
A Change-Centric Approach to Compile
Configurable Systems with #ifdefs

Larissa Braz
Federal University of Campina

Grande, Brazil
larissanadja@copin.ufcg.edu.br

Rohit Gheyi
Federal University of Campina

Grande, Brazil
rohit@dsc.ufcg.edu.br

Melina Mongiovi
Federal University of Campina

Grande, Brazil
melina@copin.ufcg.edu.br

Márcio Ribeiro
Federal University of Alagoas, Brazil

marcio@ic.ufal.br

Flávio Medeiros
Federal University of Campina

Grande, Brazil
flaviomedeiros@copin.ufcg.edu.br

Leopoldo Teixeira
Federal University of Pernambuco,

Brazil
lmt@cin.ufpe.br

Abstract
Configurable systems typically use #ifdefs to denote

variability. Generating and compiling all configurations
may be time-consuming. An alternative consists of using
variability-aware parsers, such as TypeChef. However, they
may not scale. In practice, compiling the complete systems
may be costly. Therefore, developers can use sampling strate-
gies to compile only a subset of the configurations. We pro-
pose a change-centric approach to compile configurable sys-
tems with #ifdefs by analyzing only configurations im-
pacted by a code change (transformation). We implement it
in a tool called CHECKCONFIGMX, which reports the new
compilation errors introduced by the transformation. We per-
form an empirical study to evaluate 3,913 transformations
applied to the 14 largest files of BusyBox, Apache HTTPD,
and Expat configurable systems. CHECKCONFIGMX finds
595 compilation errors of 20 types introduced by 41 develop-
ers in 214 commits (5.46% of the analyzed transformations).
In our study, it reduces by at least 50% (an average of 99%)
the effort of evaluating the analyzed transformations by com-
paring with the exhaustive approach without considering a
feature model. CHECKCONFIGMX may help developers to
reduce compilation effort to evaluate fine-grained transforma-
tions applied to configurable systems with #ifdefs.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors

Keywords Configurable Systems, #ifdefs, compilation
errors

1. Introduction
Developers often implement configurable systems by us-

ing preprocessor conditional directives, such as the #ifdef
macro, to allow defining parts of the source code as optional.
There are reports of industrial systems [2] and examples of
open source systems documented in detail [3] with a large
number of configurations, such as BusyBox1 and Apache.2

However, due to the complexity of dealing with variability
in C, developers may introduce compilation errors related
to conditional directives when evolving configurable C sys-
tems [7, 14, 16]. These compilation errors may appear only in
certain configurations, or in different ways in several configu-
rations. Developers believe that configuration-related errors
are harder to find and more critical than problems that appear
in all configurations [15].

Most of the available compiler tools, such as GCC,3 con-
sider only one configuration at a time. Generating and com-
piling all configurations may be costly. A brute force strategy
of generating, compiling, and testing all variants is not feasi-
ble for most configurable systems due to the high number of
potential variants [12]. Therefore, in practice developers only
check few configurations of the code or the default one [16].
Abal et al. [1] manually analyze commits of the Linux kernel
repository and find a number of configuration-related bugs.
They suggest the one-disabled sampling algorithm, which
deactivates one preprocessor directive at a time. Still, man-
ual analysis of configurable systems with a large number of
macros may be costly and error-prone.

1 https://www.busybox.net/ 2 http://www.apache.org/
3 https://gcc.gnu.org/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

GPCE’16, October 31 – November 1, 2016, Amsterdam, Netherlands
c© 2016 ACM. 978-1-4503-4446-3/16/10...$15.00

http://dx.doi.org/10.1145/2993236.2993250

109

https://www.busybox.net/
http://www.apache.org/
https://gcc.gnu.org/

1 #ifdef ENABLE_AUTH_MD5 && ENABLE_PAM
2 struct pam_userinfo {
3 const char *name;
4 const char *pw;
5 };
6 #endif

(a) Code snippet of the original httpd.c file.

