
The Journal of Systems and Software 106 (2015) 42–58

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Safe evolution templates for software product lines

L. Neves a, P. Borba a, V. Alves b, L. Turnes b, L. Teixeira a,∗, D. Sena c, U. Kulesza c

a Informatics Center, Federal University of Pernambuco, Av. Jornalista Anibal Fernandes, s/n 50740–560 Recife, PE, Brazil
b Computer Science Department, University of Brasilia, Brazil
c Department of Informatics and Applied Mathematics, Federal University of Rio Grande do Norte, Natal, Brazil

a r t i c l e i n f o

Article history:

Received 11 February 2014

Revised 3 March 2015

Accepted 3 April 2015

Available online 16 April 2015

Keywords:

Software product lines

Refinement

Evolution

a b s t r a c t

Software product lines enable generating related software products from reusable assets. Adopting a product

line strategy can bring significant quality and productivity improvements. However, evolving a product line

can be risky, since it might impact many products. When introducing new features or improving its design,

it is important to make sure that the behavior of existing products is not affected. To ensure that, one usually

has to analyze different types of artifacts, an activity that can lead to errors. To address this issue, in this work

we discover and analyze concrete evolution scenarios from five different product lines. We discover a total

of 13 safe evolution templates, which are generic transformations that developers can apply when evolving

compositional and annotative product lines, with the goal of preserving the behavior of existing products.

We also evaluate the templates by analyzing the evolution history of these product lines. In this evaluation,

we observe that the templates can address the modifications that developers performed in the analyzed

scenarios, which corroborates the expressiveness of our template set. We also observe that the templates

could also have helped to avoid the errors that we identified during our analysis.

© 2015 Elsevier Inc. All rights reserved.

r

o

p

c

u

o

b

t

m

t

s

i

a

t

v

g

e

t

d

1. Introduction

A software product line is a set of related software products that

are systematically generated from reusable assets. Products are re-

lated in the sense that they share functionality or behavior. Assets

correspond to artifacts such as classes and property files, which we

compose or instantiate in different ways to specify or build products.

This kind of reuse targeted at a specific set of products can bring pro-

ductivity and time-to-market improvements (van der Linden et al.,

2007; Pohl et al., 2005). To obtain these benefits with reduced up-

front investment and risks, we can minimize the initial upfront cost

of software product line adoption by extracting a software product

line from existing products (Clements & Northrop, 2001; Krueger,

2002). Similar processes apply to evolving a software product line,

both when just improving the product line design and when adding

new functionality and products, which often requires extracting vari-

ations from parts previously shared by a set of products.

The activity of manually extracting different software product

line assets when evolving it requires substantial effort, especially for

checking necessary conditions to make sure the extraction is cor-
∗ Corresponding author.

E-mail addresses: lmn3@cin.ufpe.br (L. Neves), phmb@cin.ufpe.br (P. Borba),

valves@unb.br (V. Alves), lmt@cin.ufpe.br (L. Teixeira), demostenes.sena@ifrn.edu.br

(D. Sena), uira@dimap.ufrn.br (U. Kulesza).

u

w

t

s

l

a

http://dx.doi.org/10.1016/j.jss.2015.04.024

0164-1212/© 2015 Elsevier Inc. All rights reserved.
ectly performed. In fact, the lack of specific guidelines and devel-

pment tools to support software product line evolution makes this

rocess error-prone. Extractions might lead to unintended modifi-

ations to the behavior of existing products, affecting product line

sers and compromising the promised benefits in other dimensions

f costs and risks. The associated defects are more difficult to track

ecause they are only present in specific products. Generating and

esting these different products may help to discover and correct the

entioned issues. However, as the number of products can be high,

esting all of them can be expensive and impact productivity.

To avoid these problems and evolve a software product line in a

afe way (in the general sense that behavior is preserved, not specif-

cally referring to conventional safety properties), we could resort to

formal notion of software product line refinement or safe evolu-

ion (Borba, 2009; Borba et al., 2012). By basically requiring preser-

ation of the observable behavior of existing products, this notion

uarantees that changes to a software product line do not impact its

xisting users. So users of the products that could be generated before

he changes can use the new modified products without noticing any

ifference. This notion applies when we need to introduce new prod-

cts to the software product line without changing existing ones, or

hen we want to improve the product line design without modifying

he behavior of existing products. To support such change scenarios,

afe evolution considers that software product line specific artifacts,

ike feature models (Czarnecki & Eisenecker, 2000; Kang et al., 1990)

nd configuration knowledge (Czarnecki & Eisenecker, 2000), often

http://dx.doi.org/10.1016/j.jss.2015.04.024
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2015.04.024&domain=pdf
mailto:lmn3@cin.ufpe.br
mailto:phmb@cin.ufpe.br
mailto:valves@unb.br
mailto:lmt@cin.ufpe.br
mailto:demostenes.sena@ifrn.edu.br
mailto:uira@dimap.ufrn.br
http://dx.doi.org/10.1016/j.jss.2015.04.024

L. Neves et al. / The Journal of Systems and Software 106 (2015) 42–58 43

c

e

s

p

c

l

s

r

s

b

t

n

t

c

t

1

e

t

f

d

t

i

T

e

b

e

h

u

m

w

o

s

l

t

p

i

p

W

m

r

n

p

a

r

t

S

Mobile Media

Media

Photo Music

Screen Size

128x149 240x320

Management

Send Photo Sorting

Send Photo Photo

Fig. 1. MobileMedia FM example.

2

w

a

&

f

t

t

e

t

c

w

p

i

e

b

2

i

f

f

C

p

c

n

t

t

p

t

b

S

s

a

p

s

p

2

a

p

c

o

t

l

t

oevolve with assets (Neves et al., 2011; Passos et al., 2013; Seidl

t al., 2012) .

With the goal of better understanding the process involved in

oftware product line safe evolution, in this work we describe em-

irical studies that lead to the discovery and analysis of 67 con-

rete safe evolution scenarios from five different software product

ines. Each scenario is characterized by a commit and one of its

ubsequent commits in the evolution history of the product lines

epositories.

Based on the evolution history from two of the aforementioned

oftware product lines, we identify and precisely describe a num-

er of safe evolution templates that abstract, generalize, and fac-

orize the analyzed scenarios, and also conform to the refinement

otion (Borba et al., 2012) we rely on. These templates are generic

ransformations that developers can safely apply when maintaining

ompositional and annotative software product lines. They specify

ransformations that go beyond program refactoring notions (Fowler,

999; Roberts, 1999), which deal with simple programs, by consid-

ring both sets of reusable assets that do not necessarily correspond

o valid programs, and extra software product line artifacts such as

eature models and configuration knowledge. For each template, we

escribe its structure and the necessary conditions for proper applica-

ion. We also show examples of correct application of the templates

n evolution scenarios mined from existing software product lines.

his way we hope to provide extra, concise and explicit guidance to

volve a software product line in a safe way. The templates can also

e used as a basis to automate support for safe software product line

volution.

We evaluate the proposed templates by analyzing the evolution

istory of the five aforementioned software product lines. In this eval-

ation, we could observe that the proposed templates can address the

odifications that developers performed in the analyzed scenarios,

hich corroborate the expressiveness of our template set. As a sec-

ndary result, we observe that the templates could be used to avoid

ome defects introduced during the evolution history of some product

ines. Such defects were caused by modifications that were supposed

o be safe, but actually changed the behavior of existing products.

In summary, with the aim of discovering more safe evolution tem-

lates and assessing whether they could be useful to justify exist-

ng evolution scenarios, this article extends our previous conference

aper (Neves et al., 2011) in two main ways:

• study of annotative software product lines: we go beyond our pre-

vious study on compositional software product lines by analyzing

and presenting five additional templates (Section 3.2.2) that deal

with an extended configuration knowledge notion—mapping fea-

ture expressions to transformations involving assets—necessary

to address evolution scenarios that involve preprocessor-

based variability management in annotative software product

lines (Kästner et al., 2008);
• further evaluation: we bring additional evidence of the expres-

siveness of the proposed templates, evaluating the evolution his-

tory of three additional software product lines, namely, a prod-

uct line of research group management systems, a product line

of product line derivation tools, and a product line of academic

information systems.

e organize the rest of the text as follows. Section 2 introduces the

ain concepts used in this work, such as feature models, configu-

ation knowledge, asset mappings, and the product line refinement

otion. Section 3 presents the safe evolution templates for software

roduct lines. It also shows some examples of the templates being

pplied in different software product lines. Section 4 presents the

esults of a study performed to evaluate the expressiveness of our

emplate set. We discuss related work in Section 5 and conclude with

ection 6.
. Software product line concepts

To enable the automatic generation of products from assets, soft-

are product lines, hereafter product lines, often rely on artifacts such

s Feature Models (FM), Configuration Knowledge (CK) (Czarnecki

Eisenecker, 2000), and assets, which we briefly describe in what

ollows. To guide the product line evolution analysis and identify

he evolution scenarios, we rely on a product line refinement no-

ion (Borba et al., 2012), which formalizes our intuition about safe

volution, drives the analysis of the evolution scenarios and justifies

he product line transformation templates we propose in this arti-

le. Essentially, we say that a product line L′ refines a product line L

henever L′ is able to generate products that behaviorally match L

roducts. This way, users of a product from L cannot observe behav-

oral differences when using the corresponding product of L′. This is

xactly what guarantees safety when improving a product line design

y changing its FM, CK or assets.

.1. Feature models

A FM is usually represented as a tree, containing features and

nformation about how they relate to each other. Features have dif-

erent names and abstract groups of associated requirements, both

unctional and non-functional. In this work, we use the notation by

zarnecki and Eisenecker (2000) to express relationships between a

arent feature and its child features.

Besides these relationships, the notation we consider may also

ontain propositional logic constraints over features. We use feature

ames as atoms to indicate feature selection. So, negation indicates

hat a feature should not be selected. For instance, the formula below

he tree in Fig. 1 states that feature Photo must be present in every

roduct that has feature SendPhoto. So {Photo, SendPhoto, 240×320},

ogether with the mandatory features, which hereafter we omit for

revity, is a valid feature selection (product configuration), but {Music,

endPhoto, 240×320} is not. A product configuration is a valid feature

election that satisfies all FM constraints, specified both graphically

nd through formulae. Each product configuration corresponds to a

roduct from the product line, expressed in terms of the features it

upports. This captures the intuition that the FM denotes the set of

roducts in a product line (Schobbens et al., 2007).

.2. Assets

In a product line, we specify and implement features with reusable

ssets. So, we must consider different languages for specifying and im-

lementing assets such as requirements documents, design models,

ode, tests, data files, and so on. For simplicity, in the text we focus

n code assets for the examples and concepts, as they are equivalent

o the other kinds of assets with respect to our interests on product

ine refinement. This way, we can focus on the essential concepts

hese languages should support. The important issue here is not the

44 L. Neves et al. / The Journal of Systems and Software 106 (2015) 42–58

Main.java

Common.java

Main.java

Main1

Main2

Common

class C {
 fs
 ms
 ms

 void loadProperties() {
 p = new Properties()
 }

 C() {
 body'
 body'
 body'
 loadProperties();
 }
}

class C {
 fs

 Properties p

 void loadProperties() throws
FileNotFoundException,
 IOException {
 p = new Properties()
 p.load(new
FileInputStream(
 new
File(“property_file.properties”))
 }

 C() {
 ….
 }
}

Fig. 2. MobileMedia asset mapping example.

Music.java, ...

AppMenu.aj, ...

Common.aj, ...

Photo.java, ...

Photo Music

Photo Music

Photo

Music

MM.java, ...Mobile Media

Fig. 3. Part of the MobileMedia compositional CK.

Database

Member, PublicationRGMS

preprocess Member
tag researchLine

HibernateConfig

ResearchLine

Fig. 4. RGMS transformation CK example.

w

l

t

f

s

s

a

M

f

2

t

m

2

s

d

c

r

3

{

m

g

w

l

t

m

t

c

s

a

i

p

t

t

p

I

e

w

t

c

nature of the assets contents, but actually how they are compared

and referred to in a product line.

