
Safe evolution of product populations and multi product
lines

Leopoldo Teixeira
Federal University of

Pernambuco
lmt@cin.ufpe.br

Paulo Borba
Federal University of

Pernambuco
phmb@cin.ufpe.br

Rohit Gheyi
Federal University of Campina

Grande
rohit@dsc.ufcg.edu.br

ABSTRACT
A product line is often developed in the context of a set of re-
lated product lines. When supporting separate feature development,
we might have product populations, with product line versions be-
ing simultaneously developed in different branches. Multi product
lines involve a number of product lines that depend on each other.
A product line refinement notion formalizes safe evolution, but this
is not sufficient for reasoning over sets of product lines. We propose
refinement notions and compositionality properties that help to ex-
plain how we can support modular development in these contexts.
Thus, we formally define the foundations for safe and modular evo-
lution of product populations and multi product lines, enabling de-
velopers to perform changes in a systematic manner.

CCS Concepts
•Software and its engineering → Software product lines; Soft-
ware evolution;

1. INTRODUCTION
Due to technical and market reasons, a Software Product Line1 is

often developed in the context of a set of related product lines [17,
5]. In the context of product populations [17] we have product
lines sharing assets and covering domains with overlapping func-
tionality, maybe even being simultaneously developed in different
branches and repositories, when supporting separate feature devel-
opment [5]. Multi product lines combine and compose product
lines, which might be independently developed, but depend on each
other to generate a final product [8, 9, 13]. When evolving such sets
of product lines, sometimes it is important to check if changes pre-
serve the observable behavior of existing products.

A theory of product line refinement [4] formalizes safe evolution
as a refinement notion, providing guidance when behavior should
be preserved after changes, when we want to make sure that changes
do not impact existing products. It takes the broader view of refine-

1Hereafter, product line.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SPLC 2015, July 20 - 24, 2015, Nashville, TN, USA
c⃝ 2015 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-3613-0/15/07. . . $15.00
DOI: http://dx.doi.org/10.1145/2791060.2791084

ment [6]2 as a relation that preserves behavior to assure safe evo-
lution. The notion considers variability and configuration models,
and is compositional with respect to changes in such elements [4].

While we can rely on this theory for reasoning about individual
product line evolution, it is not sufficient for reasoning over sets of
product lines [17, 8, 9, 13]. For modularity’s sake, safe evolution
of an individual member should not affect the related product lines
in the same set. Neglecting such compositionality issues can lead
to bugs. For example, bug #85573 shows that a feature change in
the Linux kernel causes Ubuntu 4.10 to not work at all in some
systems. Similar scenarios are found in the bug tracking systems
of other Linux distributions, that resemble multi product lines.

To understand the compositionality issues and establish the foun-
dations for safe and modular evolution in these contexts, we pro-
pose refinement notions for product populations and multi product
lines, which can provide guidelines that could minimize adoption
and maintenance costs. For product populations, it enables rea-
soning over scenarios such as merging product line versions de-
veloped in different branches or repositories, to provide guarantees
that there were no unintended interactions in the evolution of the
different versions. For multi product lines, it supports scenarios
such as creating a multi product line out of an existing large product
line, which can be useful for enabling distributed development [5].

More importantly, we also specify and compositionality theo-
rems, which reveal conditions that guarantee safe evolution and
help to explain how we can support modular development. We pro-
vide additional evidence that changes to individual product lines of
a multi product line must be harmonized [8]. The identified condi-
tions can also be useful for the implementation of refinement veri-
fication tools. To specify and prove our theories and composition-
ality properties, we use the Prototype Verification System (PVS).
Specification and proof files are available at our online appendix.4

We organize the remainder of the text as follows. In Section 2 we
overview product populations and multi product lines. We present
our formalization, refinement notions, and compositionality prop-
erties in Section 3. We discuss related work in Section 4, and con-
clude in Section 5.

