
A Product Line of Theories for Reasoning about Safe
Evolution of Product Lines

Leopoldo Teixeira
Federal University of

Pernambuco
lmt@cin.ufpe.br

Vander Alves
University of Brasilia
valves@unb.br

Paulo Borba
Federal University of

Pernambuco
phmb@cin.ufpe.br

Rohit Gheyi
Federal University of Campina

Grande
rohit@dsc.ufcg.edu.br

ABSTRACT
A product line refinement theory formalizes safe evolution in
terms of a refinement notion, which does not rely on particu-
lar languages for the elements that constitute a product line.
Based on this theory, we can derive refinement templates to
support safe evolution scenarios. To do so, we need to pro-
vide formalizations for particular languages, to specify and
prove the templates. Without a systematic approach, this
leads to many similar templates and thus repetitive verifica-
tion tasks. We investigate and explore similarities between
these concrete languages, which ultimately results in a prod-
uct line of theories, where different languages correspond to
features, and products correspond to theory instantiations.
This also leads to specifying refinement templates at a higher
abstraction level, which, in the long run, reduces the spec-
ification and proof effort, and also provides the benefits of
reusing such templates for additional languages plugged into
the theory. We use the Prototype Verification System to
encode and prove soundness of the theories and their in-
stantiations. Moreover, we also use the refinement theory to
reason about safe evolution of the proposed product line of
theories.

CCS Concepts
•Software and its engineering → Software product
lines; Formal methods;

1. INTRODUCTION
When performing perfective and adaptive changes to soft-

ware product lines [1],1 it is important to check whether the
changes were safe, that is, they preserve the observable be-
havior of existing products [16, 15, 5]. A theory of product

1Hereafter, product lines.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SPLC 2015, July 20 - 24, 2015, Nashville, TN, USA
c⃝ 2015 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-3613-0/15/07. . . $15.00
DOI: http://dx.doi.org/10.1145/2791060.2791105

line refinement [5] formalizes safe evolution in terms of a re-
finement notion over product lines. The term safe is used
in the general sense that behavior is preserved, not specif-
ically referring to conventional safety properties. This no-
tion considers artifacts such as feature models (FMs) [2] and
configuration knowledge (CK) [6], and instead of using the
notion of refactoring, it focuses on the underlying notion of
refinement [9],2 which also captures behavior preservation
but abstracts quality improvement.

The theory is also generic with respect to the different
languages that we can use to describe or implement product
lines. Refinement transformation templates are one of the
main applications of the theory. However, to build a refine-
ment catalog, we need to provide concrete formalizations for
product line artifacts, such as FM, CK, and assets. This way
we can abstract safe evolution scenarios observed from the
evolution of existing product lines that use such languages.

We formalized concrete FM and CK languages, to pro-
pose refinement templates [5, 16]. However, as we formal-
ized other FM and CK languages [15], we observed that
many of them share similarities. Different FM languages
share the concept of adding a variable feature or evaluating
a feature expression against a configuration. This results in
similar templates, and similar properties defined on the con-
crete formalizations. This motivated us to investigate how
to explore such similarities, which resulted on the formaliza-
tion of intermediate FM and CK languages. Assumptions
and axioms establish the interfaces between the intermediate
and concrete languages used to describe product line arti-
facts. The intermediate languages abstract common prop-
erties, enabling us to define templates that can be reused
across a larger number of FM, CK, and asset languages.

We then structure the different formalizations as a prod-
uct line of theories. Different languages correspond to dif-
ferent features, and products correspond to instantiations
of the refinement theories, which in turn enables template
reuse. Reusing specification and proofs can reduce the effort
to verify them, which can be expensive [20]. This reduction
is proportional to the number of languages and templates
specified in the product line. Moreover, this also provides
better guidance on how tools can implement support for
refinement templates. We used the Prototype Verification

2Feature-oriented programming [13] uses this term in the
quite different sense of overriding or adding extra behavior
to assets.

161

System (PVS) [18] to specify and prove soundness for all
of the proposed theories, theory instantiations through lan-
guage formalizations, and templates.3 Finally, we also dis-
cuss how we could use refinement templates to reason about
safe evolution of the product line of theories presented here.

We organize the remainder of the text as follows. In Sec-
tion 2 we review the product line refinement theory, so we
then can introduce the problem with similar templates in
Section 3. In Section 4, we present how we applied prod-
uct line concepts to address such problem. We show how
this allows reusing specification and proofs in Section 5, also
discussing the associated benefits, and reasoning about evo-
lution of such product line with the refinement theory. We
discuss related work in Section 6, and conclude in Section 7.

2. PRODUCT LINE REFINEMENT
To ease understanding of the proposed product line of

theories, we briefly introduce the product line refinement
theory, presented in detail elsewhere [5]. For our purposes,
a product line consists of three elements, that jointly gener-
ate well-formed products: (i) a variability model, describing
the different product configurations; (ii) an asset mapping
(AM), providing the means for referring to assets such as
code, tests, and so on; (iii) a configuration knowledge [6],
mapping features to assets.

We do not rely on a particular variability modeling lan-
guage, as long as it represents its semantics as the set of all
valid configurations. This is the case for feature models, de-
cision models, or Kconfig models. So, for a variability model
F , we only assume a generic function, denoted by [[F]], that
defines its semantics as a set of configurations.

To enable unambiguous references to assets, instead of
considering that a product line contains a set of assets, we
assume it contains a mapping from asset names to assets.
We assume a wf function, to distinguish arbitrary asset
sets from well-formed ones. This corresponds to the no-
tion of a well-typed program, but it may also correspond
to purely syntactical or less strict semantic constraints. For
most product lines, wf should be instantiated by a function
that considers the well-formedness of sets of assets written
in different specification and implementation languages [21].

We also rely on means of comparing assets with respect
to observable behavior preservation. In particular, we as-
sume a relation ⊑ establishing refinement of an asset set.
This may range from imprecise lexical relations that com-
pare assets for textual equality, to semantic relations based
on bisimulation. To support stepwise refinement, this rela-
tion must be a pre-order [5], as is the case of existing no-
tions for object-oriented programming [4]. Finally, it must
be compositional, so we can apply refinements in a mod-
ular way— refining part of a well-formed product yields a
refined well-formed product. This is a common property of
refinement relations, that enables independent asset devel-
opment. However, it is not required for all of the refinement
templates we have specified using the theory.