First, we assume the concept of well-formedness of asset sets, cap-

tured by a wf predicate over asset sets. In a number of programming

languages, this corresponds to the notion of a well-typed program,

but it may also correspond to purely syntactical or less strict seman-

tic constraints. For most product lines, wf should be instantiated by a

function that considers the well-formedness of sets of assets written

in different specification and implementation languages.

Second, we rely on means of comparing assets with respect to

behavior preservation. This may range from lexical relations that ba-

sically compare assets for textual equality to semantic relations based

on testing or formal refinement of asset sets. In particular, we assume

the relation � denotes refinement of an asset set. This set might cor-

respond to a full product, or even a single asset, depending on the

specifics of a refinement notion used for a particular language. To

support stepwise refinement and evolution, we require that the re-

finement notion must be a pre-order, as is the case of existing notions

for object-oriented programming languages, such as ROOL (Refine-

ment Object-Oriented Language), which is based on the sequential

subset of Java (Borba et al., 2004). Finally, asset set refinement must

be compositional in the sense that refining a set of assets that is part

of a well-formed product yields a refined well-formed product. Such

a compositionality property is a common property of refinement re-

lations, such as the one described in Borba et al. (2004), and it is

essential to guarantee independent development of assets in a prod-

uct line. It is useful when applying transformations that change the

contents of some assets, such as in the Split asset template. Other

templates, such as Add new optional feature, can be proved even

without such property.

These are the concepts we need to specify our templates, which

actually apply to any combination of asset languages having such no-

tions of well-formedness and behavior preservation between asset

sets. However, to enable unambiguous references to assets, instead

of considering that a product line contains simply a set of assets, we

assume that it contains a mapping as illustrated in Fig. 2. This map-

ping associates asset names referenced in other parts of the product

line specification to actual assets. Such an asset mapping basically

corresponds to an environment of asset declarations. This allows con-

flicting assets in a product line, like assets that implement alternative

features, such as both Main classes in the illustrated asset mapping.

2.3. Configuration knowledge

As discussed in Section 2.1, features group requirements, so they

must be related to the assets that realize them. The CK specifies this

relation. We can express the CK with varying degrees of expressive-

ness (Kästner et al., 2008). Based on the product lines we analyzed,

here we consider two different CK notations. We first explain a sim-

pler notation used by the compositional product lines studied. Later
e explain an extended notation used by the annotative product

ines, which use preprocessing as the main variability implementa-

ion mechanism.

In compositional product lines, we compose assets to implement

eatures. So we basically need a CK notation that maps feature expres-

ions, denoting presence conditions (Czarnecki & Pietroszek, 2006), to

ets of asset names. Propositional formulae having feature names as

toms represent these feature expressions. For example, the Mobile-

edia CK illustrated in Fig. 3 establishes that if the Photo and Music

eatures are both selected, then the AppMenu aspect (Kiczales et al.,

001), among other assets omitted in the fifth row, should be part of

he final product.

Essentially, this product line uses aspects as a variability imple-

entation mechanism (Alves et al., 2007; Gacek & Anastasopoules,

001). In particular, the AppMenu aspect, due to usability issues,

hould not be present in products that have only one of the Me-

ia features, which is what the fifth row specifies. Given a product

onfiguration, CK evaluation yields the assets that constitute the cor-

esponding product. In this example, the configuration {Photo, 240 ×
20} leads to the actual assets associated with the following names:

MM.java, . . . , Photo.java, . . . , Common.aj, . . . }. This captures the se-

antics of CK evaluation.

In the context of annotative product lines, we have fine-

rained variability specified in terms of preprocessing annotations

ithin assets. Therefore, asset selection as in compositional product

ines (Neves et al., 2011) is not enough, since we have to process assets

o generate products. So we need a more elaborate CK notation, that

aps feature expressions into transformations dealing with assets.

To illustrate this notation, we show in Fig. 4 a simplified CK of

he Research Group Management System (RGMS) product line. We

an select assets, as in the first two rows. This is actually seen as a

imple transformation, select and move components, which selects the

ssets listed in the CK and includes them in the generated products

f their corresponding feature expression evaluates to true. For sim-

licity, and compatibility with the previous notation, we omit the

ransformation name. On the third row we can see more elaborate

ransformations, such as preprocess and tag. The first is responsible for

reprocessing assets that contain conditional compilation directives.

t receives as parameter the asset names to be preprocessed. In the

xample, we specify that the Member asset should be preprocessed

hen we select the ResearchLine feature. The other transformation in

he same row specifies that the value of the researchLine conditional

ompilation tag should be set to true when the associated feature

L. Neves et al. / The Journal of Systems and Software 106 (2015) 42–58 45

e

t

w

c

a

w

u

a

t

t

s

i

n

d

q

t

r

i

w

a

3

o

i

b

p

t

h

t

u

C

d

d

a

t

o

b

T

m

t

p

t

a

T

a

t

o

3

t

i

G

a

o

w

a

a

d

t

o

c

K

R

w

w

R

i

t

l

t

r

t

h

t

u

s

e

c

c

v

r

F

r

c

o

t

a

a

t

d

t

h

a

s

t

a

F

o

a

i

s

a

i

f

w

c

c

t

r

g

m

t

r

c

l

u

s

1 Prior to release 4.0, TaRGeT was not a product line.
xpression evaluates to true. So, by selecting the ResearchLine fea-

ure, we trigger the preprocessing of the Member asset in a context

here the researchLine tag is set to true. As a consequence, Member

ode delimited by preprocessing directives such as #if($researchLine)

nd #end are included in the version of Member used to build products

ith the ResearchLine feature.

Given a product configuration, CK evaluation proceeds by eval-

ating feature expressions and later applying the transformations

ssociated to the valid expressions. The interpreter first considers

he select and move components transformations, followed by the tag

ransformations, and then the preprocess transformations. Tags not

et by applying tag transformations are disabled when preprocess-

ng assets. Assets not associated to a preprocess transformation are

ot preprocessed, even if they are selected and contain preprocessing

irectives. This likely leads to non well-formed products, and conse-

uently a non well-formed product line, as we discuss later. To avoid

hat, in both presented CK notations, similar care should be taken to

efer to existing names of features in the FM and valid names of assets

n the asset mapping. Further, to assure that the CK is well-formed,

e have to use valid transformation names and properly provide

rguments to these transformations.

. Safe evolution templates

The product line refinement notion (Borba et al., 2012) supports us

n safely evolving a product line, by improving its design or extending

t with new products while preserving existing ones. However, it may

e difficult to precisely reason about the definitions when evolving an

roduct line. Minor imprecisions often lead to the oversight of issues

hat compromise the safety of the evolution process. On the other

and, evolving a product line in an ad hoc way is error-prone because,

o make sure that the behavior of existing products is preserved, one

sually has to analyze different interdependent artifacts, like FMs and

K, in addition to the product line assets. Another difficulty is that the

efects that one might introduce during product line evolution can be

ifficult to detect because they are present only in certain products,

nd the configuration space might be large. Generating and testing all

hese different products may help to discover and fix problems like the

ne we just described, but, as the number of generated products can

e high, testing all of them can be expensive and impact productivity.

herefore, supporting safe evolution tasks by means of templates

ight avoid such risks and costs.

To avoid these problems and provide guidance to developers, in

his section we propose a number of product line safe evolution tem-

lates. Each template specifies a generic product line transformation

hat captures modifications to the product line elements (FM, CK, and

sset mapping) in accordance to the product line refinement notion.

his way, by applying a template to a specific product line, we obtain

n improved product line that refines the former and therefore is able

o generate products that preserve the behavior of products of the

riginal product line.

.1. Templates discovery

To discover the safe evolution templates that might help to avoid

he issues just discussed, we analyzed concrete evolution scenar-

os from two product lines mentioned earlier: TaRGeT and Research

roup Management System (RGMS). A scenario consists of a commit

nd one of its previous or subsequent commits in the evolution history

f the product line repositories. Based on such analysis, we identified

hich scenarios corresponded to refinements, and then formalized

nd proved (detailed elsewhere (Borba et al., 2012)) the templates

ccording to the product line refinement theory. In what follows, we

etail the template discovery process.

To discover refinement templates that work for both composi-

ional and annotative product lines, we used TaRGeT, a product line
f tools that generate functional tests from use case specifications. We

onsidered evolution scenarios from releases 4.01 (10 features and 20

LOC) to 5.0 (27 features and 40 KLOC).

To derive templates for annotative product lines, we analyzed

GMS, a product line of systems for managing research groups. RGMS

as initially developed as part of a graduate course on product lines in

hich we had 5 pairs of students working as developers of their own

GMS implementation. The average number of implemented features

n the five implementations is 20, with approximately 3 KLOC. During

he course, each pair developed 3 releases. So, we had 15 safe evo-

ution scenarios available in total, from which we used 2 to discover

emplates. We chose one scenario from release 1 and another from

elease 2 of the same implementation, because the tasks performed in

hese releases involved the modification of many assets, and therefore

ad the potential to be a richer source for mining templates.

We followed an iterative and incremental process for discovering

emplates. First, we examined the evolution history of these prod-

ct lines, looking for evolution scenarios that were supposed to be

afe according to the refinement notion. For each potentially safe

volution scenario, we manually inspected the involved artifacts to

heck whether the result of the evolution step in fact amounted to

hanges that preserved the behavior of existing products. This in-

olved reading the code and understanding the changes, and also

unning some products from the product line. We also compared the

M, CK, and AM to identify which features and assets were added,

emoved or modified in each step. Assets included Java and AspectJ

ode, as well as Eclipse plugin configuration files, image files, and so

n. Each operation (addition, removal, or modification) corresponded

o an evolution scenario. In addition to FM and CK changes, scenarios

lso involved asset modification. Thus, we often had to inspect the

sset evolution history in the source code repository. For example,

o discover the changes made to a Java class, we manually inspected

ifferent commits of this class using the version control system of

he product line. We also considered commit messages and revision

istory annotations in the source files. Therefore, we often had to

nalyze more than one commit to understand a change. Finally, in

ome cases, we also talked to the developers involved in the change,

o further understand the rationale behind it.

We then identified the modifications involved in each scenario

nd tried to discover patterns in the changes developers performed.

or example, we observed that when making a mandatory feature

ptional developers often had to track the code related to the feature

nd then extract it to a different asset. The scenarios that passed the

nspection were then separated into groups of scenarios that involved

imilar kinds of changes to the product line artifacts, such as adding

feature, or splitting an asset. This process was manually performed,

nformally considering the refinement notion when comparing dif-

erent versions of the product line artifacts. Based on these groups,

e selected scenarios that could be considered safe evolutions ac-

ording to the product line refinement notion, to mine templates that

ould generalize the observed situations. We analyzed each group

o identify commonalities and abstract the differences, proposing a

efinement template.

Finally, in some occasions, we also factored out some coarse-

rained scenarios into many fine-grained changes, which resulted in

ore than one refinement template created. Such scenarios were bet-

er abstracted by the application of different templates in sequence,

ather than by a single very specific template that performed many

hanges. We could do this due to the transitivity of the product

ine refinement notion. Since each template is proved as a prod-

ct line refinement, this allows us to divide a template in two and

equentially apply them. We only have to assure that the resulting

46 L. Neves et al. / The Journal of Systems and Software 106 (2015) 42–58

F

a a' a''

F

...

e

...

n e n, n'

......

n a

...

n a'

...
n' a''

n' is new
n does not appear in other CK lines

Fig. 5. Split asset.

P
P

O
...

e

...

n

......

n'

ne

e'

n a

...

n' a'

...
n a

e' O
O and n' are new

resulting SPL is well-formed

Fig. 6. Add new optional feature.

m

I

o

p

t

m

s

T

r

r

t

a

t

a

s

a

b

u

r

a

a

2

W

a

a

h

b

s

s

d

b

l

l

t

e

w

c

n

d

p

m

f

i

s

r

product line of the first template matches with the original product

line of the second template.

3.2. Safe evolution templates

As a result of the discovery process just described, we present

a set of safe evolution templates, which specify changes to product

line artifacts in accordance to the product line refinement notion.

By complying with the refinement notion, we ensure that changes

associated to template application preserve the behavior of existing

products.