2. OVERVIEW
A product population is a set of product families [17], useful

when we need to deal with a wide scope of products, reusing func-
tionality across related domains. We observe this in companies and
open source projects that adopt distributed development, whether
by discipline, along a software supply chain, or by accident [5]. For
2Feature-oriented programming [10] uses this term in the quite dif-
ferent sense of overriding or adding extra behavior to assets.
3https://bugs.launchpad.net/bugs/8557
4http://www.leopoldomt.com/papers/mpl-populations

171

example, TaRGeT,5 a product line of model-based test generation
tools. In a give moment of time, between the circles in Figure 1, an-
other organization became interested in using the tool. Since some
of the features were not open source, a separate branch was set up.
In this branch, the new organization could use the open source fea-
tures and develop new ones, according to its requirements.

main branch (company 1)

separate branch (company 2)

Nov '09
Release 5.0

Jul '09
Release 6.0

Jan '10

Figure 1: TaRGeT evolution

We also observe this branching model in other projects. In TaR-
GeT, besides development reasons, there was also the issue of fea-
tures that could not be shared among organizations. Nonetheless,
some features developed in the separate branch were later inte-
grated to the main one, so there was a need to to relate product
lines through merging. This way, it would be possible to ensure
that users could still use existing products without observable be-
havior changes after the merge. Other scenarios can also benefit
from relating sets of product lines, such as splitting a large and
complex product line into smaller ones due to business reasons.

Multi product lines [8, 13] combine and compose multiple prod-
uct lines, that are independently developed but depend on each
other to generate a product. For example, consider the Ubuntu
Linux distribution, which integrates a number of configurable sys-
tems, including the Linux kernel, and needs to manage dependen-
cies among these systems to generate products [8]. A previous
study shows that in the Debian distribution, although packages are
developed in separate, they are subject to complex dependencies [7].

Figure 2 shows a simplified Ubuntu multi product line using fea-
ture models. LK stands for the Linux kernel, where each product
targets an architecture (Arch). PCI_MSI is a network driver, and
Default is the default kernel configuration used by the distribution.
BB stands for BusyBox, which combines common UNIX utilities
into a single small executable. GETOPT_LONG enables parsing
long command-line options. Finally, KI stands for Kickstart, an
automated installation method, that can optionally store configura-
tion files on a server. Dependencies among the product lines hap-
pen, such as Kickstart requires GETOPT_LONG. Dots and open
ended lines denote irrelevant features for this example.

GETOPT_LONG

BusyBoxLinux

PCI_MSI

amd64

Arch

x86

...

Kickstart ⇒ GETOPT_LONG
GETOPT_LONG ⇒ Default

Default ⇒ ¬ PCI_MSI

LK BB

...

KickstartKI

...

Default

Store file on server

Figure 2: Simplified Ubuntu multi product line.

Dependencies must be taken into account when configuring multi
product lines [8, 13]. A product actually consists of combining
products from the product lines that satisfy such dependencies. So,
using pairs of product lines and their respective configurations, al-
though each pair in {(BB,{BusyBox, GETOPT_LONG,...}), (LK,
5http://www.cin.ufpe.br/~target/

{Linux,Arch,amd64,...}), (KI, {Kickstart, ...})} individually con-
sists of valid configurations from the constituent product lines, their
composition violates the constraint GETOPT_LONG ⇒ Default.

To enable modular development, it is important to ensure that,
when maintaining an individual product line, we preserve the be-
havior of existing products. The Ubuntu bug #2935866 shows that
after an evolution, GETOPT_LONG was no longer associated to
the default configuration. This affected almost all uses of Kickstart.
Another example is the previously mentioned bug #8557, where a
feature was enabled by default after a change. This illustrates the
need for relating sets of product lines to guarantee safe evolution.

3. FORMALIZATION
We extend the product line refinement theory [4], briefly intro-

duced in Section 3.1. The following sections specify refinement no-
tions and compositionality properties for product populations and
multi product lines, using a simplified PVS notation.

3.1 Product Line Refinement Theory
The refinement theory defines a product line as three elements

that jointly generate well-formed products: (i) a variability model
F ; (ii) an asset mapping A, providing the means for referring to as-
sets; (iii) a configuration knowledge K, mapping features to assets.
It does not rely on particular languages that can be used to represent
such elements, as long as some assumptions are satisfied. For ex-
ample, for a variability model F , it only assumes a generic function,
denoted by [[F]], that defines its semantics as a set of configurations.
Therefore, assuming a semantics function for generating products
according to a configuration c, represented as [[K]]Ac , we formalize
a product line as ∀c ∈ [[F]] ·wf ([[K]]Ac). We use [[L]] to denote the set
of products of a product line, given by {[[K]]Ac | c ∈ [[F]]}.