The configuration knowledge specifies the mapping be-
tween features and implementation assets. Again, we only
assume a function that is responsible for generating a prod-
uct, represented as [[K]]Ac , for a configuration knowledge K,
with an asset mapping A and a configuration c as extra pa-

3The PVS specification and proof files are available at http:
//www.leopoldomt.com/papers/pl-theories.

rameters. In what follows, we formalize product lines.

Definition 1. For variability model F , asset mapping A,
and configuration knowledge K, we say that (F,A,K) is a
product line (PL) when all of its products are well-formed:
∀c ∈ [[F]] · wf ([[K]]Ac)

The product line refinement notion lifts the notion of be-
havior preservation from products to product lines. Each
product generated by the original product line must be re-
fined by some product of the new product line. So, users
of an existing product cannot observe behavior differences
when using the corresponding product from the new product
line. This even allows the new product line to generate more
products than the original product line. In what follows, we
use p and p′ to denote products (well-formed asset sets); and
[[L]] to denote the product line semantics, the function that
yields its products, given by {[[K]]Ac | c ∈ [[F]]}

Definition 2. A product line L is refined by another L′,
denoted by L ⊑ L′, whenever ∀p ∈ [[L]] · ∃p′ ∈ [[L′]] · p ⊑ p′

We overload ⊑ for product lines to denote that behavior
of existing products is preserved in the new product line.
Therefore, given that this is true, we have safe product line
evolution. Note that the definition focuses on the generated
products, instead of the configuration from the variability
model. Therefore, feature names do not matter. So, users
will not notice they are using products from the new prod-
uct line, although developers might have to change feature
nomenclature when specifying configurations.

By focusing on the common products from both product
lines, we check nothing about the new products offered by
the new product line. So, refinements are safe transforma-
tions in the sense that we can change a product line with-
out impacting existing users. For example, by adding an
optional feature or improving the internal structure of a fea-
ture implementation. Our theory does not aim to cover all
kinds of evolution tasks. Bug fixes are not refinements, as af-
ter such changes existing users will notice behavior changes.
However, the intention is to change behavior, so developers
will not be able to rely on the benefits of checking refinement
anyway. Such benefits only apply when the change intends
to improve product line configurability or internal structure,
without changing observable behavior.

Nonetheless, studies about the Linux kernel evolution [19,
14, 10] show that most of the changes consist of adding new
features and modifying existing ones, while a smaller num-
ber of those changes correspond to feature removals. So,
focusing on refinement covers a considerable part of these
changes. Product line refinement is also compositional with
respect to changes in the product line elements. Under cer-
tain conditions, variability model, configuration knowledge,
and asset mapping can be independently modified [5].

3. MOTIVATING EXAMPLE
Using the refinement notion, we can safely evolve product

lines. Nevertheless, it is useful to provide guidance to de-
velopers, so they do not need to reason directly about the
definitions and properties. We can do so through refinement
transformation templates [16, 5, 15]4 that abstract changes,
such as spliting an asset, adding a new optional feature to
a product line, among others. In this section, we introduce
the problem with specifying and proving similar templates

4Or only transformations.

162

derived from different languages, which motivated the inves-
tigation on how to reuse theories and its associated results.
More details and pragmatics on refinement templates are
presented elsewhere [16, 15].

The refinement theory is language-independent, so, to rea-
son about safe evolution on concrete product lines, we need
to instantiate it with concrete languages. Formalizing propo-
sitional FM [2] and compositional CK [3] languages, and
then instantiating the theory with such formalizations, we
derived templates specifying transformations using such lan-
guages [16, 5]. Without a systematic approach, this easily
leads to a plethora of similar templates and thus repetitive
specification and proof tasks, as we discuss in what follows.

Figure 1 illustrates a refinement template specifying that
adding an optional feature to a product line is possible when
the extra row added to the original CK is only enabled by the
selection of the new optional feature [16]. This assures that
products built without the new feature correspond exactly
to the original product line products.

P

⊑
...
e

...
n

n a

...
n' a'

...n a

e' ⇒ O
O, n', n'', n''' are new

resulting SPL is well-formed

P

O

n'' a''
n''' a'''

...
e

...
n

e' n', n'', n'''

Figure 1: Add new optional feature refinement tem-
plate

A template consists of a left-hand side (LHS) pattern and
a right-hand side (RHS) pattern, establishing syntactic and
semantic conditions for transforming a product line. Each
pattern refers to meta-variables that represent product line
elements. If a meta-variable appears in both sides, this
means that the corresponding element remains unchanged
by the transformation. In Figure 1, we observe that we re-
quire the original FM to have at least one feature, identified
by P . We add a new feature O below P , together with new
entries in the AM, such as n′ → a′. We also add a new
CK item mapping the feature expression e′ to the new as-
sets. We could have variations over this template, where,
for example, we add more (or less) assets.

Besides the patterns in the LHS and RHS, each transfor-
mation may have pre-conditions, detailed below the refine-
ment symbol (⊑). We can only apply a transformation when
a concrete product line matches the LHS template and the
pre-condition is valid for that matching. For example, Fig-
ure 1 states that the new asset names are not mapped in
the existing AM, ensuring that the resulting AM is valid.
Similarly, O should be a new feature that does not appear
in the original FM, otherwise the resulting FM would be in-
valid. Feature expression e′ must imply O, so the new assets
are only included in products with the O feature. Finally,
in this particular scenario, the template also requires well-
formedness of the resulting product line, since adding an
optional feature means adding the ability to generate more
products, for which we cannot provide any guarantees about

them through the theories [5].
Figure 2 illustrates another template, establishing that a

feature expression in the CK can be replaced with an equiv-
alent one according to the FM. This may be useful to im-
prove the understanding of this model. We also formalize
this template using the propositional FM and compositional
CK languages. Notice, however, that the template does not
detail the FM, indicating that we could use any FM lan-
guage that has the ability to compare feature expressions.
In the same way, both of the presented templates do not
detail asset languages, so we can use them with any asset
language that we can instantiate into the refinement theory.

n, n'
...

e
...

A

F ⊢ e ⇔ e'

n, n'
...

e'
...