1 #ifdef ENABLE_AUTH_MD5 && ENABLE_PAM
2 struct pam_userinfo {
3 const char *name;
4 const char *pw;
5 };
6 #endif
7 #ifdef ENABLE_PAM
8 struct pam_userinfo userinfo;
9 #endif

(b) Code snippet of the modified httpd.c file.

Figure 1: Code snippets of consecutive commits of httpd.c file. This transformation introduces an incomplete type definition compilation
error.

Variability-aware parsers, such as TypeChef [11], analyze
the code by considering the complete configuration space.
They generate abstract syntax trees enhanced with all vari-
ability information. However, the time-consuming setup and
compilation process of these tools hinder the analysis of some
projects. Medeiros et al. [14] propose an approach to improve
these issues by generating stubs to replace the original types
and macros from header files. To detect the configuration-
related errors, they check all configurations by parsing the
source code using a variability-aware parser, but ignoring
file inclusions (#include directives). They analyze 41 re-
leases of 8 configurable systems and find 24 syntax errors.
Later, Medeiros et al. [16] present a strategy that considers
only the header files of the target platform to minimize the
setup problems of variability-aware tools. They instantiate it
with TypeChef. They detect 16 configuration-related faults
(2 undeclared variables and 14 undeclared functions) and 23
warnings related to configurability in 15 configurable sys-
tems. However, none of the previous approaches consider
code changes in the analysis process to reduce the effort of
evaluating configurable systems.

We propose a change-centric approach to compile con-
figurable systems with #ifdefs4 by conducting a per-file
analysis. First, we receive a pair of files (original and mod-
ified) from a configurable system with #ifdefs. Then, we
perform a change impact analysis to identify all macros im-
pacted by a code change (transformation). Next, we generate
and compile all possible impacted configurations in both ver-
sions of the file. We collect the set of compilation errors
that appear only in the modified version of the configurable
system, and categorize them into distinct errors. Finally, we
report the set of different compilation errors and their related
configurations to the developers. We implement this approach
in an automated tool called CHECKCONFIGMX.

We conduct an empirical study to evaluate our approach.
We evaluate 3,913 transformations applied to the six largest
files of BusyBox, five largest files of Apache HTTPD, and
three largest files of Expat. We detect 595 compilation errors
in 214 pairs, which we categorize in 20 different kinds of er-
rors, such as incomplete type definition. Moreover, we reduce

4 Hereafter we refer to configurable systems as configurable systems with
#ifdefs

by at least 50% (an average of 99%) the effort to evaluate the
analyzed transformations by comparing with the exhaustive
approach without considering a feature model [10]. The com-
plete results are available online.5 The main contributions of
this paper are:

• an automated change-centric approach to compile config-
urable systems with #ifdefs (Section 3); and,

• an empirical study to evaluate the effectiveness and effort
of our approach to detect compilation errors in config-
urable systems (Section 4).

2. Motivating Example
In this section, we show an example of a compilation error

introduced by a fine-grained transformation applied to Busy-
Box. It is an open source software that has many Unix tools
compacted in only one executable file. Figure 1a presents
part of the httpd.c file (commit d2277e2), from BusyBox’s
repository that uses an #ifdef macro to declare the struct
pam_userinfo. This struct is declared only when we en-
able the ENABLE_AUTH_MD5 and ENABLE_PAM macros. In the
next commit, the developer adds a code snippet the file that
uses this struct when the ENABLE_PAM macro is enabled.
However, the modified code does not compile when we dis-
able ENABLE_AUTH_MD5 and enable ENABLE_PAM. The com-
piler reports the following error message: variable has
incomplete type “struct pam_userinfo.” Figure 1b il-
lustrates part of the modified code (commit 7291755). This
kind of error also occurs in other configurable systems (see
Section 4.6).

We attempt to execute TypeChef on the real modified file.
However, executing it is time-consuming since the modified
httpd.c file has 18 macros. Therefore, variability-aware
parsers may not scale to analyze this file since they may have
a costly setup and compilation process. Moreover, we execute
TypeChef on a toy example presented in Figure 1b. The tool
does not detect the issue since it does not check this kind
of error. Similarly, the approach proposed by Medeiros et
al. [16] also does not detect this compilation error.