Assuming a relation ⊑ that establishes refinement of an asset set,
the product line refinement notion lifts behavior preservation from
products to product lines, overloading the symbol. We use L ⊑ L′

to denote that the product line L is refined by L′, whenever each
product p generated by L is refined by some product p′ of L′, for-
malized as ∀p ∈ [[L]] ·∃p′ ∈ [[L′]] · p ⊑ p′. The definition focuses on
the generated products, therefore, feature names do not matter. Re-
finements are safe transformations in the sense that we can change
a product line without impacting existing users, because behavior
of the existing products is preserved. For example, by improving
the internal structure of a feature implementation. Certain kinds of
useful changes are not refinements, such as bug fixes, where the in-
tention is to change behavior. Nonetheless, studies about the evolu-
tion of the Linux kernel [12] show that most of the changes consist
of adding new features and modifying existing ones. Product line
refinement is compositional, so F , K, and A can be independently
modified under certain conditions [4]. However, the existing theory
does not handle relating multiple product lines, as needed to deal
with safe evolution scenarios involving sets of product lines.

3.2 Product populations
Assuming that a set of product lines defines a product population,

we specify the corresponding type Population as a set of product
lines (PL), represented as P[PL]. We also use [[P]] to denote the
set of products of P, given by

⋃
L∈P[[L]]. Product population refine-

ment then follows the same reasoning as product line refinement,
preserve behavior of existing products in the original population.
We again lift the notion of behavior preservation, this time from
product lines to product populations.

6https://bugs.launchpad.net/bugs/293586

172

DEFINITION 1. A product population P is refined by another
P′, denoted by P ⊑ P′ whenever ∀p ∈ [[P]] ·∃p′ ∈ [[P′]] · p ⊑ p′

We define refinement in terms of the actual products generated
by the population. Defining it using the product line refinement
notion (∀L ∈ P · ∃L′ ∈ P′ · L ⊑ L′) would restrict the changes that
we could support. For example, when splitting a product line, this
alternative definition would not apply, while Definition 1 supports
it. We also prove that this notion is a pre-order. For conciseness,
we omit some theorems from the text, but they are available in the
online appendix.

We then establish conditions for evolving product lines that be-
long to a population in an independent and parallel way. To prove
this, we use an auxiliary lemma establishing that product popula-
tion semantics is distributive, that is, for a product line L and prod-
uct population P, we have that [[L ∪ P]] = [[L]]∪ [[P]]. We use ∪
both to denote set union and insertion of an element to a set — in
the case of e∪ s, for an element e and set s, as an abbreviation for
{e}∪ s. In the following, we then establish that safely evolving a
product line that is part of a population implies safe evolution of the
entire population. This theorem also enables us to reuse the results
from safe product line evolution [11, 2, 4].

THEOREM 1. For product lines L and L′, and product popula-
tion P, if L ⊑ L′ then L∪P ⊑ L′ ∪P.
Proof: Assume that L ⊑ L′. By Definition 1, we have to prove, for
an arbitrary p ∈ [[L∪P]] that ∃p′ ∈ [[L′ ∪P]] · p ⊑ p′. For an arbi-
trary p we have that p ∈ [[L]]∪ [[P]] by the auxiliary lemma. By case
analysis, first consider that p ∈ [[L]]. The proof follows from our as-
sumption, since for all p∈ [[L]], there is a p′ ∈ [[L′]] such that p⊑ p′.
Let us now consider the case where p ∈ [[P]]. The proof follows by
letting p′ be p and from asset set refinement reflexivity [4].

Compositionality theorems provide a framework for reasoning
about modularity. For product populations, since products are in-
dependently generated, we only need to ensure refinement of the
individual product lines to guarantee safe evolution of the prod-
uct population. This reflects what happens in distributed develop-
ment, where branches evolve independently, as illustrated in Fig-
ure 1. Each branch corresponds to a different product line, due
to different requirements and even legal issues, and some features
developed in a separate branch were later integrated to the main
branch as optional features. The refinement notion is useful to re-
late sets of product lines, ensuring that integration does not change
the observable behavior of existing products. Another application
is the development of product variants using clone-and-own [14,
15, 3]. To obtain the benefits associated to product lines with re-
duced upfront investment, we can bootstrap a product line from ex-
isting products [14], using product population refinement to ensure
that we preserve behavior of existing products while doing so.