A

⊑

F F

names(e') ⊆ names(F)

Figure 2: Replace feature expression refinement
template

From Figure 2, we observe that we replace feature ex-
pression e with e′. The condition states that we can apply
this transformation when e is equivalent to e′, according to
F , since the comparison is indexed by the FM in question.
When expressions are equivalent by propositional reasoning
only, we have a special case of this transformation. Moreover
e′ can only reference feature names that belong to F .
To prove that templates establish product line refinements,

we encode them as soundness theorems by defining pred-
icates to represent the syntactic relationships between the
source and target product lines (syntax) and transformation
pre-conditions (conditions). We map each template meta-
variable and abstractions of product line elements to corre-
sponding variables with associated constraints. Therefore,
for each transformation we assume that the LHS product
line is well-formed, and prove that the resulting product line
is also well-formed and refines the original one, as follows:

∀F,A,K, F ′, A′,K′ . . . ·
wfPL(F,A,K) ∧ syntax (. . .) ∧ conditions(. . .)

⇒ (F,A,K) ⊑ (F ′, A′,K′) ∧ wfPL(F ′, A′,K′)

(1)

We parameterize the syntax and conditions predicates by
the meta-variables, according to the template. As discussed,
for the presented templates, we do not assume a particular
asset language, so it only depends on the formalized FM and
CK languages. Well-formedness of the resulting product line
(wfPL) consists of all products being well-formed according
to wf plus additional constraints for the concrete FM and
CK languages that instantiate the product line refinement
theory: all feature expressions in the CK refer only to feature
names in the FM, and all asset names that appear in the CK
are in the domain of the AM. These extra conditions avoid
repetition in the transformation pre-conditions.

These two templates could also apply for other FM and

163

CK languages. For example, we could change the FM lan-
guage in Figure 2, as long as we are able to compare feature
expressions. The same happens in Figure 1, where we do not
need much detail over the CK language used. We only need
a CK language that we can extend with additional items
guarded by a feature expression. Changing the FM or CK
language results in a new template, which in turn we must
formalize and prove using the theorem structure mentioned
before, with similar syntax and conditions predicates, dupli-
cating the effort of specifying and proving transformations.
Even the proof structure would be similar, differing only on
the specifics of the FM and CK languages that would allow
comparing feature expressions and adding new CK items.

One could argue that as an alternative, we should only de-
fine templates that rely solely on the general theory. That
is, they do not depend on any concrete FM, CK, or asset
language. Figure 3 formalizes the template for refining a
single asset. We do not detail the actual way in which we
refine the asset, as the transformation is independent from
a specific asset language. The target AM has the original
asset name n now associated to a′, while the FM and CK
remain the same. We can prove this template using compo-
sitionality properties establishing that AM refinement leads
to product line refinement [5]. For a given safe evolution sce-
nario, whenever possible we should try to prove it using the
properties provided by the general theory. However, there
are useful templates that we are unable to define using only
the refinement theories, such as adding a new feature. This
happens because such operations depend on properties that
come from concrete FM or CK language.

a a'⊑

⊑
n a

...

n a'

...

K

F F

K

Figure 3: Refine asset refinement template

We address specific scenarios by defining templates using
concrete FM, CK, and asset languages, as we show in Fig-
ure 1 and Figure 2. However, there is a considerable effort
associated to specifying and proving templates in the con-
crete languages. Moreover, some of the templates are simi-
lar, regardless of the concrete languages, so we can explore
these similarities, reducing the effort for encoding and prov-
ing templates. We do so by formalizing intermediate FM,
CK, and asset languages, defining properties that abstract
over the particular languages. This enables us to establish
and prove templates at a higher abstraction level than those
presented in this section, which then can be reused for dif-
ferent languages over different scenarios. Still, if that does
not satisfy a particular safe evolution scenario, we must use
properties and templates formalized using concrete FM, CK,
and asset languages. Therefore, there is a balance that must
be taken into account to define which properties should be
in the intermediate levels, and which should be in the lower

levels. To explore the reuse of templates and also reduce the
effort of proving soundness, we structure these theories as a
product line, using theory interpretation and parameteriza-
tion in PVS as variability management mechanisms.

4. A PRODUCT LINE OF THEORIES
As discussed, the refinement theory is language-independent

regarding artifacts such as FM (F), assets (A), and CK (K).
Since it does not impose many restrictions on the structure
and semantics of these elements, we might instantiate our
theory in a number of ways. We want to systematically
explore the similarities between languages used to describe
such elements, to reduce the effort of formal specification
and proof of the refinement templates. Thus, we use prod-
uct line concepts to model the different formalized languages
and their relationships. Figure 4 shows the FM that illus-
trates the different ways in which we can instantiate the
product line refinement theory. Different feature selections
result in different instantiations. There are cross-tree con-
straints, specifying, for example, that the intermediate CK
language needs the intermediate FM language, as it depends
on concepts such as comparing feature expressions, for ex-
ample. Similarly, if we use a cardinality-based FM, we need
to select cardinality-based feature expressions, since we then
have to deal with cardinalities and attributes.

PL Theory

Cardinality FM

FM

Propositional
FM

#ifdef

Assets

renaming

CK

Transformation Compositional

Left-side Right-side

Cardinality FE Propositional FE

Intermediate
CK

Select
Assets Preprocess

#ifdef ⇒ Preprocess
Cardinality FM ⇔ Cardinality FE

Intermediate CK ⇒ Intermediate FM

Populations
MPL

Intermediate
FM

Figure 4: Feature model for the product line of the-
ories

Figure 4 defines FM, assets, and CK as mandatory fea-
tures, which reflects Definition 1, as we use these three el-
ements to jointly generate well-formed products. We also
provide intermediate and concrete formalizations for each of
the artifacts because, as discussed, we can only prove some
properties and templates providing more detail than what
we specify in the general theory. It is important to highlight
that this model only shows languages formalized in this work
and is not intended to comprehend all possible languages.