Although the product line refinement notion we rely on is inde-

pendent of the languages one employs to specify these artifacts, the

safe evolution templates describe transformations using specific no-

tations for FM and CK, in such a way that we can detail how these

artifacts should be changed. Most templates are also independent of

the language we use to specify or implement assets. Some assume a

specific notation for preprocessing directives, that could be adapted

to similar notations. So, in effect, we do not lose generality and are

still able to precisely specify the associated changes.

Besides specifying the allowed changes to FM, CK and assets, each

template describes preconditions that must be satisfied in order to

guarantee that the transformation is indeed safe. We illustrate this

next, focusing first on templates that are useful for both composi-

tional and annotative product lines. Then we focus on templates for

annotative product lines; they refer explicitly to either preprocessing

directives in the involved assets or preprocessing transformations of

the more elaborate CK notation. Note that, as a consequence of the

factorization step of the template discovery process, each template

focuses on small changes to a product line. Nevertheless, we can de-

rive more elaborate refinement transformations by composing the

ones proposed here.

3.2.1. Templates for compositional and annotative product lines

After analyzing part of TaRGeT’s evolution history, we discovered

a set of eight templates, a subset of which we describe in this sec-

tion. The description of the complete set and more details about this

work are available in our online appendix.2 As these templates do not

explicitly refer to preprocessing mechanisms and associated CK trans-

formations, they can be used for both compositional and annotative

product lines.

Split asset. When analyzing evolution scenarios that changed a

mandatory feature to optional, we observed that this type of evolution

usually first involved tracking the code related to the feature and

extracting it to other artifacts, such as other classes and aspects, for

instance. To generalize the cases where a part of an asset that is

related to a specific feature is extracted to another asset, we derived

Split asset, illustrated by Fig. 5. This template specifies when a given

asset can be split into two, and how the CK must be correspondingly

updated to preserve the behavior of products that include the original
asset.

2 http://twiki.cin.ufpe.br/twiki/bin/view/SPG/SPLRefactoringTemplates.

u

t

C

In a template, we specify the changes to the FM, CK and asset

apping using meta-variables to abstractly represent the elements.

n this case, we do not change the FM, so we have F on the source (left

f the refinement symbol �) and target (right of the same symbol)

roduct lines. Feature expression e and asset name n also appear in

he CK of both product lines. For asset mappings and CK, we use the

eta-variables A and K, but these do not appear in the template,

ince it details their structure. The CK is a table with meta-variables.

hose in the left represent feature expressions, and those in the right

epresent asset names. Ellipsis indicate that the CK can have other

ows besides the ones detailed. This template specifies that we change

he CK by associating a new asset name n′ to the expression e. The

sset mapping groups associations of asset names to assets. In this

emplate, we specify that the original mapping is changed by adding

new association (from n′ to a′ ′) and replacing a for a′.
The precondition at the bottom of Fig. 5 specifies that we can only

plit an asset a into two other assets a′ and a′ ′ when the new assets
′a′ ′ refine asset a. This restriction is necessary to guarantee that the

ehavior of source products that contain a is matched by target prod-

cts that actually contain a′a′ ′. Thus, we leverage the notion of asset

efinement from each asset language. This way, the template could be

pplied to product lines formed by assets written in any language with

proper refinement notion, as formalized elsewhere (Borba et al.,

012).

Another restriction establishes that n′ must be a new asset name.

ithout this restriction we could have an existing asset incorrectly

ssociated to e. The last restriction helps us to simplify matters by

ssuming a canonical representation for the CK. Otherwise, we would

ave to express the fact that all occurrences of n in the CK should

e changed for n, n′. This allows us to separate concerns and ab-

tract this possibility; other templates could be used for moving,

plitting and merging CK items (Borba, 2009). Based on these con-

itions, we can say that Split asset assures product line refinement

ecause, for each product that contained asset a in the source product

ine, there is now a corresponding refined one in the target product

ine that contains the composition of assets a′ and a′ ′. We can prove

his through compositionality of the asset refinement notion (Borba

t al., 2012), which also ensures that the resulting product line is

ell-formed.

Add new optional feature. By analyzing evolution scenarios that

onsist of adding new features to the product line, we derived Add

ew optional feature. It is useful when a developer needs to intro-

uce an optional feature without changing existing assets, as Fig. 6

resents. Notice that in this case, the set of possible products is aug-

ented. The template states that we can introduce a new optional

eature O together with a new asset a′, as long as this asset is only

ncluded in products that have O. In this template, we detail the FM

howing the meta-variables that explain adding the new feature. We

epresent the fact that a feature may have other features related to it

sing a line above or below it. Additionally, we detail the first row in

he source CK, which associates e with n, to illustrate that the existing

K items remain unchanged after the transformation.

http://twiki.cin.ufpe.br/twiki/bin/view/SPG/SPLRefactoringTemplates

L. Neves et al. / The Journal of Systems and Software 106 (2015) 42–58 47

n

a

r

a

T

l

f

e

p

p

h

c

p

a

t

a

T

s

w

c

e

i

w

n

a

t

a

s

(

m

n

a

m

w

3

t

s

t

o

m

f

fi

t

o

t

n

F

b

f

a

a

a

t

t

i

w

......

preprocess ne

preprocess n
tag x

e'

......

preprocess ne

e' F
F is not mandatory

F and x are new
n does not appear in other CK lines

resulting SPL is well-formed

P P

F

n a[-]

...

n a[#if x c]

...

Fig. 7. Add new preprocessed feature.

c

w

i

t

t

l

p

n

n

o

f

e

t

g

a

T

c

t

A

t

p

f

a

i

p

o

l

a

e

a

r

T

t

A

s

i

o

c

o

r

o

t

M

The precondition states that we cannot have another feature

amed O in the FM, nor another asset name n’ in the asset mapping,

s this would lead to invalid artifacts. The template also requires the

esulting product line to be well-formed, to guarantee that the new

sset a′ properly composes with other assets in the new products.

his avoids assets with conflicting names in a product, since in most

anguages this causes compilation errors. We can check the well-

ormedness restriction using the safe composition approach (Teixeira

t al., 2013; Thaker et al., 2007). In some templates, we do not ex-

licitly require this because we can deduce it from the template and

recondition constraints. In this template, the resulting product line

as the same products that it had before, in addition to products that

ontain the new O feature.

The well-formedness restriction also implicitly deals with the

roblem of feature interactions (Kaestner et al., 2009). Introducing

new feature can impact others. However, in Add new optional fea-

ure, the new feature does not impact existing products, since any

sset associated with it is only present when we select this feature.

he existing products do not contain such feature, and thus remain

yntactically the same, since we do not change existing assets. This

ay, we could actually make checking well-formedness more effi-

ient, by checking only the new products, since the existing ones are

xactly the same. Other templates that also deal with changing ex-

sting assets would have to consider the feature interaction problem

hen specifying its preconditions.

In practice, we need to rely on more flexible variations of Add

ew optional feature that allow the association of more than one

sset to the new optional feature. For brevity and simplicity, we omit

he variations that would be useful to justify scenarios where many

ssets are introduced together with the new feature. Other templates

pecify the extension of a product line with other kinds of features

alternative, OR, etc.) (Neves et al., 2011). For example, Add new

andatory feature establishes that it is safe to extend the FM with a

ew mandatory feature, as long as we do not associate assets to it. The

ddition of such a feature that initially has no behavior or semantics

ight be an useful intermediate step during an evolution process, as

e assess later.

.2.2. Templates for annotative product lines

Although the templates introduced so far can be used for anno-

ative product lines, they do not consider annotation mechanisms,

uch as preprocessing directives. To discover templates that deal with

he specifics of such mechanisms, we analyzed the evolution history

f the RGMS product line. A number of RGMS variations are imple-

ented using conditional compilation as provided by the Velocity

ramework.3 As a result of the RGMS analysis, we discovered a set of

ve templates and their variations, a subset of which we describe in

his section. The description of the complete set is available in our

nline appendix.

Add new preprocessed feature. To specify that a new non manda-

ory feature can be safely implemented by preprocessing mecha-

isms, we introduce the Add new preprocessed feature template in

ig. 7. It plays a similar role to Add new optional feature. However,

esides focusing on an annotative context, Add new preprocessed

eature applies also to alternative and OR features.

The template establishes that we can introduce a new feature F

nd annotated code c to an existing asset a, provided that the CK

ssociates the added code with the new feature. We express this by

ssociating a feature expression e′, enabled by F, to the transformation

hat makes the preprocessing tag x true. Since we use the x tag to guard

he added code c, this code is only enabled when e′, and therefore F,

s true. The a[] notation represents an asset with a specific place

here code might be added, specifying a context surrounding the
3 http://velocity.apache.org.

p

t

b

ode to be added. The hyphen in a[−] indicates that no code is added,

hereas a[#if x c] indicates that code c annotated with tag x appears

n the place previously denoted by the hyphen. In the CK, we also see

he preprocess transformation to n. This ensures that we preprocess

he asset even when e is not true. These changes help to assure product

ine refinement, by making sure that the new code is only present in

roducts that have the F feature, and that products built without the

ew feature correspond exactly to the original products.

Regarding the new feature F, the template only requires it to be

ew and non-mandatory. So, we can use the same template to add

ptional, alternative, and OR features. We could have done that too

or templates in Section 3.2.1, to avoid having similar templates for

ach kind of feature. For simplicity, we opted to show first the specific

emplate, which is easier to understand, and then present this more

eneral format. This template also requires the initial CK to have

preprocess transformation associated with n, and therefore a[−].

his transformation often will not be in place if the asset does not

ontain preprocessing directives. But, in this case, we can use other

emplates to add the preprocessing transformation before applying

dd new preprocessed feature. This way we avoid creating a specific

emplate variation for the case when the transformation is not in

lace.

Besides the preconditions discussed so far, Add new preprocessed

eature requires the x tag to be new. If x was already associated to

nother feature, for example, the new code c could be enabled even

f F was not selected. We also need to guarantee that the resulting

roduct line is well-formed. In fact, as we make no direct demands

ver c, we cannot know if the new products are well-formed. For most

anguages, this amounts to making sure that a[c] is a well-formed

sset, but we prefer the more general condition.

To better explain this template, we illustrate its use in a concrete

volution scenario of the RGMS product line. Fig. 8 describes changes

pplied to a code asset as part of the effort to implement a new feature

elated to the research line followed by a member of a research group.

o implement the feature, developers used a preprocessing directive

o introduce feature related methods and fields to the class Member.

s indicated by the internal box in the figure, these declarations in-

tantiate the c meta-variable in the template, whereas researchLine
nstantiates x. In the template, we abstract the concrete syntax details

f the particular preprocessing technology used by RGMS.

Looking to the product line as a whole, Fig. 9 describes also the

hanges made to the CK and FM. We see that developers added a new

ptional feature ResearchLine, under RGMS. Besides that, the new CK

ow indicates that the added field and method declarations should

nly be present when the ResearchLine feature is selected. Notice also

hat the first CK row now has a preprocess transformation to the

ember asset, indicating that we applied Preprocess asset without

reprocessor directive before applying Add new preprocessed fea-

ure. We could use Add new preprocessed feature in this scenario

ecause the added code does not cause compilation errors to the

http://velocity.apache.org

48 L. Neves et al. / The Journal of Systems and Software 106 (2015) 42–58

Fig. 8. Add new preprocessed feature example — code assets.

Fig. 9. Add new preprocessed feature example — CK and FM.

......

ne

......

preprocess ne

() a does not contain #if's

n a

...
F F

n a

...

Fig. 10. Preprocess asset without preprocessor directive.

a

f

i

r

p

p

t

t

r

i

t

t

e

i

i

c

a

t

a

s

i

p

Member asset; as a consequence, the resulting product line is well-

formed. The other preconditions also hold in the analyzed scenario.

Preprocess asset without preprocessor directive. As an intermediate

step when refining annotative product lines, it is useful to harmlessly

introduce the preprocess transformation to CK items, as we discuss

in the previous section. Fig. 10 precisely captures this situation. The

template establishes that we can demand preprocessing of an asset a

as long as this asset does not contain any preprocessing directives. In

fact, preprocessing has no effect for this kind of asset. The evolution

is safe because we preserve the behavior of a and, consequently, of

all products that include a. Moreover, as mentioned in Section 2, the

order we declare the transformations in the CK does not influence

the generated products because, when evaluating the CK, we first

consider all the select and move components transformations, then we

set the tags values declared in the CK and finally we preprocess the

required assets.