3.3 Multi Product Lines
Multi product lines also consist of sets of product lines, with con-

straints specifying how product lines relate to each other. There-
fore, the products are built by composing subproducts generated
from the product lines in the set, taking into account the constraints.
We represent configurations as a set of pairs (l,c) formed by a prod-
uct line l = (F,A,K) and one of its product configurations c ∈ [[F]],
which make the type PC. For a pair (l,c) we use [[(l,c)]] to abstract
the notation [[K]]Ac . We use [[_]](S : F [PC]) to denote that for a fi-
nite set of such pairs, the resulting product is the union of the asset
sets generated by each pair, given by

⋃
(l,c)∈S[[(l,c)]]. In Figure 2,

this corresponds to combining the assets of the subproducts from
the LK, BB, and KI product lines.

We formalize multi product lines as a finite set of product lines
and a finite set of constraints, as Figure 2 illustrates. Following

the same reasoning for the product line elements [4], we abstract
from particular languages, so we just assume Constraint as an un-
interpreted type, which imposes no assumptions over the defined
type. Likewise, we do not specify how a multi product line de-
fines its valid configurations. Given a set of product lines S and a
set of constraints C relating them, we use confs(S,C) to denote the
function that yields the set of product configurations that obey the
constraints. We then formalize multi product lines similarly as we
do for product lines. For a set of product lines S and a set of con-
straints C, we say that (S,C) is a multi product line (MPL) when all
of its products are well-formed: ∀pcs ∈ confs(S,C) ·wf ([[pcs]]).

For generality, we do not precisely specify what confs does.
Nevertheless, we use axioms, as an interface to provide guidance
and establish how this function should be specified. First, we re-
quire that all valid configurations from a multi product line m only
contain pairs in which the product line is a member of m, with at
most one pair for each constituent product line (Axiom 1). This
prevents confs from generating sets with more than one configura-
tion from the same product line. If needed, we can use cardinality-
based variability modeling to simulate having two configurations
from the same product line. We also do not demand that products
must have configurations from all product lines in the multi product
line. This enables the situation where we have an optional product
line, that is, some products from the multi product line do not have
any functionality coming from it. For example, in Figure 2, this
allows us to generate a Ubuntu distribution without the Kickstart
functionality. That is, without any feature from the KI product line.

We also require confs to preserve the set of configurations when
adding a new member to the multi product line without changing
the cross-product line constraints (Axiom 2). This is possible since
we establish that the valid configurations from a multi product line
do not need to contain configurations from all product lines. Re-
flecting what happens in practice, this allows adding new software
packages (product lines) with additional functionality to Ubuntu
(see Figure 2), such as extra filesystem modules, for instance.

Finally, as we consider sets of product lines, we need to take into
account that we might remove a product line from the set. There-
fore, we establish that if we remove the product line L from a multi
product line, confs must preserve the set of configurations that do
not receive any contribution from L (Axiom 3). That is, after the
change, we should still be able to generate any product that has no
functionality from L. So, if we remove the KI product line from
the Ubuntu example in Figure 2, this means that confs must con-
tinue generating all product configurations without the Kickstart
functionality. This way, we avoid impacting existing users.

We then formalize the semantics of a multi product line, that is,
the function that yields the actual set of products, by combining the
subproducts for each product configuration that confs yields. In our
formalization, we uniformly represent multi product line products
and product line subproducts as finite asset sets. So, for a multi
product line (S,C), we use [[(S,C)]] to denote its set of products,
given by { p : F [Asset] | ∃ pcs ∈ confs(S,C) · p = [[pcs]] }

Multi product line refinement then follows the same structure
of both product line and product population refinement. We state
that each product in the original multi product line must have a
correspondent product in the refined one.

DEFINITION 2. A multi product line (S,C) is refined by another
multi product line (S′,C′), denoted by (S,C) ⊑ (S′,C′), whenever
∀p ∈ [[(S,C)]] ·∃p′ ∈ [[(S′,C′)]] · p ⊑ p′

The difference from the previously discussed refinement notions
is the semantics function used to generate products, which works
composing subproducts from different product lines. We also prove
that multi product line refinement is a pre-order. Similar to what we

173

discuss for product populations, defining multi product line refine-
ment in terms of product line refinement is also not sufficient. The
constraints must be taken into account. For example, as product
line refinement does not care about feature names, a useful refine-
ment, such as feature renaming, could break existing products of
the multi product line, as this possibly affects the constraints.