We specify an intermediate language for FMs, abstracting
concepts found in concrete FM languages, such as the propo-
sitional [2] and cardinality-based [7] ones. We also focus on a
tabular notation for CK that associates feature expressions
to assets or transformations over assets, as observed in the
product lines we evaluated [21, 16, 15]. Therefore, we have
subtrees for LHS and RHS, as we might have different kinds
of feature expressions. We also separate, on the RHS, simple
asset selection from transformations. We could include more

164

Feature Expression Assets

PL Theory SPLrefinement, set_aux_lemmas, set_comp_lemmas

Populations Population

MPL MultiProductLines

Intermediate FM FMint

Intermediate FM ∨ Left-side FeatureExpression, Configuration

Propositional FM FeatureModel, FeatureModelSemantics, FeatureModelRefinements

Propositional FM ∨ Propositional FE Formula_, FormulaTheory, Name

Cardinality FM CardinalityFM

Cardinality FM ∨ Cardinality FE Name

Assets AssetMapping, Assets, maps

#ifdef IfdefAssets

Renaming RenamingAssets

Intermediate CK CKint

Compositional ConfigurationKnowledge, CKinst

Transformation CKtrans, CKtInst

Select Assets CKselect, CKselectInst

Preprocess CKifdef, CKifdefInst

Select Assets ∨ Preprocess CKmultipleInst

Propositional FM ∧ Compositional SpecificFMpCKcSPL

Propositional FM ∧ Transformation SpecificFMpCKtSPL

Figure 5: Configuration Knowledge for the product
line of theories

features when dealing with implicit CKs as they occur in an-
notative product lines, and even to consider other kinds of
transformations, for example, such as cardinality-based ac-
tions. We do not fully formalize asset languages, since this is
not the main focus of our work and it would require substan-
tial effort. We are interested on investigating the evolution
of the product line as a whole, and in many cases, we can
abstract the actual asset language, such as in the presented
refinement templates. In the same way as we do for CK, we
could define intermediate languages to abstract properties of
languages, such as markup and object-oriented languages.

For the product line we propose, assets are PVS specifica-
tion (.pvs) and corresponding proof files (sharing the name
but using the .prf extension). Granularity of the product
line [11] is coarse-grained (compositional). Therefore, the
AM for this product line consists of mapping names to spec-
ification and proof files, and we use a compositional CK,
which associates feature expressions to asset names.

We show the CK in Figure 5, with a single asset name
in the RHS, representing the specification and its associated
proof file. Most features map to a single specification and
proof file, like Intermediate CK, but others need more
files, such as Propositional FM. Some features share files,
such as Propositional FM and Propositional FE, that
use the same formalization for propositional formulae. Some
files relate to the presence of two features, such as Speci-
ficFMpCKcSPL, associated to the Propositional FM
and Compositional features. This file contains the spec-
ification and proof of refinement templates that depend on
these languages. Evaluating the CK in Figure 5 against a
product configuration from the FM in Figure 4 results in a
set of PVS specification and proof files.

The FM structure in Figure 4 reflects how we structure the
theories. The refinement theory assumes minimal properties
for FM, CK, and asset languages. We specify intermediate
languages for these product line artifacts, to explore simi-
larities and to reuse templates. For example, in Figure 5,
Intermediate CK maps to CKint. The CKint theory

defines general properties, in the form of axioms, for CK
languages that map feature expressions to an action, such
as asset selection or preprocessing. This enables specifying
and proving templates that we can reuse with any CK lan-
guage that satisfies such properties. As an example of such
property, we establish that whenever we replace a feature
expression by an equivalent one, CK evaluation remains the
same, even without having a concrete representation of fea-
ture expressions or CK evaluation.

We use the theory interpretation mechanism of PVS [17]
to show that a concrete CK language satisfies properties
defined in the intermediate language. This mechanism en-
ables us to show that a theory is correctly interpreted by
another theory under a user-specified interpretation for the
uninterpreted types and functions. This way, we can show
that an implementation is a correct refinement of a spec-
ification. Figure 6 shows that concrete languages provide
interpretations for the types and functions defined on inter-
mediate languages. If any, axioms defined in the imported
theory become proof obligations to ensure consistency of the
specifications. That is, any property defined in the more ab-
stract and high-level theories is still valid if we prove all of
the proof obligations generated from the axioms. Therefore,
the return on investment grows as we define more concrete
languages that conform to the intermediate languages.

Proof obligations

Interpretations

Intermediate CK Compositional CK

Axioms

Uninterpreted
Types and
Functions

Theorems

Interpreted
Types and
Functions

Figure 6: Theory Interpretation mechanism.

5. SPECIFICATION AND PROOF REUSE
In this section, we show how we reuse specification and

proofs across theories. We present intermediate FM and
CK languages (Section 5.1), that abstract properties from
concrete languages. This allows us to further abstract the
previously discussed refinement templates (Section 5.2). Fi-
nally, we also discuss the benefits of specifying templates at
a higher level of abstraction, and discuss using the product
line refinement notion to reason about safe evolution of the
product line of theories that we present (Section 5.3).

5.1 Intermediate Languages
We have specified an intermediate FM theory (FMint), in-

cluding more detail than what is required in the refinement
theory, but still not consisting of a fully featured FM lan-
guage. The defined properties enable us to prove templates
such as Replace feature expression (see Figure 2) at a
higher level of abstraction, since in this case, we only need
to be able to compare feature expressions for equivalence
against an FM configuration.

In the intermediate FM language, we introduce the con-
cepts of feature expressions and the means for comparing
them against product configurations (feature selections). We
also specify the interfaces for other operations that are needed
when formalizing the concrete FM languages, such as well-
typedness of a feature expression against an FM, yielding

165

the set of features from a given FM, generating a feature ex-
pression from a feature, among others. Moreover, we define
predicates for comparing two FMs when we add features—
mandatory, optional, OR, and alternative.

Since we only establish interfaces for the functions and
predicates in this theory, and do not precisely specify what
they do, we define axioms to establish restriction on how
concrete FM languages should specify these functions. This
also acts as an interface to the function, providing guidance
on how it should be specified and implemented. For exam-
ple, the predicate addOptional , has the signature FM →
FM → Feature → Feature → boolean. It receives the origi-
nal and target FMs, together with the added feature and its
parent. So, we establish that after adding an optional fea-
ture to an FM, the resulting FM generates a superset of the
product configurations generated by the original FM. Addi-
tionally, the parent feature must be an existing feature in
the original FM and, conversely, the added feature should
not exist. This axiom prevents instantiating this function
with a concrete function that would remove a feature from
the original FM, for example. For the remaining functions
that deal with adding features, we define similar axioms.
Since the product line refinement theory only requires that
FMs must define a semantics function, it is straightforward
to instantiate this intermediate theory into the general the-
ory for product line refinement. Thus, this FM language is
consistent with the product line refinement theory. So, any
language that instantiates it can also rely on any property
that we prove according to the refinement theory.