This template is useful to change a CK so that it matches other

templates, such as Add new preprocessed feature, that requires as-

set names associated to the preprocess transformation. So, it is simply
n auxiliary template, but we show it here to illustrate another dif-

erence from the templates we presented so far. Note that we use �,

nstead of �, to state that product line refinement holds in both di-

ections. By applying the template from left to right, we introduce the

reprocess transformation. In the opposite direction, we remove the

reprocess transformation, given that it is not strictly necessary. As

he template is bidirectional, we write ‘(↔)’ before the precondition

o denote that it is necessary when applying the template in both di-

ections. In other templates, we use ‘(→)’ before a precondition when

t is only required from left to right. Similarly, we use ‘(←)’ for condi-

ions required only from right to left. This also helps to interpret each

emplate as two product line refinement transformations with differ-

nt preconditions. Some of the compositional templates we present

n the previous section can be applied in both directions too, as we

llustrate in our online appendix.

Other Annotative Templates. Extract preprocessed code is the

ounterpart of Split asset for extracting preprocessed code from one

sset and moving it to another asset. Add dead preprocessed code in-

roduces a code fragment annotated with preprocessing directives to

n asset. However, the segment is never present in preprocessed ver-

ions of the asset because we do not declare the tag associated to

t in the CK. It abstracts some details and conditions from Add new

reprocessed feature. Add new preprocessed feature requires that

the new code fragment has to be associated in the CK to a new feature

also introduced with the template application. It is a bidirectional

transformation, so it defines that we can both add or remove code

annotated with preprocessing directives from an asset as long as we

respect the restrictions.

With Add harmless preprocessing directive, it is possible to an-

notate an existing code fragment with a preprocessing directive and

still preserve the asset behavior. To assure that the fragment is present

L. Neves et al. / The Journal of Systems and Software 106 (2015) 42–58 49

Table 1

Overview of product lines.

Product line Type Size # Features # Releases # Scenarios

TaRGeT Main Compositional 32 KLOC 42 4 9

TaRGeT Alt Annotative 32 KLOC 46 2 4

MobileMedia Compositional 3 KLOC 12 5 8

RGMS Annotative 3 KLOC 20 13 13

Hephaestus-PL Compositional 7 KLOC 11 3 5

SIGAA Compositional 102 KLOC 16 6 15

i

t

e

g

c

a

t

e

t

f

m

4

d

t

s

p

a

(

4

d

h

t

e

t

e

d

s

u

t

s

p

t

w

a

4

u

t

c

a

F

t

o

t

t

fi

p

p

T

u

d

a

o

o

c

n

n

F

n

t

i

s

H

t

p

u

c

b

a

s

b

a

t

a

h

a

b

d

t

T

i

t

w

h

w

b

o

t

v

P

mechanisms.
n every version of the asset, we need to associate both the preprocess

ransformation and the tag declaration in the CK to the same feature

xpression that the asset was associated before. It is also bidirectional,

iven that we observe the restrictions. Finally, Extract preprocessed

ode is useful for situations where we want to change a feature vari-

tion implementation, for example when we want to extract the fea-

ure code annotated with preprocessing directives to an aspect (Alves

t al., 2007) or to a super class. The template defines that it is possible

o extract a code fragment annotated with preprocessing directives

rom an asset and place it in another new asset, as long as the set of

odified assets refines the original asset.

. Evaluation

To evaluate the expressiveness of our templates, we have con-

ucted an empirical study that involved the analysis of the evolu-

ion history of five product lines. In this section, we detail the re-

earch questions and metrics adopted (Section 4.1), the assessment

rocedures and the target product lines (Section 4.2), the results

nd discussion of the study (Section 4.3), and its threats to validity

Section 4.4).

.1. Research questions and metrics

To assess the expressiveness of the set of safe evolution templates

escribed in the previous section, we analyzed part of the evolution

istory of five product lines of different domains. We have structured

he study using the goal, question, metric (GQM) approach (Basili

t al., 1994) to collect and analyze metrics related to the proposed

emplates.

Study main goal: Assess whether our templates are expressive

nough and have the potential to provide guidance for product line

evelopers to safely evolve a product line in intended safe evolution

cenarios. Additionally, investigate whether they are also useful in

nintended unsafe evolution scenarios.

Research question 1 (RQ1): Are the templates expressive enough

o describe safe evolution scenarios from existing product lines?

Metric: Percentage of safe evolution scenarios that could be de-

cribed by the existing templates. Number and percentage of tem-

lates applied to each different product line.

Research question 2 (RQ2): Could the templates have been used

o detect unsafe evolution scenarios from existing product lines?

Metric: Number and percentage of unsafe evolution scenarios

here an existing template could reveal an unsafe situation such

s an invalid precondition.

.2. Assessment procedures and overview of analyzed product lines

For each product line, we followed a process similar to the one

sed to discover templates, described in Section 3.1. First, we collected

he version history of the product line and checked whether pairs of

onsecutive releases constituted or included safe evolution scenarios

ccording to the product line refinement notion (Borba et al., 2012).

or the pairs including safe evolution scenarios, we tried to find a
emplate, or a list of templates that, when applied, could transform

ne release into its safely evolved counterpart.

For the unsafe evolution pairs, we investigated whether contex-

ual information such as commit messages indicated that the evolu-

ion was supposed to be safe. When that was the case, we tried to

nd templates that could avoid the problem by revealing an invalid

recondition, or structural constraints not matched by the concrete

roduct line artifacts, in the specific scenario.

In our assessment, we studied the following product lines:

aRGeT, MobileMedia, RGMS, Hephaestus-PL (a product line of prod-

ct line derivation tools), and the Library Module of SIGAA (an aca-

emic information system). As we have used two of them, TaRGeT

nd RGMS, for discovering templates (see Section 3.1), we chose non

verlapping parts of their evolution history for the distinct activities

f template discovery and assessment. Table 1 highlights the main

haracteristics of the evaluated product lines, such as size in KLOC,

umber of features, releases, and the number of safe evolution sce-

arios considered for the evaluation.

We decided to study these product lines for a number of reasons.

irst, they have been developed by disjoint developer teams but are

evertheless familiar to us: the first two authors were involved with

he development of TaRGeT; most authors have used MobileMedia

n other studies; RGMS was developed in a course offered by the

econd author; the third and fourth authors were lead developers of

ephaestus-PL; and the last two authors collaborate with the SIGAA

eam. This grants access to the source code repositories, and sim-

lifies the analysis of the evolution histories, which often requires

nderstanding the semantic effects of specific source code changes.

Second, TaRGeT, RGMS, Hephaestus-PL, and SIGAA repositories

ontain versions of their CK and FM, in similar formats. This helps

ecause we are interested in analyzing the coevolution of assets, CK,

nd FM; it is harder to capture that from repositories containing only

ource code. MobileMedia’s repository does not contain FM and CK,

ut, given its small size, we could infer different versions of these

rtifacts comparing the source code and extra information associated

o each release.

Finally, the different domains, sizes, development teams, and vari-

bility implementation mechanisms used in the five product lines

elp to enrich the results of our study. TaRGeT, as described before, is

medium-sized product line of testing tools with branches developed

y teams in different organizations. MobileMedia, although small and

eveloped for academic purposes, focuses on the mobile applica-

ion domain and uses implementation mechanisms rarely used by

aRGeT, such as aspect-oriented programming. It has also been used

n a number of empirical studies about product lines, which helps

o relate to our work. RGMS, contrasting with the previous two, is a

eb application and uses annotative variability mechanisms, which

elps us to evaluate different kinds of templates. Additionally, since

e actually have access to five RGMS alternative implementations

y different student teams, we could observe the impact of devel-

pment style on our results. SIGAA is a large web information sys-

em implemented in Java and used by a number of Brazilian uni-

ersities. Finally, moving away from the Java domain, Hephaestus-

L is implemented in Haskell using rather different variability

50 L. Neves et al. / The Journal of Systems and Software 106 (2015) 42–58

Table 2

Number and percentage of templates applied to each different product line (Metric for answering RQ1). T Main is the main branch of TaRGeT; T Alt

is the separate branch; MM is MobileMedia; Hep is Hephaestus-PL.

Template T Main T Alt MM RGMS Hep SIGAA Total

Split asset 4 (13.7%) 4 (40%) 6 (25%) 1 (3.1%) 0 (0%) 13 (11.4%) 28

Refine asset 5 (17.2%) 0 (0%) 6 (25%) 0 (0%) 0 (0%) 71 (62.3%) 82

Refine asset variation 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 15 (13.2%) 15

Add new optional feature 5 (17.2%) 4 (40%) 4 (16.6%) 3 (9.3%) 1 (12%) 3 (2.6%) 20

Add new mandatory feature 3 (10.3%) 0 (0%) 1 (4.1%) 3 (9.3%) 0 (0%) 3 (2.6%) 10

Replace feature expression 3 (10.3%) 0 (0%) 4 (16.6%) 3 (9.3%) 0 (0%) 8 (7%) 18

Add new alternative feature 8 (27.5%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 8

Add new OR feature 1 (3.4%) 0 (0%) 2 (8.3%) 0 (0%) 7 (88%) 1 (0.9%) 11

Delete asset 0 (0%) 0 (0%) 1 (4.1%) 1 (3.1%) 0 (0%) 0 (0%) 2

(→) Preprocess asset without preprocessor directive – 0 (0%) – 0 (0%) – – 0

(←) Preprocess asset without preprocessor directive – 0 (0%) – 3 (9.3%) – – 3

Add dead preprocessed code – 0 (0%) – 0 (0%) – – 0

(→) Add harmless preprocessing directive – 0 (0%) – 4 (12.5%) – – 4

(←) Add harmless preprocessing directive – 0 (0%) – 3 (9.3%) – – 3

(→) Add new preprocessed feature – 2 (20%) – 6 (18.7%) – – 8

Extract preprocessed code – 0 (0%) – 5 (15.6%) – – 5

T

a

t

l

u

p

A

i

p

t

P

c

a

q

t

t

i

t

t

t

T

p

j

t

t

u

H

t

u

a

T

f

t

l

f

t

u

o

R

s

u

t

4.3. Results, analysis and discussion

This section reports the results of our study to assess whether our

templates are expressive enough and have the potential to provide

guidance for developers to safely evolve a product line. Our first and

main focus is on the analysis of the intended safe evolution scenar-

ios, observing if we can use the templates to describe safe evolution

scenarios from the evaluated product lines (RQ1). Later we discuss

the results related to the unintended unsafe evolution scenarios, to

answer if we could use the templates to detect unsafe evolution sce-

narios from the evaluated product lines (RQ2).

4.3.1. Intended safe evolution scenarios

We first examined whether our templates were expressive enough

to justify the modifications carried on in safe evolution scenarios from

existing product lines. So, for each pair of product line versions rep-

resenting a safe evolution scenario, we tried to find a list of templates

that could transform the source version into the target version. We

basically had to analyze source and target FM, CK, and asset map-

ping, and recursively check which templates matched the structure

of these artifacts, and had valid preconditions for the specific context.

For each scenario, we then obtain a list of templates that are able to

describe the modifications. To understand the results in more detail,

Table 2 presents the usage frequency of each template in TaRGeT’s,

MobileMedia’s, RGMS’, SIGAA’s, and Hephaestus-PL’s safe evolution

scenarios.

The sum of the numbers in Table 2 is greater than the number

of evaluated scenarios precisely because we often had to use more

than one template to justify a single scenario. For example, in one

of the TaRGeT’s evolution scenarios, developers would have to first

apply Add new mandatory feature to introduce the new feature

Word in the FM, and then they would have to apply Replace fea-

ture expression to correctly associate the corresponding asset to the

new feature. As another example, in one of Hephaestus-PL’s evolution

scenarios, developers would first have to use Add new optional fea-

ture to introduce the Output Format feature, and then Add new OR

feature to add the new feature Use Case to XML as a subfeature of the

former.