Compiling all configurations of a file, such as httpd.c
may be costly even if we have a feature model that might

5 http://www.dsc.ufcg.edu.br/~spg/checkconfigmx

110

http://www.dsc.ufcg.edu.br/~spg/checkconfigmx

Input

(Step 1) (Step 2)

Input

(Step 4) Bugs Related
configurationsA

C
{ A }

{ A C }impacted
macros

Generating
impacted

configurations

Filter

Categori-
zation

...

... ...

Suspicious
condition

Suspicious
condition

Suspicious
condition

Output

{ A }

{ A C }

(Step 3)

...

Figure 2: A change-centric approach to compile configurable systems with #ifdefs. The approach receives two versions of a C configurable
system. It performs a change impact analysis to identify the macros impacted by the change (Step 1). Next, it generates all possible impacted
configurations and compiles all of them using GCC (Step 2). Then, it identifies the compilation errors that occur only in the modified version
of the system (Step 3). Finally, it categorizes the compilation errors introduced by the transformation into distinct ones (Step 4). The approach
reports the result of the categorization.

forbid several configurations. We can use some sampling
algorithms to check whether some configurations compile.
For example, the most-enabled-disabled has an efficient
balance between sample size and fault-detection capabilities
under different assumptions [17]. However, by using it, we
cannot detect this compilation error. The error is only exposed
by a configuration which only ENABLE_PAM macro is enabled.
In general, sampling algorithms that are not change-centric
may waste time attempting to compile configurations that
are not affected by the transformation, since they may not
have new compilation errors. To minimize this problem, we
propose a change-centric approach to compile configurable
systems, which analyzes only the configurations that may
have been impacted by the transformation (see Section 3).

3. A Change-Centric Approach to Compile
Configurable Systems

In this section, we describe our approach for compiling
configurable systems with #ifdefs by using change impact
analysis.

3.1 Overview
Our approach receives two versions of a C configurable

system file (original and modified). We assume that the
system has no compilation errors in the original version
and focus on finding the compilation errors introduced by a
transformation. In our approach, we consider a transformation
as a set of code changes in a configurable system file.

First, our approach performs a change impact analysis
that identifies the macros impacted by the transformation
(Step 1). It compares the text (diff) between the original
and modified files. The set of impacted macros contains
all macros that appear in the diff or that can enable the
modified code. Next, it generates all possible configurations
considering the impacted macros. The approach compiles
each selected configuration on both versions of the system
using GCC (Step 2). Then, it filters the compilation errors
that occur only in the modified version (Step 3). Finally, the
approach categorizes the compilation errors by grouping them

based on the similarity of their messages (Step 4). Figure 2
illustrates the main steps of our approach.

We implement our approach in a tool called CHECKCON-
FIGMX. CHECKCONFIGMX uses the Git diff command to
assist our change impact analysis. This command returns
the code changes between the original and the modified files
(transformation). CHECKCONFIGMX executes GCC to pre-
process and compile the configurable systems.

3.2 Change Impact Analysis
The first step of our approach consists of identifying the

set of macros impacted by the change. From two versions
of a file, our change impact analysis performs a textual diff
to identify the code snippets modified by the transformation.
Next, it searches for macros in the textual diff. We consider
that a macro is directly impacted by the change when the
textual diff contains it. A macro is indirectly impacted when
it enables the compilation of the modified code.

Figure 3 presents two code snippets of consecutive com-
mits in the httpd.c file, from the BusyBox’s repository. We
rename the macros to simplify the explanation. Figure 3a illus-
trates part of the original code (commit d2277e2). It declares
a function check_user_passwd under the M1 macro. The
file also contains other macros, such as M4 and M5. Developers
changed this file by adding code under the M1 macro. Fig-
ure 3b illustrates part of the modified file (commit 7291755).
Our approach compares the original and modified files and
identifies the textual diff between them (transformation). In
this example, the transformation adds the code in lines 2 to
4 and 7 to 12 of the modified code (Figure 3b). We consider
these code snippets as impacted by the change. The set of
directly impacted macros of this example consists only of the
M2 and M3 macros, since they are part of the code changes
(textual diff). Notice that they are nested with the M1 macro.
Therefore, M1 is indirectly impacted by the change since it
enables or disables the impacted code. The complete set of
impacted macros is: {M1, M2, M3}.