We are also interested on properties that enable reasoning about
safe and modular evolution of the product lines that are part of a
multi product line. However, the natural dependencies among the
members of a multi product line, which we express as sets of con-
straints, can limit compositionality. As illustrated in Figure 2, con-
straints might relate features of different product lines. So, different
from compositionality in the product population context, safe evo-
lution of a product line that is part of a multi product line does not
necessarily implies on safe evolution of the multi product line.

As discussed, a mere feature renaming in a product line could
break existing products, if we do not update the constraints. Thus,
there are different ways in which we can evolve multi product lines,
leading to different conditions that must be checked to ensure re-
finement. Therefore, we can specify a number of compositionality
theorems, revealing specific conditions for modularly evolving a
multi product line in different situations, which include refining a
product line without changing the constraints, removing and merg-
ing product lines, and refining a product line together with the con-
straints. Here we present a particular theorem and its proof, but we
informally discuss other situations in what follows.

A particular scenario is when we modularly refine a constituent
product line without changing the constraints. That is, we safely
evolve a product line maintaining all existing configurations, due to
a refactoring, or by adding an optional feature, besides other sce-
narios. The product line refinement notion is insensitive to feature
names. So, in this case we require a stronger refinement notion,
sensitive to the name and semantics associated to each feature. It
states that all configurations from the variability model of a prod-
uct line L are also present in the resulting product line L′, and the
correspondent product is a refinement. We need to preserve config-
urations since we must ensure that we do not break the constraints,
as it happened on the Ubuntu bug #293586. We use (F,A,K) ≼
(F ′,A′,K′) to denote ∀c ∈ [[F]] · c ∈ [[F ′]]∧ [[K]]Ac ⊑ [[K′]]A

′
c . For

each c in the original product line, the same c generates a refined
product in the resulting product line.

THEOREM 2. Modularly evolving a constituent product line:
For product lines L and L′, a finite set of product lines S not con-
taining L or L′, and a finite set of constraints C, if L ≼ L′ and
wf (L′ ∪S,C), then (L∪S,C)⊑ (L′ ∪S,C).
Proof: Assume that L ≼ L′ and wf (L′ ∪ S,C). By Definition 2,
we have to prove, for an arbitrary p ∈ [[(L ∪ S,C)]], that ∃p′ ∈
[[(L′ ∪S,C)]] · p ⊑ p′. For such an arbitrary p, we have that ∃ pcs ∈
confs(L∪ S,C) · p = [[pcs]]. Let ps be such pcs. By case analy-
sis, first consider that L /∈ ps. By Axiom 3, we have that pcs ∈
confs(S,C). By Axiom 2, we then have that pcs ∈ confs(L′ ∪S,C).
The proof follows from asset set refinement reflexivity [4]. Let us
now consider the case where L ∈ ps, which means that there is one
pair (L,c) in ps such that c is a configuration from L. From L ≼ L′,
we have that all configurations from L are in L′ and refine existing
products. Therefore, we replace (L,c) with (L′,c) in ps and the
proof follows from the compositionality of asset set refinement [4].

We do not preclude the new product line from having more prod-
ucts than the original. However, when [[F]] is equivalent to [[F ′]], the
refined product line generates the exact same configurations as the
original. In this case, we do not need to require well-formedness as
a condition for the theorem, since we can prove it by composition-
ality of the asset set refinement notion [4]. Also, we require that

the refined product line L′ is not an element of S. This forbids the
pathological situation where we would transform the product line
L into a product line L′ which already exists in the multi product
line, which is one of the particular safe evolution scenarios we can
also address with different compositionality theorems. A general
scenario would be evolving a product line together with the con-
straints. Then, we need to impose strong restrictions for specifying
the compositionality theorem, which reflects results from an expert
survey, where participants pointed out that changes to individual
product lines must be harmonized [8]. Another scenario would be
evolving only the constraints. Then, we need to ensure that the
existing configurations generated by confs are still generated.