Similarly, we observe this in RGMS’s scenarios. Some of them can

only be justified by a mix of templates, including ones specific to

annotative product lines. For example, in one scenario, the develop-

ers implemented support to the MySQL database as an alternative to

Postgres. For this, they changed the hibernatecfg.xml file that stores

information about database connections. Fig. 11 shows the hibernate-

cfg.xml file before and after the implementation of the MySQL feature.
he developers introduced preprocessing directives to implement the

ssociated variability. As a consequence, to justify the whole scenario,

hey had to change also the FM and CK, as illustrated in Fig. 12, which

ists the templates that justify these changes. The developers first

sed Add harmless preprocessing directive to introduce the pre-

rocessing directive to the hibernateConfig asset. Then they applied

dd new mandatory feature and Replace feature expression to

ntroduce the Postgres feature to the FM. Finally, they used Add new

reprocessed feature to add the new alternative feature MySQL and

o introduce the preprocessed code in the hibernateConfig asset. The

ostgres and MySQL features are alternative, thus only one of them

an be selected at a time.

We also observed that some scenarios demanded more than one

pplication of the same template. For example, in scenarios that re-

uired extracting parts of a class to an aspect, it would be necessary

o apply Split asset a number of times until the code was moved to

he aspect. In such cases, we only list the template once, even if it

s used more than once in the same scenario. This is because we in-

end to evaluate whether our set of templates is sufficient to express

he safe evolution scenarios, regardless of the number of times each

emplate is used. In Table 2, the rows with ‘–’ indicate that we used

aRGeT, MobileMedia, and Hephaestus-PL to only evaluate the tem-

lates that apply to compositional product lines, as mentioned and

ustified earlier.

We also observe that in TaRGeT, Add new alternative fea-

ure was the most widely used in the analyzed scenarios. We believe

hat this was due to the implementation of different formats for input

se case documents (Word, XML, XLS) and output test suites (XML,

TML and XLS). Moreover, during the evolution period we analyzed,

he product line was continuously increasing the number of prod-

cts and features. We think this is the reason why we did not find

ny occurrence of Delete asset. For the independently developed

aRGeT branch summarized in the third column, we analyzed only

our safe evolution scenarios, which corresponded to the implemen-

ation of optional features. To implement these features, the product

ine was first restructured accordingly to Split asset, and then the

eatures were implemented along the lines of Add new optional fea-

ure. Two of these scenarios also implemented new feature variations

sing preprocessing directives. For this kind of operation, the devel-

pers could have used Add new preprocessed feature.

Among MobileMedia’s safe evolution scenarios, Split asset and

efine asset were the most used templates to justify the evolution

cenarios. This is because the developers were refactoring the prod-

ct line to support the implementation of new features. Split asset,

ogether with object-oriented refactoring code templates, was used

L. Neves et al. / The Journal of Systems and Software 106 (2015) 42–58 51

Fig. 11. hibernatecfg.xml asset.

Fig. 12. MySQL feature evolution scenario.

t

m

o

t

t

f

d

l

p

t

1

o justify the extraction of subclasses, and also the extraction of class

embers to aspects, in both cases with the aim of implementing new

ptional features. Refine asset was used to justify a scenario related

o release 5, with the aim of structuring the product line for the in-

roduction of a new OR feature, step later justified by Add new OR

eature. Finally, Delete asset was used once when an exception han-
ling class became no longer useful because the exception cause no

onger occurred.

When analyzing RGMS scenarios, we observed that Add new pre-

rocessed feature was the most frequently used. We believe that

his was because in two RGMS releases, which amounts to 9 of the

3 scenarios used in the evaluation, we requested the students to

52 L. Neves et al. / The Journal of Systems and Software 106 (2015) 42–58

t

R

f

u

l

a

a

d

s

p

i

d

p

m

m

o

w

w

r

t

s

b

e

t

t

f

a

t

n

c

s

i

i

s

i

u

o

s

H

h

4

s

t

s

b

m

g

t

i

i

c

t

i

p

2

T

p

o

l

b

implement new features. Even knowing different variation imple-

mentation mechanisms, we suspect they preferred to use conditional

compilation because it is less complex and does not require much

effort to be implemented. We did not find any occurrence of Add new

OR feature and Add new optional feature. Instead, we observed

that Add new preprocessed feature was used to replace these tem-

plates, as it describes the same general modifications as the others,

namely the introduction of a new non-mandatory feature to the prod-

uct line. We did not found any occurrence of Refine asset because we

found other transformation templates that could be used to deal with

changes in assets, like Add dead preprocessed code, Add harmless

preprocessing directive and Add new preprocessed feature. We

derived Add dead preprocessed code abstracting some details and

conditions from other transformation templates. We did not find any

occurrences of it among RGMS scenarios but we decided to include

this template in our set because we believe it is a representative op-

eration that can be useful in other contexts different from the RGMS

product line. Additionally, we did not find any occurrence of Pre-

process asset without preprocessor directive but we decided to

define it as a bidirectional refinement because it can be used as an

intermediate template, to match the CK defined in Add dead prepro-

cessed code, Add harmless preprocessing directive and Add new

preprocessed feature.

In Hephaestus-PL, Add new OR feature was the most frequently

employed, with 7 occurrences in all of the 5 safe evolution scenar-

ios. This is due to the intended configurability of Hephaestus-PL’s FM,

in which the OR features represent assets and corresponding output

formats, and the evolution scenarios consisted of increasingly pro-

viding support for these assets in such a way that any combination of

them with corresponding output formats could be instantiated. Add

new optional feature was applied once to add the Output Format

optional feature before Add new OR feature could be employed as

described previously. We have not identified any removal of features

nor insertion of alternative features, nor any modifications that could

be mapped to Split asset and Refine asset.

Lastly, Table 2 shows that six different templates were used in the

evolution of the SIGAA Library module. Refine asset and its varia-

tions were the most used templates. They have been applied in two

main kinds of scenarios: (i) when a new optional feature is added,

the conditional execution expression is added in the code assets that

can execute this feature. For example, the Terms of Agreement fea-

ture required the introduction of several conditional expressions into

the JSF web pages and Java classes to determine its execution. This is

the Refine asset template variation that we discuss in Section 3.2.1,

which considers more than one asset refined at the same time. We

need to use the variation, as simply adding new conditional state-

ments, which are only activated when the new feature is selected,

might not result in asset refinement, since the condition might eval-

uate to true and thus potentially change behavior. However, we also

set the parameter for the new feature in the configuration file with

the default value consisting of the feature not selected. Therefore,

by changing both assets at the same time we do have refinement

and existing products remain unchanged; (ii) the refactoring of exist-

ing features to accommodate new mandatory and optional features

also required the modification of many code assets using Refine as-

set, as we show in Fig. 5, combined with Split asset. This strategy

was used during the introduction of the Communication Note and

System Management mandatory features, and also to accommodate

the modifications related to user punishment (mandatory) and sus-

pension (OR-feature), during the introduction of the Library Fine OR

feature. This is the standard Refine asset template. The addition of

new mandatory (Communication Note, User Punishment and System

Management), optional (Book Reservation, Library Policy and Terms

of Agreement) and OR (Library Fine) features required as expected

the usage of the Add new mandatory feature, Add new optional

feature, and Add new OR feature, respectively. In addition, the in-
roduction of these new features also demanded the application of

eplace feature expression to update the configuration knowledge

or mapping the new features to their associated assets.

The lower presence of annotative templates in the analyzed prod-

ct lines is given by two reasons. First, most of the evaluated product

ines are compositional. Therefore, the annotative templates are not

pplicable in such cases. Second, the compositional templates are

lso useful in annotative product lines, since some of them do not

etail particular changes to assets, such as Replace feature expres-

ion. Thus, they can be applied in both compositional and annotative

roduct lines. Since RGMS is the only product line which is mostly

mplemented with annotative variability mechanisms, we observe

ifferences in terms of template usage when comparing to the other

roduct lines. TaRGeT’s alternative branch has a few features imple-

ented with annotations, but the vast majority of features is imple-

ented with compositional mechanisms, as discussed. If we evaluate

ther annotative product lines, such as the Linux kernel or BusyBox,

e would probably find more occurrences of annotative templates.

In summary, for all evaluated scenarios, in the five product lines,

e found that our safe evolution templates, in addition to the FM

efactorings listed in previous work (Alves et al., 2006), were sufficient

o address the performed modifications. This reinforces the expres-

iveness of our templates, although further studies should certainly

e carried on with other product lines and variation mechanisms.

Although we have not formally proved this, we believe that the

valuated scenarios in our studies could not be justified by alternative

emplates from our set. Two facts support this likely lack of bias in

he number of occurrences of a given template. First, each template

ocuses on a different kind of change; this helps to avoid redundancy,

nd therefore alternative justification for the scenarios. Second, the

emplates were obtained by factoring out coarse-grained change sce-

arios, making each template concentrate on capturing fine-grained

hanges; so the template occurrences correspond to changes in small

cale, which again offers less opportunities for using one template

nstead of another. Nevertheless, without further studies and formal-

zation, we cannot claim that the template set is minimal or complete,

ince the templates have only been evaluated in five product lines and

n specific scenarios. In particular, the fact that one template was not

sed does not imply that it is superfluous, since it could be useful in

ther scenarios of different product lines. Furthermore, we have ob-

erved, in some cases, recurring sequence of application of templates.

owever, we would need further studies to observe if such sequences

appen systematically across different product lines.

.3.2. Unintended unsafe evolution scenarios

Besides the safe evolution scenarios just discussed, during our

tudy we also identified unintended unsafe evolution scenarios in

he TaRGeT and MobileMedia product lines. These scenarios were

upposed to be safe, but actually introduced defects, changing the

ehavior of existing products and, consequently, impacting users. Re-

embering our second research question (RQ2), we want to investi-

ate whether our templates could be used to reveal invalid precondi-

ions or structural constraints not matched by the concrete artifacts

n such scenarios. In TaRGet, we know that these scenarios were un-

ntendedly unsafe because we observed that these issues were later

orrected in its evolution history. Moreover, commit messages men-

ion these problems, indicating a different intention. The problems

dentified in the MobileMedia evolution are related to the safe com-

osition property, discussed in detail in another work (Teixeira et al.,

013).

From the 20 safe evolution scenarios that we analyzed from

aRGeT main branch, two of them actually introduced defects to the

roduct line. These scenarios occurred in the template discovery step

f TaRGeT’s evolution. We previously described one of these prob-

ems (Neves et al., 2011), namely where an optional feature was added

ut incorrectly referred in the CK. The other defect was similar to this

L. Neves et al. / The Journal of Systems and Software 106 (2015) 42–58 53

Fig. 13. TestLink feature evolution scenario.

Fig. 14. CaptureMedia feature evolution scenario.

o

r

o

s

h

f

o

e

2

P

a

t

c

l

i

a

c

t

d

w

T

p

c

4

H

n

Table 3

Number and percentage of unintended unsafe evolution sce-

narios in each product line (Metric for answering RQ2).

Product line Total of scenarios Unsafe evolution

scenarios found

TaRGeT main 20 2 (10%)

MobileMedia 8 4 (50%)

RGMS 15 0 (0%)

Hephaestus-PL 5 0 (0%)

SIGAA 15 0 (0%)

T

w

r

t

p

s

m

m

e

o

f

f

e

f

p

p

ne and is illustrated in Fig. 13. In this example, the TestLinkAspect is

esponsible for implementing a feature that enables the generation

f test suites in a specific XML format. This aspect was incorrectly as-

ociated to the XML feature expression in the CK, making all products

aving the XML feature to generate only test suites in the TestLink

ormat. This problem could have been avoided using the Add new

ptional feature template.

In MobileMedia we found four cases that change the behavior of

xisting products when that was not the intention (Teixeira et al.,

013). Fig. 14 describes one of these cases, where some fields of the

hotoViewController class were extracted to the CapturePhotoAspect

spect. However, this aspect was incorrectly associated to the Cap-

ureMedia feature in the CK, while the original PhotoViewController

lass is associated to the feature expression Copy � SMS. This prob-

em could be avoided by using Split asset. The other defects are about

ncorrect association of feature expressions in the CK, which could be

voided using Replace feature expression. We did not find any oc-

urrence of this kind of problem in the RGMS scenarios. We think

hat, as we only analyzed the code from the main releases, the stu-

ents may have fixed these problems before the release. Similarly,

e have not observed such issues in Hephaestus-PL, nor in SIGAA.

able 3 summarizes the answer to RQ2, by showing the number and

ercentage of unsafe evolution scenarios where an existing template

ould reveal an invalid precondition for each product line.