111

1 #ifdef M1
2 static int check_user_passwd () { }
3 #endif
4 #ifdef M4 && M5
5 static int miniHttpd(int server) { }
6 #endif

(a) Code snippet of the original httpd.c file.

1 #ifdef M1
2 #ifdef M2 && M3
3 static int pam_talker () { }
4 #endif
5 static int check_user_passwd () {
6 #ifdef M3
7 struct pam_conv conv_info =
8 { &pam_talker };
9 #endif

10 }
11 #endif
12 #ifdef M4 && M5
13 static int miniHttpd(int server) { }
14 #endif

(b) Code snippet of the modified httpd.c file.

Figure 3: Code snippets of consecutive commits of httpd.c file. This transformation introduces an undeclared variable compilation error.

3.3 Selecting Impacted Configurations
In this step, we yield all possible impacted configurations

from the set of macros impacted by a transformation iden-
tified by the previous step. We compile only the impacted
configurations since only these configurations may have new
compilation errors. As a result, we can save time and effort
by avoiding compiling non-impacted configurations.

First, we use a combinatorial algorithm to find all combina-
tions of the impacted macros. For example, consider the previ-
ous example (Figure 3). The modified file contains the M1, M2,
M3, M4, and M5 macros. The algorithm receives as input the
impacted macros (M1, M2 and M3) and returns the set of con-
figurations that enables their combinations. It returns the fol-
lowing set of configurations: {M1}, {M1 M2}, {M1 M3},
{M2}, {M2, M3}, {M3}, {M1, M2, M3}, {}. For sim-
plicity, we represent a configuration by its enabled macros.
Therefore, the configuration {M1} is equal to {M1, !M2,
!M3, !M4, !M5}.

Next, for each configuration found by the combinatorial
algorithm, we make a copy of it and enable all non-impacted
macros. For example, for the configuration {M1}, we
create a new configuration {M1, M4, M5} and add in the
set of impacted configurations. Therefore, our approach
identifies the following set of impacted configurations
for the previous example: {M1}, {M1, M2}, {M1, M3},
{M2}, {M2, M3}, {M3}, {M1, M2, M3}, {}, {M1,
M4, M5}, {M1, M2, M4, M5}, {M1, M3, M4, M5},
{M2, M4, M5}, {M2, M3, M4, M5}, {M3, M4, M5},
{M1, M2, M3, M4, M5}, {M4, M5}.

The number of impacted configurations is directly pro-
portional to the number of impacted macros. Our approach
analyzes O(2i+1) configurations, where i is the number of
impacted macros. It may have a better performance when an-
alyzing fine-grained transformations applied to highly config-
urable systems, since they tend to have few impacted macros
among a large set of macros.

We compile both file versions for each impacted configura-
tion. Since we identify the impacted configurations based on
the impacted macros of the modified version of the file, the

original version may not have the same macros. To compile a
configuration in the original code, we need to automatically
disable the macros that exist only in the modified code.

Figure 3 presents part of the httpd.c file with five macros.
However, the original file has 18 macros. We generate only
16 configurations (99% of reduction) to compile each version
of the file by using our approach. For this example, we find
a compilation error when M1 and M3 are enabled and M2 is
disabled.

3.4 Filtering and Categorizing Compilation Errors
In the filter step (Step 3), we automatically select the

compilation errors that appear only in the modified version
of the file. We filter the error messages according to their
templates. Each message contains: the kind of the error,
which includes the code element that caused it; and, the
line of the error (number and contents). Notice that, the
transformation may add or remove some lines of code before
the error, regarding the code location. Therefore, we filter
the messages by removing the location of the error (line
and column) since the same compilation error may occur in
both versions of a system file (original and modified), but in
different lines of code. Our goal consists of identifying only
the new compilation errors introduced by the transformation.
We do not focus on identifying the pre-existing errors.