Adding an optional feature to the BusyBox (BB) product line
in Figure 2, without changing the constraints, is an example of
modularly evolving a constituent product line, as established in The-
orem 2. After the change, the new product line still generates all
of the original configurations, besides the ones containing the new
feature, which is compliant with the necessary condition for the
theorem. Through reflexivity, this results in safe evolution of the
multi product line, as established in Definition 2. Asset refinement
without changes to the variability model fits in the particular case
of modularly evolving a constituent product line where we gen-
erate the exact same configurations. We only need to check that
the particular asset set was refined, avoiding the need to check all
products. The theorem conditions are helpful to reveal conditions
for modularly evolving product lines and still assure safe evolution
of the multi product line, and are also useful for implementing tools
that could avoid problems such as the Ubuntu bugs.

As discussed, not all evolution scenarios are refinements, such
as feature retirement. Nonetheless, the refinement theories indeed
support some scenarios of feature retirement. For example, when
the retired feature is merged with an existing feature. This hap-
pens when developers add the capabilities of old device drivers into
recent ones, consequently removing the deprecated drivers [12].
When removing a product line L from the multi product line, we
need to make sure that each product that has some contribution
from L has a corresponding, behavior preserving, product in the
refined multi product line. In summary, we must be careful when
changing feature names, constraints, or eliminating existing con-
figurations. In fact, these configurations and the associated feature
names might be referred by the constraints. This can preclude safe
and modular multi product line evolution, since we might change
the observable behavior of existing products and thus impact users.

One could argue that we can model a multi product line as a large
product line with its associated artifacts. However, organizations
adopt multi product lines because they are structured by composing
products coming from different sources or teams. Additionally, we
would lose some of the modularity benefits. By structuring large
product lines, we could indeed use the product line refinement the-
ory to reason about evolving variability models and assets in sep-
arate. However, we would not be able to support reasoning about
changing different parts at the same time, since we would always
need to reason about the entire product line. This is possible us-
ing the multi product line formalization we present here, since we
can reason about individual product lines modularly using the com-
positionality theorems. The theory also allows us to safely trans-
form a large product line into a multi product line, and vice-versa.
We could also formalize product populations in a different way, in
terms of multi product lines. To do so, we would not have any
constraints among the product lines, and the confs function would
preclude combining subproducts from the constituent product lines
to generate the final product. For simplicity, we choose the more
direct way of formalizing populations presented here.

174

4. RELATED WORK
Rubin and Chechik used the product line refinement theory we

rely on for combining products into a product line [14]. They
presented an operator and proved its correctness according to the
product line refinement notion. The population refinement notion
we present is more comprehensive than solely relying on product
line refinement. They also proposed a framework for managing re-
lated product variants realized via cloning [15], defining abstract
operators for expressing maintenance scenarios. Antkiewicz et al.
proposed virtual platform [3] as an adoption strategy to ease the
transition from cloning to systematic product line engineering ap-
proaches. Although these works do not focus on ensuring safe evo-
lution through their operators and strategies, we could leverage the
population refinement notion to provide safety when applicable.

Some works focused on modeling, structuring, and analyzing
multi product lines, but also approaching evolution [13, 8, 9, 5,
16]. We abstract from implementation and modeling details, and
focus on formalizing key concepts and the conditions for safe evo-
lution, aiming to explain when, and in which sense, multi product
line development can be done modularly.

Rosenmüller et al. presented an approach to model and config-
ure multi product lines [13], using composition models to combine
product lines. They also support automating the configuration pro-
cess. Their work is complementary, as we could use their models as
a concrete instantiation of the multi product lines theory. Moreover,
their configurators could be used for implementing the confs func-
tion. Holl et al. performed a systematic review and an expert survey
on multi product line capabilities [8]. “Support for multi product
line evolution” was suggested by 30% of the participants. They
discuss that evolution is important, as changes to individual prod-
uct lines must be synchronized. They also proposed an approach
to manage dependencies during the configuration process [9], pro-
viding tool support. Relating to our work, this approach could be
useful for updating the constraints of a multi product line.

Acher proposed FAMILIAR, a language for managing multi-
ple variability models [1], including operators for merging feature
models. We can use the language and its operations to implement
the confs function, as well as reasoning about changes to a feature
model to verify conditions needed by compositionality theorems,
such as modularly evolving a constituent product line.