.3.3. Discussion

Although the evaluation so far considers only Java, AspectJ, and

askell code assets, our templates and the product line refinement

otion that supports them are not limited to a specific kind of asset.
hat is why we can use the templates in other contexts than the ones

e illustrate here. Nonetheless, the product line refinement notion

elies on a notion of asset (behavioral) refinement. In fact, some of our

emplates have restrictions associated to asset refinement (for exam-

le, see Split asset). So, for each kind of asset to be considered, one

hould choose a proper asset refinement notion. Such a notion can be

ore or less restrictive, ranging from formal programming transfor-

ation laws (Borba et al., 2004) to tests as in Safe Refactor (Soares

t al., 2010). The only requirement is that these notions must be pre-

rders and satisfy a compositionality condition (Borba et al., 2012).

Besides that, there should also be a notion of asset well-

ormedness, as discussed in Section 2.2. The templates assume well-

ormedness of the source product line, and in some cases, when

xtending the product line, they require, as a precondition, well-

ormedness of the resulting product line. This relates to safe com-

osition (Teixeira et al., 2013; Thaker et al., 2007) and associated ap-

roaches that efficiently check that. In templates that add features, we

54 L. Neves et al. / The Journal of Systems and Software 106 (2015) 42–58

4

t

t

n

w

n

t

l

b

n

a

i

e

c

t

m

p

f

n

w

t

t

a

m

t

c

u

e

t

a

a

i

i

s

g

n

s

a

u

1

a

p

p

c

t

p

M

s

t

t

q

i

l

r

t

l

c

e

only need to check that the new products are well-formed, since the

existing products, which are already well-formed, remain the same.

Moreover, for all other templates that do not require this precondi-

tion, we prove that the resulting product line is well-formed (Borba

et al., 2012).

Contrasting with the asset language independence, our templates

are specific to the FM and CK languages we use here. This should be

expected since the templates refer to the specific syntax and rely on

semantic details of these languages. Although some of the templates

could be easily adapted to alternative languages and notations, in-

cluding decision models (Czarnecki et al., 2012; Weiss et al., 2008),

we do not explore this possibility since our focus is to understand

and explain the evolution history of product lines based on the lan-

guages we consider here. The product line refinement notion, on the

other hand, is independent of such languages and could be used to

justify safe evolution templates specific to the alternative nota-

tions we just mentioned. Nonetheless, we acknowledge that formally

checking refinement is hard. When deriving the templates from con-

crete evolution scenarios, we first informally checked that they com-

plied with the refinement notion that we rely on. Later some of us

formally proved soundness of the templates for product lines (Borba

et al., 2012; Teixeira, 2014), but we consider this out of the scope of

this work.

In the concrete evolution scenarios we analyzed, it was often nec-

essary to combine more than one template to justify the safety of the

scenario. For example, Add new mandatory feature and Replace

feature expression, and Preprocess asset without preprocessor

directive and Add dead preprocessed code (using the transforma-

tion from right to left), were often used in sequence, since the pre-

conditions were satisfied. The transitivity property of the product

line refinement notion (Borba et al., 2012) allows the application of

different templates in sequence, resulting in a well-formed, refined,

product line.

In the online appendix, we specify all templates in detail, detailing

the conditions for applying them in both directions, when applica-

ble. This way, one can precisely implement tool support for apply-

ing them to concrete product lines. The details are also important

to guide developers to safely evolve product lines. For conciseness

and abstraction, we use a declarative approach to describe the tem-

plates. For example, we could use the FLiP tool (Alves et al., 2008)

to implement support for applying templates in a semi-automatic

way. This tool already supports product line extraction and evolution

tasks, focusing mostly on code. Therefore, we would need to extend

it so it could also consider refinement templates such as the ones

presented here, that also change FM and CK. A particular issue is

verifying the preconditions for applying a template. In the particu-

lar cases where we require well-formedness of the resulting product

line, such as Add new optional feature, for example, we can rely on

safe composition approaches, as discussed. When a precondition re-

quires asset refinement, we can approximate this using product line

refinement checkers (Ferreira et al., 2014), to improve confidence

that the template implementation does not introduce behavioral

changes.

Finally, after observing the applicability of the templates to a

myriad of assets as previously mentioned, we found no relationship

between the template type (compositional versus annotative) and

its applicable abstraction level (architectural versus detailed design).

Nonetheless, even without choosing a particular asset language, an-

notative templates can already capture finer-grained asset changes.

So, for instance, considering that an asset is defined at architectural

design, annotative templates can also address issues therein, pro-

vided that these have an annotative nature. On the other hand, if

code artifacts are considered, annotative templates can be used to

capture finer-grained changes, but compositional templates are also

useful, especially for feature addition (for example, Add new optional

feature).
.4. Threats to validity

In this section we discuss the threats to the validity of our study.

Conclusion validity. Our approach is motivated by the assumption

hat evolving product lines without guidance is more error-prone. Al-

hough our main focus here is not to evaluate that, we found prelimi-

ary evidence of this issue when identifying evolution scenarios that

ere supposed to preserve the behavior of existing products but did

ot preserve. However, we found these issues by simply inspecting

he product line artifacts. Despite our familiarity with the product

ines, more precise results could be obtained by collecting evidence

y testing products. We might have overlooked such issues, thus the

umber of defects could be higher, which would more emphatically

nswer RQ2. The contextual information we relied on to judge the

ntention of the evolution is another potential threat, but it was clear

nough in the cases we observed. So, again, mitigating these threats

ould only reinforce the obtained results.

Another threat coming from the manual analysis during the iden-

ification and evaluation of the templates is that we could have made

istakes when verifying the preconditions necessary to apply a tem-

late correctly. This could impact our study by changing the templates

requency results we presented, or even providing evidence of sce-

arios that could not be handled by our templates. These situations

ere, however, often discussed by more than one author.

Internal validity. When analyzing RGMS evolution, we observed

hat, in some occasions, different pairs of students used the same

emplate combination in similar scenarios. For example, to support

new database management system, four pairs of students imple-

ented it by changing the Hibernate configuration file, which stores

he configuration parameters of each database, and used conditional

ompilation to define which database would be available in a prod-

ct. This may have happened because the students discussed with

ach other how to implement the feature and then they all decided

o implement it using the same technique. While this can represent

threat to the internal validity of our study, at most it restricted the

nalysis of other different template combinations when implement-

ng variability strategies.

It is important to mention that using the same product line to both

nfer and evaluate the templates could be a threat, but we divided the

cenarios we identified in two different groups. We used one of these

roups to infer the templates and another group, with different sce-

arios, to evaluate them. In the TaRGeT product line, we used the

cenarios implemented from release 4.0 to 5.0 to infer the templates

nd the ones implemented from release 5.0 to release 6.0 in our eval-

ation. We selected two RGMS scenarios to infer the templates and

3 other scenarios to evaluate the templates. MobileMedia’s, SIGAA’s

nd Hephaestus-PL’s scenarios were only used to evaluate the tem-

lates. Moreover, as illustrated later, we believe that the observed

roduct line templates depend more on the demanded tasks (feature

reation, modification, etc.) than on the people that performed these

asks. This further reduces the possibility of threat for using the same

roduct line to infer and evaluate templates.

External validity. Another threat to our work is the fact that

obileMedia and RGMS are small product lines developed for re-

earch and educational purposes, respectively, so the scenarios iden-

ified in their evolution could be simple and require the use of few

emplates. However, we observed that these scenarios usually re-

uired the combination of different templates. In addition, most of the

dentified templates were also found in the analysis of other product

ines, thus reinforcing their relevance and applicability.

When choosing the studied product lines, we did not aim for rep-

esentativeness. We tried to obtain some diversity, but not in a sys-

ematic way as described in (Nagappan et al., 2013). Because of the

imited quantity and nature of the analyzed product lines, and the

hosen releases and scenarios, our quantitative results cannot be gen-

ralized to other product lines, specially the annotative templates. To

L. Neves et al. / The Journal of Systems and Software 106 (2015) 42–58 55

f

t

t

l

a

n

d

p

p

e

t

a

o

N

w

e

a

c

F

c

t

r

s

d

5

v

e

a

t

w

a

t

p

a

t

a

p

a

p

a

a

n

t

c

t

i

i

e

t

p

s

s

i

b

a

o

n

l

i

h

i

2

i

t

p

p

p

i

C

T

c

o

b

(

t

f

S

p

n

p

o

t

i

p

s

a

w

m

i

t

e

o

r

r

a

p

c

t

e

u

l

p

k

d

g

t

s

t

t

b

H

a

w

g

t

fi

o

a

c

r

s

u

urther evaluate those, we would need to consider additional anno-

ative product lines. However, the qualitative results bring evidence

hat our set of safe evolution templates is expressive at least in a

imited context. We believe that factors such as product line domain,

nd team experience and motivation, impact less on our expressive-

ess results, but we nevertheless studied product lines of different

omains, developed by disjoint developer teams. The kinds of tem-

lates used seem to depend more on factors such as variability im-

lementation mechanism and performed tasks. For example, as the

arly history of a product line might involve a lot of feature creation

asks, analyzing only early histories might reveal only templates such

s Add new optional feature. Although we tried to mitigate this kind

f threat, further studies would be useful to complement our results.

evertheless, by studying aspects of the evolution of a few systems,

e hope to be contributing to the body of evidence on product line

volution.

The product line refinement theory does not aim to cover

ll kinds of evolution tasks, leaving out certain kinds of useful

hanges. Nonetheless, studies about the evolution of the Linux kernel

M (Dintzner et al., 2013; Lotufo et al., 2010) show that most of the

hanges consist of adding new features and modifying existing fea-

ures, while a smaller number of those changes correspond to feature

emovals. Therefore, the aim of this work is to provide support for

afely evolving a product line, to avoid problems that can be intro-

uced when performing such tasks.

. Related work

The work reported here is an extension of our previous in-

estigation on how compositional software product lines safely

volve (Neves et al., 2011). Here we go beyond that by analyzing

nnotative product lines (Kästner et al., 2008), in particular the ones

hat manage variability with preprocessing mechanisms. As a result,

e discover and catalog new transformation templates that deal with

more expressive CK notion that maps feature expressions to asset

ransformations (including preprocessing). This way we provide sup-

ort for evolving both compositional and annotative product lines,

nd even hybrids. Besides that, here we analyze the evolution his-

ory of two additional product lines, including one that is largely

nnotative. Based on that, we bring additional evidence of the ex-

ressiveness of the proposed templates, including the new ones for

nnotative product lines.

Passos et al. (2013) analyze the evolution of the Linux kernel,

roposing evolution patterns similar to our templates, taking into

ccount changes to the FM (Kconfig, in their context), CK (Kbuild),

nd assets with preprocessing directives (cpp). These changes are

ot restricted to safe evolution scenarios, so they also consider po-

entially unsafe transformations. Nonetheless, we see the studies as

omplementary, as some of their reported patterns are similar to our

emplates, such as Add new optional feature. The main difference

s that our intention is to provide guarantees and support when the

ntention is to safely evolve a product line, whereas they are inter-

sted to report the evolution scenarios that happen in a particular

imeframe.

Seidl et al. (2012) present an evolution system for model-based

roduct lines. As in our work, they represent product lines using three

paces, namely problem (FM), mapping (CK), and solution (code as-

ets) space. They aim to keep consistency of the spaces when perform-

ng an evolution operation that can potentially harm the mapping

etween problem and solution space. To achieve that, they present

nd evaluate a number of semi-automatic and syntactic remapping

perators that support developers on this task. Although they express

o explicit concern with safe evolution, nor propose overall product

ine transformation templates, one could likely use their operators to

mplement the CK changes expressed by the templates we present
ere.
Schulze et al. provide a definition for variant-preserving refactor-

ngs in the context of feature-oriented product lines (Schulze et al.,

012). Moreover, they also propose a refactoring catalog, illustrat-

ng four different refactorings based on extensions of object-oriented

ransformations (Fowler, 1999). Later, they provide tool support to

rovide an implementation of such refactorings, so they can be ap-

lied semi-automatically (Schulze et al., 2013a). These works are com-

lementary to ours, in the sense that they could be seen as concrete

nstances of the product line refinement theory, for particular FM,

K, and asset languages different from those we focus on this work.

he variant-preserving refactoring definition (Schulze et al., 2012)

ould also be seen as a particular refinement notion for the context

f feature-oriented product lines. Future work could formally relate

oth works.