In the last step, we automatically categorize the filtered
compilation errors messages into distinct ones by analyz-
ing if they are related to the same fault (Step 4). We con-
sider that two error messages are related to the same fault
if they contain the same kind of error and elements. We
analyze the error messages based on their template and ig-
nore the location of the error (line and column) and the con-
tents of the error line (code statement) to categorize the
messages. For example, GCC reports the following mes-
sage when it tries to compile the program presented in Fig-
ure 1b: httpd.c:11:17: error: “use of undeclared
variable ‘pam_talker’ {&pam_talker};”. We con-
sider the following error message is related to the same
compilation error of the previous one: httpd.c:22:1:

112

error: “use of undeclared variable ‘pam_talker’
pam_talker = 0;”. Notice that, the differences are the line
of the error and the contents of the error. Finally, if the same
compilation error occurs in one or more configurations, we
classify them as only one error. Our categorization reports
to the user the set of compilation errors and their related
configurations identified by our approach.

4. Evaluation
In this section, we describe the evaluation of our approach

on 3,913 transformations applied to BusyBox, Apache, and
Expat files.

4.1 Definition
The goal of our experiment consists of analyzing CHECK-

CONFIGMX for the purpose of evaluating code changes with
respect to finding compilation errors from the point of view
of researchers in the context of configurable systems. We
address the following research questions:

• RQ1: What kinds of compilation errors does CHECKCON-
FIGMX find?
We identify the kinds of compilation errors detected by
CHECKCONFIGMX.

• RQ2: How much effort does CHECKCONFIGMX reduce
to find compilation errors in terms of analyzed configura-
tions?
For each analyzed transformation, we compare the num-
ber of impacted configurations identified by our approach
with the number of possible configurations.

• RQ3: What is the rate of transformations that introduce at
least one compilation error?
We measure the rate of transformations in which CHECK-
CONFIGMX detects at least one introduced compilation.

• RQ4: What is the rate of compilation errors that occur in
transformations with no impacted macros?
We measure the number of impacted macros and the
number of introduced compilation errors.

• RQ5: What is the CHECKCONFIGMX’s rate of false posi-
tives?
For each compilation error identified by CHECKCON-
FIGMX, we manually analyze if it is a false positive.

4.2 Planning
In this section, we describe the subjects used in the

experiment and its instrumentation.
Subjects Selection: We consider a pair of consecutive

commits from a repository as a transformation. We analyze
transformations of the Git repository history of the six largest
files of BusyBox, five largest files of Apache HTTPD, and
three largest files of Expat (based on the size of their last
commits). We assume that largest files may have more
interesting scenarios to analyze and can better evaluate our
approach. CHECKCONFIGMX can evaluate transformations
with any number of impacted macros. However, we do not

Table 1: Configurable systems analyzed in our study. CS = Config-
urable System; File = Name of the analyzed file; Pairs = Analyzed
pairs; Dev. = Developers that performed commits; Macros = Aver-
age macros in the analyzed file; Diff = Average lines of textual diff
between the pairs.

focus on pairs with more than four impacted macros in our
study since evaluating them may be costly. Still, we evaluate
96.01% of the transformations.

BusyBox replaces basic functions over 300 common com-
mands, such as killall. We analyze 1,837 transformations
(code changes between commits) applied to the BusyBox files
from Apr/01 to Nov/15. The analyzed files have an average
of 29.94 distinct macros per commit. The highest number of
macros in a file is 58, while the lowest is 1. Apache HTTPD
is the core technology of the Apache Software Foundation, re-
sponsible for more than a dozen projects involving web-based
transmission technologies, data processing, and execution of
distributed applications. We analyze 2,023 transformations
applied to the Apache files from Aug/99 to Jun/16. The an-
alyzed files have an average of 11 macros per commit. The
highest number of macros in a file is 28, while the lowest is 1.
Expat is an XML parser library written in C in which an ap-
plication registers handlers for things the parser might find in
the XML document. We analyze 216 transformations applied
to the Expat files from Sep/2000 to Feb/10. The analyzed
files have an average of 8.49 distinct macros per commit, the
highest number of macros in a file is 12, while the lowest is
3. Table 1 details the subjects that we evaluate in this study.