We can view ecosystems as multi product lines where the variant
space is open. Seidl and Assman presented an ecosystem variability
modeling notation [16], capturing temporal information to analyze
evolution over time. We go beyond variability models, but do not
model temporal information. Brummermann et al. formalized vari-
ability composition in information system ecosystems using partial
configurations, showing how it helps to address distributed evolu-
tion [5]. We abstract implementation details, but could use this ap-
proach to the confs function and avoid inconsistencies, by checking
the conditions from the compositionality theorems.

5. CONCLUSIONS
In this work, we extend the product line refinement theory [4]

with refinement notions for product populations and multi product
lines, to establish the foundations for safe and modular evolution in
these contexts. We also establish and prove compositionality theo-
rems, which establish conditions for individually evolving product
lines when reasoning over sets of related product lines. This en-
ables us to reuse and apply the results from product line safe evo-
lution [11, 2, 4], and helps to explain how modular development
can be supported in both approaches. We intend to further inves-
tigate modularity issues for safe evolution of product populations

and multi product lines, understanding their evolution patterns and
deriving refinement templates [11, 12].

Acknowledgments
This work was partially supported by the National Institute of Sci-
ence and Technology for Software Engineering,7 funded by CNPq
(573964/2008-4) and FACEPE (APQ 0388-1.03/14). We acknowl-
edge financial support from FACEPE grant APQ-0570-1.03/14, and
CNPq scholarships and grants 477943/2013-6, 306610/2013-2.

6. REFERENCES
[1] M. Acher. Managing Multiple Feature Models: Foundations,

Language, and Applications. PhD thesis, University of Nice
Sophia Antipolis, 2011.

[2] V. Alves, R. Gheyi, T. Massoni, U. Kulesza, P. Borba, and
C. Lucena. Refactoring product lines. In GPCE, 2006.

[3] M. Antkiewicz, W. Ji, T. Berger, K. Czarnecki,
T. Schmorleiz, R. Lämmel, S. Stănciulescu, A. Wąsowski,
and I. Schaefer. Flexible product line engineering with a
virtual platform. In NIER’2014, 2014.

[4] P. Borba, L. Teixeira, and R. Gheyi. A theory of software
product line refinement. Theoretical Computer Science,
455:2 – 30, 2012.

[5] H. Brummermann, M. Keunecke, and K. Schmid.
Formalizing distributed evolution of variability in
information system ecosystems. In VaMoS, 2012.

[6] E. Dijkstra. Notes on structured programming. Academic
Press, 1971.

[7] J. González-Barahona, G. Robles, M. Michlmayr, J. Amor,
and D. Germán. Macro-level software evolution: a case study
of a large software compilation. Empirical Software
Engineering, 14(3):262–285, 2009.

[8] G. Holl, P. Grünbacher, and R. Rabiser. A systematic review
and an expert survey on capabilities supporting multi product
lines. Inf. and Software Technology, 54(8):828–852, 2012.

[9] G. Holl, D. Thaller, P. Grünbacher, and C. Elsner. Managing
emerging configuration dependencies in multi product lines.
In VaMoS, 2012.

[10] J. Liu, D. Batory, and C. Lengauer. Feature oriented
refactoring of legacy applications. In ICSE, 2006.

[11] L. Neves, P. Borba, V. Alves, L. Turnes, L. Teixeira, D. Sena,
and U. Kulezsa. Safe evolution templates for software
product lines. J. Syst. Softw., Accepted for publication, 2015.

[12] L. Passos, J. Guo, L. Teixeira, K. Czarnecki, A. Wasowski,
and P. Borba. Coevolution of variability models and related
artifacts: a case study from the Linux kernel. In SPLC, 2013.

[13] M. Rosenmüller and N. Siegmund. Automating the
configuration of Multi Software Product Lines. In VaMoS,
2010.

[14] J. Rubin and M. Chechik. Combining related products into
product lines. In FASE, 2012.

[15] J. Rubin and M. Chechik. A framework for managing cloned
product variants. In NIER, 2013.

[16] C. Seidl and U. Assmann. Towards modeling and analyzing
variability in evolving software ecosystems. In VaMoS, 2013.

[17] R. van Ommering. Building product populations with
sofwtare components. In ICSE, 2002.

7http://www.ines.org.br

175

