0167-6423(13)00282-7/sbref50
http://refhub.elsevier.com/S0167-6423(13)00282-7/sbref51
http://refhub.elsevier.com/S0167-6423(13)00282-7/sbref52
http://refhub.elsevier.com/S0167-6423(13)00282-7/sbref53
http://refhub.elsevier.com/S0167-6423(13)00282-7/sbref54
http://refhub.elsevier.com/S0167-6423(13)00282-7/sbref56
http://refhub.elsevier.com/S0167-6423(13)00282-7/sbref57
http://refhub.elsevier.com/S0167-6423(13)00282-7/sbref58
http://refhub.elsevier.com/S0167-6423(13)00282-7/sbref59
http://refhub.elsevier.com/S0167-6423(13)00282-7/sbref60
http://refhub.elsevier.com/S0167-6423(13)00282-7/sbref61
http://refhub.elsevier.com/S0167-6423(13)00282-7/sbref62
http://refhub.elsevier.com/S0167-6423(13)00282-7/sbref64
http://refhub.elsevier.com/S0167-6423(13)00282-7/sbref65
http://refhub.elsevier.com/S0167-6423(13)00282-7/sbref66
http://refhub.elsevier.com/S0167-6423(13)00282-7/sbref67

64 M. Mongiovi et al. / Science of Computer Programming 93 (2014) 39–64

[68] S. Raghavan, R. Rohana, D. Leon, A. Podgurski, V. Augustine, Dex: a semantic-graph differencing tool for studying changes in large code bases,
in: Proceedings of the 20th International Conference on SoftwareMaintenance, ICSM’04, IEEE Computer Society,Washington, USA, 2004, pp. 188–197.

[69] S. Person, M. Dwyer, S. Elbaum, C. Pǎsǎreanu, Differential symbolic execution, in: Proceedings of the 16th Foundations of Software Engineering,
FSE’2008, ACM, New York, NY, USA, 2008, pp. 226–237.

[70] S. Lahiri, K. McMillan, R. Sharma, C. Hawblitzel, Differential assertion checking, in: Proceedings of the 21th Foundations of Software Engineering,
FSE’13, ACM, New York, USA, 2013.

[71] G. Fraser, A. Arcuri, Evosuite: automatic test suite generation for object-oriented software, in: Proceedings of the 19th ACM SIGSOFT symposium and
the 13th European Conference on Foundations of Software Engineering, ESEC/FSE’11, ACM, New York, NY, USA, 2011, pp. 416–419.

[72] L. Baresi, M. Miraz, Testful: automatic unit-test generation for Java classes, in: Proceedings of the 32nd International Conference on Software
Engineering—Vol. 2, ICSE’10, ACM, New York, USA, 2010, pp. 281–284.

http://refhub.elsevier.com/S0167-6423(13)00282-7/sbref68
http://refhub.elsevier.com/S0167-6423(13)00282-7/sbref69
http://refhub.elsevier.com/S0167-6423(13)00282-7/sbref70
http://refhub.elsevier.com/S0167-6423(13)00282-7/sbref71
http://refhub.elsevier.com/S0167-6423(13)00282-7/sbref72

	Making refactoring safer through impact analysis
	Introduction
	Motivating example
	SafeRefactorImpact
	Change impact analysis
	Identifying small-grained transformations
	Identifying impacted methods

	Test generation
	Example
	Change coverage and relevant tests

	Evaluation
	Definition
	Planning
	Hypothesis formulation
	Selection of subjects
	Experiment design
	Instrumentation

	Defective refactorings
	Design patterns
	JML compiler
	Larger case studies
	Threats to validity
	Construct validity
	Internal validity
	External validity

	Answer to the research questions

	Related work
	Refactoring object-oriented programs
	Refactoring aspect-oriented programs
	Change impact analysis
	Detecting behavioral changes

	Conclusions
	Acknowledgments
	References