We also formalize an intermediate CK language. We pro-
vide further detail, but, again, this is not a concrete language
that we can use in practice to generate products. Rather,
in this theory we abstract a set of properties observed from
concrete CK languages that model the tabular notation il-
lustrated in Figure 5. We extracted such properties by an-
alyzing the different templates derived from our studies on
product line evolution [16, 15, 5]. For proving soundness of
each template, we defined auxiliary lemmas that illustrated
important properties, such as replacing a feature expression
in the CK by an equivalent one does not change CK evalu-
ation. In the intermediate CK language, these lemmas be-
come axioms. We use these axioms to prove templates at
a higher level of abstraction, exploring similarities between
concrete FM and CK languages. This allows reusing the
templates (and proofs) for concrete FM and CK languages
that comply with the intermediate languages.

Any CK language depends on FMs, as we evaluate the CK
against configurations that come from the FM. Therefore,
for this intermediate language, instead of defining and as-
suming FM types and functions, which would result in dupli-
cated specifications, we use theory parameterization, which
provides support for universal polymorphism. The interme-
diate CK language receives as parameter types and func-
tions that correspond to FMs, its semantics function, and
other useful auxiliary functions useful for establishing prop-
erties needed for proving templates, such as addOptional .
We then reuse concepts and functions defined in the inter-
mediate FM language to specify properties that we use to
prove refinement templates. Any types passed as parame-
ters must comply with the intermediate FM theory, which
we do by means of theory interpretation. In what follows,
we show how we specify, in PVS, this combination of theory
parameterization and interpretation mechanisms.

CKint[FM:TYPE, [||]:FM → P[Conf], ...]:THEORY
BEGIN
IMPORTING FMint{{ ..., FM:=FM, [[_]]:[||], ...}}
...
END CKint

We see that we pass types and functions such as FM, rep-
resenting the feature model, and [||], representing the se-
mantics function, to the intermediate CK theory (CKint) as
parameters. These parameters are then interpreted against
the FMint theory, which corresponds to the intermediate FM
language. So, any property that we prove with CKint is
available for any CK language that is compliant with it, as
well as any FM language that complies with FMint.

Although this theory specifies a generic CK based on the
tabular languages previously described, we do not assume a
particular representation. That is, we do not explicitly de-
fine that a CK consists of a set or a list of items where the
LHS is a feature expression and the RHS is an action, that
is, a set of asset names, or a transformation. Instead, for
generality, we assume the CK, CK items, and the RHS of
CK items as uninterpreted types, and we do not specify the
CK semantics function. Additionally, we assume auxiliary
functions for establishing properties, such as yielding all fea-
ture expressions and items from a CK; yielding the feature
expression and action of a CK item; checking whether or
not an asset name appears in a CK item. Based on such
auxiliary functions, we can also define concrete functions to
determine whether an asset name belongs to a CK or not,
passing a CK instead of a single CK item as argument.

Prior to establishing properties, we must also establish
that this CK notion is consistent with the one defined in
the product line refinement theory. As we do not provide
a specific representation for CKs, nor a concrete semantics
function, we delegate this to the concrete CK languages that
instantiate this language. We define an axiom stating that
CK evaluation is compositional— refining an AM that gen-
erates well-formed products for a CK yields refined and well-
formed products. Therefore, any valid instantiation of this
intermediate language fulfills this property and thus is con-
sistent with the properties defined in the general refinement
theory. Then, we can define additional properties, in the
form of axioms, that we can use to derive and prove refine-
ment templates. We must demand these properties because
we do not provide a fully formalized language.

5.2 Templates
We can represent a number of templates without a con-

crete FM or CK language. Therefore, this section presents
two templates specified and proven using the intermediate
FM and CK languages presented in the previous section.

Add variable feature with implementation

The transformation in Figure 1 specifies that adding an op-
tional feature is considered a safe evolution when the added
assets are only enabled by the new feature. Here, to explore
the reuse and similarity between templates, reducing also
the effort on proving them, we further abstract the specifics
of adding a feature together with its implementation and
define a single template that abstracts the three possible
templates we would have for dealing with variable features,
namely OR, alternative, and optional.

166

⊑

C ∉ features(F), C is not mandatory
resulting PL is well-formed

feature expressions from its imply C

K

A

K ∪ its

A ⊕ m
P

P

C

F F'

Figure 7: Add variable feature with implementa-
tion refinement template

Figure 7 illustrates the template and conditions. Although
we represent the FM using the propositional language, we
actually encode the template using the intermediate FM lan-
guage. As with the Add new optional feature refine-
ment template from Figure 1, we only require the original
FM to have at least one feature, identified in the transforma-
tion by the meta-variable P . We extend the AM arbitrarily,
provided that the result is a valid AM. So, the new entries
should not map names that are already mapped. Similarly,
C should be a feature name that does not appear in the
original FM, and its type cannot be mandatory.

As we discuss in Section 3, we encode templates by defin-
ing predicates to represent the syntactic relationships for
source and target product lines (syntax) and by transforma-
tion pre-conditions (conditions), parameterized by the meta-
variables, according to the template (see Equation 1). So,
to prove Add variable feature with implementation,
we need to establish both syntax and conditions predicates.

The syntax predicate specifies syntactic similarities and
differences between the source and target product lines. For
this transformation we define it as follows. We add a new C
feature as an optional node child of P , new items (its) to K,
and new mappings (m) to A. The ⊕ symbol denotes that we
override the asset mapping A with the names from m. We
use the predicate addVariableFeature(F, F ′, P, C) to denote
the disjunction of all possible situations for this template,
that is: (addOptional(F, F ′, P, C) ∨ addOR(F, F ′, P, C) ∨
addAlternative(F, F ′, P, C)). So, we establish a single tem-
plate to handle all types of variable features that we can add
to the FM, instead of establishing many templates.

For the conditions predicate, we require well-formedness
of the target product line, since we potentially have new
products, which we cannot provide any guarantee for. The
new feature C cannot be an existing feature in F and new
entries (m) do not use names from the asset mapping A. We
also establish that the new items added to the source CK
are only activated by C. Thus, for any configuration, if the
feature expression of the new CK items evaluate as true, the
C feature is present in that configuration.

Given the specifications for the syntax and conditions
predicates, informally discussed above, we introduce the main
property needed for proving soundness of the Add variable
feature with implementation transformation. Axiom 1
establishes that every product configuration c in the source
product line also appears in the target product line, and that
the product generated by evaluating c against the CK for
both product lines is exactly the same. The intuition is that

this must hold because the new items (its) are only activated
by the new feature C. So, product configurations without
C generate the same products, even after the change. Prov-
ing Add variable feature with implementation means
that the template applies to any concrete CK language that
satisfies Axiom 1.