Schulze et al. also propose a refactoring catalog for delta-oriented

DOP) product lines (Schulze et al., 2013b), implemented in the con-

ext of an Eclipse plugin. They propose code smells that might be use-

ul for identifying opportunities for applying product line refactorings.

ome of the proposed refactorings are correspondent to templates we

resent here, such as Replace feature expression. Although they do

ot provide a formalization, their work is complementary to ours, by

roviding an implementation of such transformations in the context

f a particular asset language.

Heider et al. (2012) propose a regression testing approach to de-

ect the impact of changes to variability models. The basic idea is to

dentify existing products that are affected by evolving an associated

roduct line. The illustrated implementation compares, in a lexical or

yntactical way, the assets of the products generated by the original

nd the new (evolved) product line. If there are differences, the tool

arns the user. This might be helpful to identify potentially unsafe

odifications, but that is not explored by the paper. The tool just

ndicates what has to be analyzed, with no information on whether

he modification is safe or not. Similarly to our work, they are inter-

sted in analyzing impact on the existing products. Differently from

ur work, they do not consider all possible products in the FM, but

ather, only the product configurations previously created and de-

ived. More important, they perform analysis a posteriori, that is, after

change happens, and only with the aim of warning developers. We

ropose templates to, possibly a priori, prevent developers of making

hanges that impact existing products. Based on the same underlying

heory we rely on, but following an a posteriori approach, Ferreira

t al. (2014) detect unsafe transformations by applying regression

nit testing; this contrasts with the more efficient but less precise

exical or syntactical approach of Heider et al.

The notion of product line refinement discussed here first ap-

eared with a refactoring focus (Borba, 2009), illustrating different

inds of refactoring transformation templates that can be useful for

eriving and evolving product lines. Borba et al. (2012) extend and

eneralize the initial formalization, establishing interfaces between

he product line refinement theory and the languages used to de-

cribe product line artifacts. They also instantiate the theory with

he formalization of specific languages for typical product line ar-

ifacts (FM and CK), and introduce and prove soundness of a num-

er of associated product line refinement transformation templates.

ere we rely on the existing definition of product line refinement,

nd the idea of safe evolution transformation templates. However,

e go further by proposing new templates for a different CK lan-

uage, based on the empirical analysis of the evolution history of

wo real product lines, and evaluating both old and new templates in

ve product lines. Rubin and Chechik (2012) use the refinement the-

ry for combining products to generate product lines. They present

merge-in operator that adds a product (actually a model in their

ontext) to an existing product line. They formally prove the cor-

ectness of this operator using the product line refinement notion,

howing that the resulting product line generates the same prod-

cts as before, plus the additional merged model. We can view

56 L. Neves et al. / The Journal of Systems and Software 106 (2015) 42–58

t

f

u

i

a

r

c

c

c

t

c

t

w

a

c

d

g

T

u

t

o

c

6

t

c

d

e

t

p

fi

t

T

m

p

t

b

l

p

i

t

t

e

t

t

t

t

s

p

w

e

o

c

m

m

t

4 PVS specification and proof files available in http://twiki.cin.ufpe.br/twiki/

bin/view/SPG/TheorySPLRefinement.
their operator as a different way of expressing Add new optional

feature.

Alves et al. (2006) propose an informal refactoring notion for prod-

uct lines, and propose a catalogue of FM refactorings. Gheyi et al.

(2008) extend that by proposing a complete and minimal catalog of

FM transformation templates that preserve the set of FM valid con-

figurations. We go beyond that because the product line refinement

notion that we rely on, and consequently our templates, support other

product line artifacts like CK and assets, in addition to FM. However,

as the product line refinement notion is compositional (Borba et al.,

2012), we can use the FM templates proposed by Gheyi et al. together

with our safe evolution templates to independently evolve FMs in a

safe way. With a similar focus on FMs only, Lotufo et al. (2010) analyze

21 versions of the Linux kernel over five years. They analyze how a

number of characteristics, such as number of features, height of the

tree and depth of the leaves, evolve through versions. Based on this

investigation, they identify challenges encountered in the process.

However, as with the studies just mentioned, they only focus on the

FM, and do not take into account the other artifacts.

Several approaches (Kaestner et al., 2007; Kolb et al., 2005; Liu

et al., 2006; Trujillo et al., 2006) focus on refactoring a product into a

product line, not exploring product line evolution in general, as we do

here with our templates. First, Kolb et al. (2005) discuss a case study

in refactoring legacy code components into a product line imple-

mentation. They define a systematic process for refactoring products

with the aim of obtaining product line assets. There is no discus-

sion about FMs and CK. Similarly, Kaestner et al. (2007) focus only on

transforming code assets, implicitly relying on refinement notions for

aspect-oriented programs. As discussed here and elsewhere (Borba,

2009), these are not adequate for justifying product line refinement.

Trujillo et al. (2006) go beyond code assets, but do not explicitly con-

sider transformations to FM and CK as our templates do. They also do

not consider behavior preservation; they indeed use the term “refine-

ment”, but in the quite different sense of overriding or adding extra

behavior to assets.

Liu et al. (2006) also focus on the process of decomposing a legacy

application into features, but go further than the previously cited

approaches by proposing a refactoring theory that explains how a

feature can be automatically associated to a base asset (a code mod-

ule, for instance) and related derivative assets, which contain feature

declarations appropriate for different product configurations. Con-

trasting with the refinement notion that we rely on, this theory does

not consider FM transformations and assumes an implicit notion of

CK based on the idea of derivatives. So it does not consider explicit

CK transformations as we do here. Their work is, however, comple-

mentary to ours since we abstract from specific asset transformation

techniques such as the one supported by their theory. By proving that

their technique can be mapped to a notion of asset refinement, both

theories could be used together.

Thüm et al. (2009) present and evaluate an algorithm to classify

edits on FMs. They classify the edits in four categories: refactorings,

when no new products are added and no existing products are re-

moved; specialization, meaning that some existing products are re-

moved and no new products are added; generalization, when new

products are added and no existing products removed and arbitrary

edits otherwise. In our work, we go beyond FMs and also take into

account edits in other artifacts like CK and code assets. Moreover, we

are interested in providing guarantees, a priori, that particular kind of

edits result in safe evolution of the product line. So, using their clas-

sification, we are more interested in refactorings and generalization

edits, not considering, except for pathological cases, specialization

and arbitrary edits.

Murphy-Hill et al. (2012) present a study about how programmers

refactor. They analyze usage data from Eclipse users and refactoring

tools logs to classify which programs refactorings are more frequently

used. They also use commits from Eclipse Concurrent Versioning Sys-
em (CVS) repositories and they infer which refactorings were per-

ormed by comparing adjacent commits manually. In this work we

se a similar strategy to discover product line safe evolution scenar-

os and to infer which templates were used in these scenarios. We

lso classify which templates are more commonly used using data

etrieved from the evolution of five product lines.

Weissgerber and Diehl (2006) propose a technique to detect

hanges that are likely to be refactorings. Based on information from

ode repositories, they reconstruct refactorings by means of syntacti-

al and signature-based analysis, using code-clone detection to refine

he results, ranking the refactoring candidates. Their technique fo-

uses only on the code, while our analysis must take into account

he whole product line, going beyond code assets. Therefore, this is

hy we conduct a manual analysis. Nonetheless, both approaches

re complimentary, and could be integrated for cases where only the

ode has changed. As an example, we could use their technique to

etect instances of the Refine asset template.

Thaker et al. (2007) define that safe composition is related to safe

eneration and the verification of properties for product line assets.

hey showed how product line type safety properties can be verified

sing FMs and SAT solvers. Teixeira et al. (2013) present an approach

o verify safe composition of compositional product lines. As some of

ur templates require the resulting product line to be well formed, we

an use the safe composition approach to verify this type of restriction.

. Conclusion

In this work we investigate the safe evolution of both composi-

ional and annotative product lines (Kästner et al., 2008). By analyzing

oncrete safe evolution scenarios and the associated changes to the

ifferent product line artifacts (feature model, configuration knowl-

dge, and assets), we were able to propose a set of safe evolution

emplates that can be used by developers in charge of maintaining

roduct lines. Besides being in accordance with the product line re-

nement notion that we rely on (Borba et al., 2012), the described

emplates abstract, generalize, and factorize the analyzed scenarios.

his way they give developers confidence that product line transfor-

ations are safe, in the sense that the behavior of existing products is

reserved. If applied in retrospective, they can even help to find unin-

ended unsafe modifications to a product line. The templates can also

e used as a basis to automate support for safe product line evolution.

To evaluate the proposed templates, we analyzed part of the evo-

ution history of five product lines. We could observe that our tem-

lates can address the safe modifications that developers performed

n the analyzed scenarios. This corroborates the expressiveness of our

emplate set, although it was not our aim to obtain a complete (in

he relative sense of previous algebra of programming results (Borba

t al., 2004)) or canonical set. More detailed investigations are needed

o properly explore these properties. We could also observe that if the

emplates had been used as a guide when evolving the product lines,

hey could have helped to avoid the evolution errors that we iden-

ified during our analysis. These errors are modifications that were

upposed to be safe, but actually changed the behavior of existing

roducts. We believe that some of these problems could be avoided

ith a more rigorous regression testing process. However, it is often

xpensive to generate and test all product line products. Soundness

f the templates is proved elsewhere (Borba et al., 2012).4

Our results also show evidence that product line manual evolution

an be time consuming, because it usually involves the analysis and

odification of many source code assets, in addition to the feature

odel and configuration knowledge. We believe that the automating

he templates with a development tool could help to address this

http://twiki.cin.ufpe.br/twiki/bin/view/SPG/TheorySPLRefinement

L. Neves et al. / The Journal of Systems and Software 106 (2015) 42–58 57

i

t

c

o

b

M

c

i

a

fi

w

T

i

2

a

a

w

a

p

m

e

r

s

t

b

A

c

a

a

t

n

F

R

A

A

A

B

B

B

B

C

C

C

C

D

F

F

G

G

H

K

K

K

K

K

K

K

v

L

L

M

N

N

P

P

R

R

S

S

S

S

S

S

T

T

T

T

T

W

W

L
t

p

P
F

G
s

V

ssue, but this should be further explored, given recent evidence about

he difficulties for using refactoring tools (Murphy-Hill et al., 2012).

Although our templates focus on specific feature model and

onfiguration knowledge notations, the underlying refinement the-

ry (Borba et al., 2012) is not language specific. Decision models could

e mapped to our feature model notation (Czarnecki et al., 2012).

ore elaborate feature model and decision model notations with

ardinality and attributes would require extra templates; the exist-

ng ones would still hold. Existing notion of product line refinement

pplies for any feature modeling notation that describes (possibly in-

nite) sets of product configurations. We only need to instantiate it

ith a notation that expresses its semantics as a set of configurations.

he same happens for more elaborate CK notation exploring cardinal-

ty and attribute information, such as Kconfig and Kbuild (Lotufo et al.,

010; Passos et al., 2013), which would require extra templates. In

ll of these approaches, there are ways to generate a specific product

ccording to a valid configuration. As long as such a function exists,

e can instantiate the refinement theory with the corresponding CK

pproach, and thus, derive more templates specific to that language.