Axiom 1. Adding variable feature with guarded items does
not affect CK evaluation

For feature models F , F ′, asset mappings A and A′, con-
figuration knowledge K and K′, set of CK items its, fea-
tures P and C, and set of mappings m, if wfCK (F,A,K),
syntax (...), and conditions(...), then

∀c ∈ [[F]] · c ∈ [[F ′]] ∧ [[K]]Ac = [[K′]]A
′

c

In what follows, we prove both product line refinement
and well-formedness of the resulting product line, as spec-
ified by the general theorem for proving soundness of tem-
plates (Equation 1).
Refinement: For arbitrary F , A, K, F ′, A′, K′, P , C, its,
assume wfPL(F,A,K), as we assume that we can only apply
the transformations for product lines that are well-formed,
and the syntax and conditions predicates. By Definition 2,
we have to prove that ∀c ∈ [[F]] · ∃c′ ∈ [[F ′]] · [[K]]Ac ⊑ [[K′]]A

′
c′ .

For an arbitrary c ∈ [[F]], using Axiom 1 instantiated with
the variables introduced above, we have that c ∈ [[F ′]]. Let

c′ be c and we have to prove that [[K]]Ac ⊑ [[K′]]A
′

c . From
Axiom 1, properly instantiated with c, we also have that
[[K]]Ac = [[K′]]A

′
c . The proof follows from this and asset set

refinement reflexivity [5].
Well-formedness: Well-formedness of the resulting prod-
uct line is a precondition, so the proof is trivial. We do not
know details about the new product configurations (those
that include C), but the precondition guarantees that the
extensions to the AM and CK lead to well-formed products.

Replace feature expression

We also further abstracted Replace feature expression,
illustrated in Figure 2. Figure 8 shows the resulting tem-
plate, specified in a higher abstraction level. Both F and A
are not detailed in the template, so we do not mention them
in the syntax predicate. We see that the source and target
CKs differ only with respect to one row. Each row is then
a CK item, i1 for the source CK and i2 for the target CK,
with the same RHS (ns). All other CK items (its) are the
same. So, we express the source CK as the union of i1 and
its, and the target CK similarly.

⊑
AF

nse ∪ its
AF

nse' ∪ its

F ⊢ e ⇔ e'
wt(e',F)

Figure 8: Replace feature expression refinement
template

167

Notice that we do not detail the structure of the LHS
or RHS of the CK. By abstracting these details, we can
prove this template using the intermediate FM and CK lan-
guages, and use it with any concrete language that instanti-
ates them. The conditions predicate establishes the relation
between e and e′, that is, the feature expressions in i1 and
i2. We specify that e and e′ are equivalent with respect to
F , so all product configurations from F lead to equivalent
evaluation for the feature expressions in i1 and i2. We also
specify that the feature expression in i2 is well-typed with
respect to F . In concrete FM languages, this could mean
that any feature referred to in the expression belongs to F .

Similar to Add variable feature with implementa-
tion, we also introduce an axiom to prove the Replace
feature expression transformation. Such axiom also re-
lies on the particular syntax and conditions predicate for
this specific template. Axiom 2 captures the fact that re-
placing a feature expression by an equivalent one, according
to the FM, does not affect CK evaluation. Since the expres-
sions are equivalent, for each product configuration, their
evaluation yields the same result, thus, all products remain
the same. In what follows, we specify the property using the
axiom, and detail both the refinement and well-formedness
proofs for this template, which use the specified property.

Axiom 2. CK evaluation is insensitive to equivalent fea-
ture expression

For feature model F , asset mapping A, configuration knowl-
edge K and K′, CK items i1, i2, and the set of CK items
its, if wfCK (F,A,K), syntax (...), and conditions(...), then

∀c ∈ [[F]] · [[K]]Ac = [[K′]]Ac

Refinement: For arbitrary F , A, K, K′, i1, i2, its, assume
the syntax and conditions predicates, and wfPL(F,A,K).
By Definition 2, we have to prove that ∀c ∈ [[F]] · ∃c′ ∈
[[F]]·[[K]]Ac ⊑ [[K′]]Ac′ . For an arbitrary c ∈ [[F]], let c′ be c and
we then have to prove that [[K]]Ac ⊑ [[K′]]Ac . By Axiom 2 and
the assumptions, properly instantiated with the variables
just introduced, we have that ∀c ∈ [[F]] · [[K]]Ac = [[K′]]Ac .
The proof follows by instantiating this with the c used above
and from asset set refinement reflexivity [5].
Well-formedness: Using Axiom 2, we have obtained [[K]]Ac =
[[K′]]Ac for any c ∈ [[F]]. Following the same steps, since prod-
ucts from the target product line refine products from the
source by reflexivity, and the fact that wfPL(F,A,K), the
target product line is well-formed.

5.3 Discussion
The application of product line concepts to the refinement

theories brings benefits when integrating more FM and CK
concrete languages. For any additional concrete languages
satisfying the axioms and properties defined in the interme-
diate FM and CK languages, the refinement templates can
already be reused. That is, any refinement template proven
using the intermediate languages can be automatically ap-
plied to concrete FM and CK languages, provided that they
are consistent with the intermediate languages.

To prove consistency of such languages, we can follow the
pattern illustrated in Figure 6, providing interpretations for
the uninterpreted types in the intermediate languages. This
way, axioms, such as the ones discussed in the previous sec-
tion, become proof obligations, to ensure that the concrete
language being formalized is actually consistent with the in-

Table 1: Overview of refinement templates formal-
ized using the intermediate languages.

Template Gain
Add Variable Feature with Implementation 3 ∗Nf ∗Nk

Add Any Feature without Implementation 4 ∗Nf ∗Nk

Renaming 2 ∗Nf ∗Nk

Replace Feature Expression 1 ∗Nf ∗Nk

Remove dead assets 1 ∗Nf ∗Nk

Add dead assets 1 ∗Nf ∗Nk

termediate languages. Proving this leads to automatic reuse
of any template proven that uses the axiom.

Table 1 shows an overview of the templates formalized (so
far) using the intermediate FM and CK languages. For each
template, we express the benefits of abstracting it using a
formula, where Nf and Nk refer to the number of concrete
languages formalized that comply with the intermediate FM
and CK languages, respectively. Therefore, the benefits in-
crease as we formalize and integrate more concrete languages
into the product line of theories. So, in the long run, we re-
duce the effort for specifying and proving templates. The
number multiplying Nf and Nk refers to the number of pre-
vious templates that were abstracted by the new template.
For example, as discussed, Add variable feature with
implementation actually abstracts over the addition of op-
tional, alternative, and OR features. In this case, the tem-
plate formalization already provides an initial gain, that is
further increased as we formalize additional languages.

Add any feature without implementation refers to
an intermediate step that we observed on the evolution of
some product lines [16, 15]. In some cases, it was useful to
introduce new features to the FM, regardless of their type,
for organization, as abstract features [24]. After introducing
such feature, we can actually use it to extend the product
line. For example, a report application might have only one
output method, HTML, referred to in the FM as Output.
We can add a new subfeature HTML, and later create new
features that will form an OR relation with HTML. This
template establishes that it is possible to add any feature to
the FM, without changing the assets or the CK, since it does
not affect CK evaluation. In this case, as we can add any
type of feature, Nf and Nk are multiplied by 4. Renaming
further abstracts the possibility of renaming features in the
FM or feature expressions in the CK, so we multiply by 2.
Since feature names do not matter, we establish this through
an axiom stating that the actual products generated are the
same, even though feature names have changed.

Finally, Add dead assets and its counterpart Remove
dead assets detail the transformations where we add or
remove assets that are not referred to in the CK. This can
happen due to a feature retirement, where these assets would
no longer be associated with any feature in the CK. This
reflects the general idea for establishing this hierarchy of
theories through a product line, detailed in Section 4, where
we try to establish properties at the highest abstraction level
possible to prove refinement templates. We establish the fact
that adding or removing unused assets does not affect CK
evaluation. Since no CK item refers to such assets, for each
product configuration, CK evaluation yields the same result,
thus, all products remain the same and we prove refinement
and well-formedness.

168

The templates specified using the intermediate languages
were proven according to asset set refinement reflexivity [5].
This reflects the fact that the syntax and conditions for ap-
plying these templates are related to changes in the FM and
CK. Since we do not provide further detail over assets, we
do not have any template such as Split asset or Merge
assets [16, 15], that were previously defined using concrete
FM and CK languages. The proof for these templates also
involved structural details over the concrete CK language
and compositionality of the asset set refinement notion [5].

We have also conducted an initial evaluation over the evo-
lution of the product line of theories proposed. Such eval-
uation reinforces the expressiveness of the refinement tem-
plates proposed, evaluating them in a different context than
in previous studies [16, 15]. Figure 9 provides an overview of
the evolution of this product line, highlighting the number
of safe evolution scenarios between each version.

r0 r1 r2

4 safe
evolution
scenarios

r3 r4

5 safe
evolution
scenarios

4 safe
evolution
scenarios

13 safe
evolution
scenarios

Figure 9: Evolution of the product line of theories.

The first version of the refinement theory (r0) was not
a product line. So, we first applied an extractive adoption
strategy [12] to create the product line out of the existing
product. r1 consisted of refining the general theory and di-
rectly instantiating it with concrete formalizations of FM
and CK languages [5], also specifying refinement templates
specific to these languages, that were evaluated for expres-
siveness [16, 15]. The safe evolution scenarios consisted of
adding the two optional features together with their assets
(Add variable feature with implementation), and re-
fining the existing theory (Refine asset).

For the subsequent versions, we used a reactive strat-
egy [12] to evolve this product line, extending it to contem-
plate more products according to our needs. For example,
after r1, we started investigating the evolution of annota-
tive product lines such as RGMS [15]. Thus, we needed to
formalize a CK language that considered transformations,
and consequently define refinement templates specific to this
language. So, besides using Add variable feature with
implementation and Refine asset, we also used Add
any feature without implementation, since we added
a mandatory feature only for organizing the FM.

The next evolution step consisted of formalizing the re-
finement theories for product populations and multi prod-
uct lines [22]. In this case, we only added two optional fea-
tures directly connected to the root. We again used Add
variable feature with implementation, and Refine
asset for changes to the product line refinement theory.
We then realized that we could exploit similarities between
the different FM and CK languages formalized, as discussed
in Section 3. Therefore, we restructured the product line,
creating new intermediate theories for FM and CK, formal-
izing another FM language, and restructuring the templates
accordingly. By successive application of the refinement
templates, in both extractive and reactive steps of the evo-
lution of this product line, we assured safe evolution.

6. RELATED WORK
Thüm et al. conducted a survey that proposed a classi-

fication of product line analysis strategies [23]. They pro-
pose three main classification strategies, which can also be
combined: product-based, feature-based, and family-based.
They indicate how the analysis strategy deals with variabil-
ity. Here, we do not describe product line analyses, but when
specifying our product line of theories, we have properties
and templates specified and proved using the three strate-
gies. Properties proven at the refinement theory level are
family-based. Intermediate and concrete languages intro-
duce feature-based properties, in the sense that they can be
reused for many products, although they are not available
for the entire family. Moreover, some properties are only
specified for a particular combination of concrete FM and
CK languages, thus, characterizing a product-based strat-
egy. The refinement templates that are the result of these
theories describe product line transformations in different di-
mensions, combining different FM, asset, and CK languages.

Delaware et al. proposed product lines of theorems and
proofs built from feature modules [8], realized in the Coq
proof assistant. They applied product line techniques to
decompose a programming language specification into the-
orems about properties of this language. Each module con-
tains proof fragments, modularizing mechanized meta-theory
proofs. Feature selection is manually performed, as we do
here for instantiating and interpreting the theories. Differ-
ent from what we do, based on a user’s selection, the cor-
responding correctness proof is generated. In this work, we
did not explore proof automation, and our theories, theo-
rems and proofs have a different focus, regarding safe prod-
uct line evolution. Moreover, our aim is similar to theirs, in
the sense that we focus on a systematic approach to proving
properties, to avoid rechecking proofs when instantiating the
theories, although we use different mechanisms. Moreover,
their formalization actually could be used as a feature in our
product line, under the Assets feature in Figure 4.

Thüm et al. propose proof composition as a novel tech-
nique for generating correctness proofs for verifying a Java-
based product line [26]. They rely on annotations for gener-
ating proof obligations, and specify feature-based proofs, to
avoid specifying proofs for each program variant. The proof
files are composed together in a single proof file, which is
then checked. The structured approach for specifying our
theories already generates proof obligations, through PVS
theory interpretation mechanism. Nonetheless, we do not
need to recheck proofs performed at higher abstraction lev-
els. However, we do need to discharge the proof obligations
to ensure that the interpretations are consistent with the
intermediate languages and the general refinement theory.