We also plan on investigating how our theories can provide sup-

ort even in the context of unsafe evolution scenarios, such as retire-

ent. For example, evolution patterns from the Linux kernel (Passos

t al., 2013) show that feature retirements happen. The patterns that

emove features consist of removing a feature from all variability

paces. This way, we could establish an alternative refinement no-

ion, requiring that all products modulo the removed feature should

e refined by the resulting product line.

cknowledgments

We thank colleagues of the Software Productivity Group,5 espe-

ially Rohit Gheyi, Fernando Castor, Raphael Oliveira, André Lanna,

nd Idarlan Machado for important feedback and fruitful discussions

bout this work. For partial financial support, we would like to thank

he National Institute of Science and Technology for Software Engi-

eering (INES) and the Brazilian research agencies CNPq, CAPES and

ACEPE.

eferences

lves, V., Calheiros, F., Nepomuceno, V., Menezes, A., Soares, S., Borba, P., 2008. Flip:
Managing software product line extraction and reaction with aspects. In: SPLC,

p. 354.
lves, V., Gheyi, R., Massoni, T., Kulesza, U., Borba, P., Lucena, C., 2006. Refactoring

product lines. In: GPCE, pp. 201–210.
lves, V., Matos, P., Cole, L., Vasconcelos, A., Borba, P., Ramalho, G., 2007. Extracting and

evolving code in product lines with aspect-oriented programming. Trans. Aspect-

Oriented Software Dev. 4, 117–142.
asili, V.R., Caldiera, G., Rombach, H.D., 1994. The goal question metric approach.

Encyclopedia of Software Engineering. Wiley.
orba, P., 2009. An introduction to software product line refactoring. In: GTTSE Summer

School.
orba, P., Sampaio, A., Cavalcanti, A., Cornelio, M., 2004. Algebraic reasoning for object-

oriented programming. Sci. Comput. Program. 52, 53–100.

orba, P., Teixeira, L., Gheyi, R., 2012. A theory of software product line refinement.
Theor. Comput. Sci. 455, 2–30.

lements, P., Northrop, L., 2001. Software Product Lines: Practices and Patterns.
Addison-Wesley.

zarnecki, K., Eisenecker, U., 2000. Generative Programming: Methods, Tools, and Ap-
plications. Addison-Wesley.

zarnecki, K., Grünbacher, P., Rabiser, R., Schmid, K., Wasowski, A., 2012. Cool features

and tough decisions: a comparison of variability modeling approaches. In: VaMoS,
pp. 173–182.

zarnecki, K., Pietroszek, K., 2006. Verifying feature-based model templates against
well-formedness OCL constraints. In: GPCE, pp. 211–220.

intzner, N., Deursen, A.V., Pinzger, M., 2013. Extracting feature model changes from
the linux kernel using fmdiff. In: VaMoS, pp. 22:1–22:8.

erreira, F., Gheyi, R., Borba, P., Soares, G., 2014. A toolset for checking SPL refinements.
J. Univers. Comput. Sci. 20 (5), 587–614.

owler, M., 1999. Refactoring: Improving the Design of Existing Code. Addison-Wesley.
5 http://www.cin.ufpe.br/spg

m

A
d

L

acek, C., Anastasopoules, M., 2001. Implementing product line variabilities. In: SSR,
pp. 109–117.

heyi, R., Massoni, T., Borba, P., 2008. Algebraic laws for feature models. J. Univers.
Comput. Sci. 14 (21), 3573–3591.

eider, W., Rabiser, R., Grünbacher, P., Lettner, D., 2012. Using regression testing to
analyze the impact of changes to variability models on products. In: SPLC. ACM,

pp. 196–205.
aestner, C., Apel, S., Batory, D., 2007. A case study implementing features using AspectJ.

In: SPLC, pp. 223–232.

aestner, C., Apel, S., Rahman, S.S.u., Rosenmueller, M., Batory, D., Saake, G., 2009. On
the impact of the optional feature problem: analysis and case studies. In: SPLC,

pp. 181–190.
ang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.S., 1990. Feature-Oriented Domain

Analysis (FODA) Feasibility Study. Technical report. CMU/SEI-90-TR-21, SEI, CMU.
ästner, C., Apel, S., Kuhlemann, M., 2008. Granularity in software product lines. In:

ICSE, pp. 311–320.

iczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W., 2001. Getting
started with AspectJ. Commun. ACM 44 (10), 59–65.

olb, R., Muthig, D., Patzke, T., Yamauchi, K., 2005. A case study in refactoring a legacy
component for reuse in a product line. In: ICSM, pp. 369–378.

rueger, C., 2002. Easing the transition to software mass customization. In: PFE,
pp. 282–293.

an der Linden, F., Schmid, K., Rommes, E., 2007. Software Product Lines in Action: The

Best Industrial Practice in Product Line Engineering. Springer.
iu, J., Batory, D., Lengauer, C., 2006. Feature oriented refactoring of legacy applications.

In: ICSE, pp. 112–121.
otufo, R., She, S., Berger, T., Czarnecki, K., Wasowski, A., 2010. Evolution of the Linux

kernel variability model. In: SPLC, pp. 136–150.
urphy-Hill, E., Parnin, C., Black, A., 2012. How we refactor, and how we know it. IEEE

Trans. Software Eng. 38, 5–18.

agappan, M., Zimmermann, T., Bird, C., 2013. Diversity in software engineering re-
search. In: ESEC/FSE, pp. 466–476.

eves, L., Teixeira, L., Sena, D., Alves, V., Kulezsa, U., Borba, P., 2011. Investigating the
Safe Evolution of Software Product Lines. GPCE. ACM, pp. 33–42.

assos, L., Guo, J., Teixeira, L., Czarnecki, K., Wasowski, A., Borba, P., 2013. Coevolution
of variability models and related artifacts: a case study from the linux kernel. In:

SPLC, pp. 91–100.

ohl, K., Böckle, G., van der Linden, F., 2005. Software Product Line Engineering: Foun-
dations, Principles and Techniques. Springer.

oberts, D.B., 1999. Practical Analysis for Refactoring (Ph.D. thesis). University of
Illinois.

ubin, J., Chechik, M., 2012. Combining related products into product lines. In: FASE,
pp. 285–300.

chobbens, P.-Y., Heymans, P., Trigaux, J.-C., Bontemps, Y., 2007. Generic semantics of

feature diagrams. Int. J. Comput. Telecommun. Networking 51 (2), 456–479.
chulze, S., Lochau, M., Brunswig, S., 2013a. Implementing refactorings for FOP: lessons

learned and challenges ahead. In: FOSD, pp. 33–40.
chulze, S., Richers, O., Schaefer, I., 2013b. Refactoring delta-oriented software product

lines. In: AOSD, pp. 73–84.
chulze, S., Thüm, T., Kuhlemann, M., Saake, G., 2012. Variant-preserving refactoring in

feature-oriented software product lines. In: VaMoS, pp. 73–81.
eidl, C., Heidenreich, F., Assmann, U., 2012. Co-evolution of models and feature map-

ping in software product lines. In: SPLC, pp. 76–85.

oares, G., Gheyi, R., Serey, D., Massoni, T., 2010. Making program refactoring safer.
IEEE Software 27 (4), 52–57.

eixeira, L., March 2014. Safe Evolution of Software Product Lines and Sets of Product
Lines (Ph.D. thesis). Federal University of Pernambuco.

eixeira, L., Borba, P., Gheyi, R., 2013. Safe composition of configuration knowledge-
based software product lines. J. Syst. Software 86 (4), 1038–1053.

haker, S., Batory, D., Kitchin, D., Cook, W., 2007. Safe composition of product lines. In:

GPCE, pp. 95–104.
hüm, T., Batory, D., Kästner, C., 2009. Reasoning about edits to feature models. In: ICSE,

pp. 254–264.
rujillo, S., Batory, D., Diaz, O., 2006. Feature refactoring a multi-representation program

into a product line. In: GPCE, pp. 191–200.
eiss, D.M., Li, J.J., Slye, J.H., Dinh-Trong, T.T., Sun, H., 2008. Decision-model-based code

generation for SPLE. In: SPLC, pp. 129–138.

eissgerber, P., Diehl, S., 2006. Identifying refactorings from source-code changes. In:
ASE, pp. 231–240.

aís Neves is a software developer and holds a MSc degree in Computer Science from
he Federal University of Pernambuco, Brazil. Her main research interests are software

roduct lines and software development.

aulo Borba is a Professor of Software Development at the Informatics Center of the
ederal University of Pernambuco, Brazil, where he leads the Software Productivity

roup. His main research interests are in the following topics and their integration:
oftware modularity, software product lines, and refactoring.

ander Alves is a Professor Adjunto 3 (tenured) at the Computer Science Depart-
ent of University of Brasilia, Brazil. He conducts research on Software Product Lines,

mbient Assisted Living, and Command and Control. Previously he held research and
evelopment positions at Fraunhofer IESE, Lancaster University, and IBM Silicon Valley
ab.

http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0001
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0001
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0001
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0001
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0001
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0001
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0001
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0002
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0002
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0002
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0002
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0002
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0002
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0002
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0003
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0003
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0003
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0003
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0003
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0003
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0003
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0004
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0004
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0004
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0004
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0005
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0005
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0006
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0006
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0006
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0006
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0006
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0007
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0007
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0007
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0007
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0009
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0009
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0009
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0010
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0010
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0010
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0011
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0011
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0011
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0011
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0011
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0011
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0012
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0012
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0012
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0013
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0013
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0013
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0013
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0014
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0014
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0014
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0014
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0014
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0016
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0016
http://www.cin.ufpe.br/spg
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0017
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0017
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0017
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0018
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0018
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0018
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0018
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0019
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0019
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0019
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0019
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0019
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0020
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0020
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0020
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0020
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0021
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0021
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0021
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0021
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0021
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0021
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0021
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0022
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0022
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0022
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0022
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0022
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0022
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0023
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0023
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0023
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0023
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0024
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0024
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0024
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0024
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0024
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0024
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0024
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0025
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0025
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0025
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0025
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0025
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0026
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0026
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0027
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0027
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0027
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0027
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0028
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0028
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0028
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0028
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0029
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0029
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0029
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0029
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0029
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0029
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0030
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0030
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0030
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0030
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0031
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0031
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0031
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0031
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0032
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0032
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0032
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0032
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0032
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0032
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0032
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0033
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0033
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0033
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0033
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0033
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0033
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0033
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0034
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0034
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0034
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0034
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0035
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0035
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0036
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0036
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0036
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0038
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0038
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0038
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0038
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0038
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0039
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0039
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0039
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0039
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0040
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0040
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0040
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0040
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0041
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0041
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0041
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0041
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0041
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0042
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0042
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0042
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0042
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0043
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0043
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0043
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0043
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0043
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0045
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0045
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0046
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0046
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0046
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0046
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0047
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0047
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0047
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0047
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0047
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0048
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0048
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0048
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0048
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0049
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0049
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0049
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0049
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0050
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0050
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0050
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0050
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0050
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0050
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0051
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0051
http://refhub.elsevier.com/S0164-1212(15)00080-1/sbref0051

58 L. Neves et al. / The Journal of Systems and Software 106 (2015) 42–58

D
a

o
e

U

M
s

a

(

Lucinéia Turnes is a software developer and holds a MSc degree in Informatics from
the University of Brasilia, Brazil, where she is also an associate researcher. Her main

research interests include software product lines, metaprogramming, and software
development.

Leopoldo Teixeira is an Assistant Professor at the Informatics Center of the Fed-
eral University of Pernambuco, Brazil. His main research interests are in the fol-

lowing topics and their integration: software product lines, refactoring, and formal
methods.
emostenes Sena is an Associate Professor at Federal Institute of Education, Science
nd Technology of Rio Grande do Norte. He is also a PhD candidate at Federal University

f Rio Grande do Norte. His main research interests are software product lines and
mpirical software engineering.

irá Kulesza is an Associate Professor at the Department of Informatics and Applied

athematics of Federal University of Rio Grande do Norte (UFRN), Brazil. His main re-
earch interests include software product lines, generative development, and software

rchitecture. Previously, he worked as a post-doc researcher member of the AMPLE

Aspect-Oriented Model-Driven Product Line Engineering) project.

	Safe evolution templates for software product lines
	1 Introduction
	2 Software product line concepts
	2.1 Feature models
	2.2 Assets
	2.3 Configuration knowledge

	3 Safe evolution templates
	3.1 Templates discovery
	3.2 Safe evolution templates
	3.2.1 Templates for compositional and annotative product lines
	3.2.2 Templates for annotative product lines

	4 Evaluation
	4.1 Research questions and metrics
	4.2 Assessment procedures and overview of analyzed product lines
	4.3 Results, analysis and discussion
	4.3.1 Intended safe evolution scenarios
	4.3.2 Unintended unsafe evolution scenarios
	4.3.3 Discussion

	4.4 Threats to validity

	5 Related work
	6 Conclusion
	 Acknowledgments
	 References