Thüm et al. also proposed a family-based deductive ver-
ification approach [25]. They apply variability encoding to
specifications, aiming to prove correctness of product lines
specified using the Java Modeling Language (JML). Differ-
ent from their work, we are not interested on proving cor-
rectness of a specific product line, but rather properties and
transformations that can apply to any product line specified
using the concrete languages formalized through our prod-
uct line. Moreover, we use a combination of family-based,
feature-based, and product-based strategies.

Staples et al. aim to evaluate productivity for proof en-
gineering, establishing it as a key property for estimating
effort on formal verification projects [20]. Their initial re-

169

sults indicate that proof effort is highly correlated with proof
size. Our product line of theories also aims to reduce the
effort on specifying and proving properties and templates,
through a combination of mechanisms such as theory inter-
pretation and parametrization. While we have not empiri-
cally assessed our productivity, we intend to do so, to pro-
vide further evidence for the benefits of applying product
line concepts to structure our theories and templates.

7. CONCLUSIONS
In this work, we apply product line concepts to theories

for reasoning about safe evolution of product lines, avoid-
ing duplicated specification and proof tasks, thus, in the
long run, reducing the effort for such tasks. We combine
family, feature and product-based strategies [23] to achieve
this goal, through mechanisms such as theory interpretation
and parameterization, that could be applied in other con-
texts. Moreover, by using intermediate languages we can
reuse templates for any concrete language that satisfies the
properties established on the intermediate languages. We
detail two properties and their associated refinement tem-
plates, and also discuss other templates, and the obtained
gain. Finally, we use the refinement theory to reason over
the safe evolution of the presented product line.

As future work, we intend to formalize more concrete lan-
guages for the product line artifacts, increasing the benefits
on specifying the intermediate languages. We also intend to
further investigate how to measure the return on investment
of using product line concepts for the theories. Additionally,
we intend to provide tool support for creating and applying
refinement templates at different levels of abstraction.

Acknowledgments
This work was partially supported by the National Insti-
tute of Science and Technology for Software Engineering,5

funded by CNPq (573964/2008-4) and FACEPE (APQ 0388-
1.03/14). We acknowledge financial support from FACEPE
grant APQ-0570-1.03/14, and CNPq scholarships and grants
477943/2013-6, 306610/2013-2.

8. REFERENCES
[1] S. Apel, D. Batory, C. Kaestner, and G. Saake.

Feature-Oriented Software Product Lines: Concepts
and Implementation. Springer, 2013.

[2] D. S. Batory. Feature models, grammars, and
propositional formulas. In SPLC, 2005.

[3] R. Bonifácio and P. Borba. Modeling scenario
variability as crosscutting mechanisms. In AOSD,
2009.

[4] P. Borba, A. Sampaio, A. Cavalcanti, and M. Cornélio.
Algebraic reasoning for object-oriented programming.
Science of Computer Programming, 52:53–100, 2004.

[5] P. Borba, L. Teixeira, and R. Gheyi. A theory of
software product line refinement. Theoretical
Computer Science, 455:2 – 30, 2012.

[6] K. Czarnecki and U. W. Eisenecker. Generative
programming: methods, tools, and applications. ACM
Press/Addison-Wesley, 2000.

5http://www.ines.org.br

[7] K. Czarnecki, S. Helsen, and U. W. Eisenecker.
Formalizing cardinality-based feature models and their
specialization. Software Process: Improvement and
Practice, 10(1):7–29, 2005.

[8] B. Delaware, W. Cook, and D. Batory. Product lines
of theorems. In OOPSLA, 2011.

[9] E. Dijkstra. Notes on structured programming.
Academic Press, 1971.

[10] N. Dintzner, A. Van Deursen, and M. Pinzger.
Extracting Feature Model Changes from the Linux
Kernel Using FMDiff. In VaMoS, 2013.

[11] C. Kästner, S. Apel, and M. Kuhlemann. Granularity
in software product lines. In ICSE, 2008.

[12] C. W. Krueger. Easing the transition to software mass
customization. Lecture Notes in Computer Science,
2290:178–184, 2002.

[13] J. Liu, D. Batory, and C. Lengauer. Feature oriented
refactoring of legacy applications. In ICSE. ACM,
2006.

[14] R. Lotufo, S. She, T. Berger, K. Czarnecki, and
A. Wasowski. Evolution of the Linux kernel variability
model. In SPLC, 2010.

[15] L. Neves, P. Borba, V. Alves, L. Turnes, L. Teixeira,
D. Sena, and U. Kulezsa. Safe evolution templates for
software product lines. J. Syst. Softw., 106(0):42 – 58,
2015.

[16] L. Neves, L. Teixeira, D. Sena, V. Alves, U. Kulezsa,
and P. Borba. Investigating the safe evolution of
software product lines. In GPCE, 2011.

[17] S. Owre and N. Shankar. Theory interpretations in
PVS. Nasa/cr-2001-211024, 2001.

[18] S. Owre, N. Shankar, J. M. Rushby, and D. W. J.
Stringer-Calvert. PVS Language Reference. SRI
International, 2001. Version 2.4.

[19] L. Passos, J. Guo, L. Teixeira, K. Czarnecki,
A. Wasowski, and P. Borba. Coevolution of variability
models and related artifacts: a case study from the
Linux kernel. In SPLC, 2013.

[20] M. Staples, R. Jeffery, J. Andronick, T. Murray,
G. Klein, and R. Kolanski. Productivity for proof
engineering. In ESEM, 2014.

[21] L. Teixeira, P. Borba, and R. Gheyi. Safe composition
of configuration knowledge-based software product
lines. J. Syst. Softw., 86(4):1038–1053, 2013.

[22] L. Teixeira, P. Borba, and R. Gheyi. Safe evolution of
product populations and multi product lines. In
SPLC, 2015.

[23] T. Thüm, S. Apel, C. Kästner, I. Schaefer, and
G. Saake. A classification and survey of analysis
strategies for software product lines. ACM Comput.
Surv., 47(1):6:1–6:45, 2014.

[24] T. Thüm, C. Kästner, S. Erdweg, and N. Siegmund.
Abstract features in feature modeling. In SPLC, 2011.

[25] T. Thüm, I. Schaefer, S. Apel, and M. Hentschel.
Family-based deductive verification of software
product lines. In GPCE, 2012.

[26] T. Thüm, I. Schaefer, M. Kuhlemann, and S. Apel.
Proof composition for deductive verification of
software product lines. In VAST, 2011.

170