Instrumentation: We execute the experiment on a Mac
OSX Yosemite (2.6 GHz, i5 and 8GB RAM). We use GCC
4.2.1 (Apple LLVM 6.0), Java 1.8.0_45, and GNU Bash
4.3.33 (x86_64-apple-darwin13.4.0). We evaluate only the
transformations that impact at most four macros.

4.3 Results
CHECKCONFIGMX evaluated a total of 3,913 transforma-

tions applied to BusyBox, Apache, and Expat. The modified
files of the transformations have a total of 77,364 macros,
which our approach identified 3,508 of them as impacted.
Considering the exhaustive approach of compiling all pos-
sible configurations, without considering a feature model,
CHECKCONFIGMX reduced the effort to evaluate the an-

113

Table 2: Compilation errors detected by CHECKCONFIGMX; CS
= Configurable System; File = Name of the analyzed file; Pairs =
Pairs that introduced compilation errors; Dev. = Developers that
performed the commits that introduced the errors.

alyzed transformations by at least 50%. We observed this
through a comparison with the exhaustive approach without
considering a feature model. CHECKCONFIGMX found 776
configurations (6.02% of the impacted configurations) with
at least one compilation error. It found 5,639 compilation
error messages, which we categorize into 942 different errors.
However, 36.83% of them are false positives. For example,
we found false positives related to missed libraries in old
commits. So, our technique found 595 real different errors.

We classify the 595 bugs found in 20 kinds of compilation
errors. The developers of the analyzed systems introduced
these compilation errors in a total of 214 transformations. Ta-
ble 2 shows the total of pairs that introduced real compilation
errors and the total of developers that performed the commits
of the transformations. The kind of error with the highest
occurrence was the use of undeclared variables (49.7%), fol-
lowed by no member in struct (31.7%) and incomplete
definitions of types (3.1%). Tables 3 and 4 summarize the
compilation errors that we have found in this experiment.

The transformations that introduced at least one compi-
lation error have a textual diff average of 12.92 LOC. We
found the largest transformation in terms of modified lines
of code in the mod_include.c of Apache HTTPD (commits
f5858d9 and e56d601). This transformation had a textual
diff of 1,735 LOC. It introduced five compilation errors on
four configurations. We found 20 transformations that intro-
duced errors with a diff of only one LOC. The developers
introduced an average of 2.4 compilation errors per trans-
formation. We also found 132 transformations that had no
impacted macros, but introduced 307 errors. For example, a
transformation applied to proxy_util.c of Apache HTTPD
(commits 935de30 and e63bcb2) had no impacted macros,
but it introduced 31 different compilation errors.

4.4 Discussion
In this section, we discuss issues related to the compilation

errors found, the change impact analysis and filter steps,
false positives, false negatives, and the time to evaluate the
transformations.

Table 3: Total of compilation errors found in configurable system
by Steps 3 and 4; CS = Configurable System; File = Name of
the analyzed file; Filter/Configs. = Impacted configurations with
compilation errors; Filter/Total = Introduced compilation error mes-
sages; Categorization/Total = Different compilation errors; Cate-
gorization/Real = Real compilation errors after a manual analysis
removing false positives.

Compilation Errors: We found that most of the compila-
tion errors that developers introduce are caused by the use
of undeclared variables (49.7%), followed by the use of un-
declared members of structures (31.7%) and incomplete def-
inition of type (3.1%). The first and third most introduced
errors are related to structs. Table 4 shows the kinds and total
of compilation errors found by our approach.

We found that a transformation applied to httpd.c of
BusyBox (commits d2277e2 and 7291755) introduced two
compilation errors. Figures 1 and 3 show code snippets of the
original and modified versions of this file. Medeiros et al. [16]
extended TypeChef and evaluated the modified file. They
found only one of the errors, as they do not detect compilation
errors related to incomplete type definition. Moreover, we
executed TypeChef on small toy examples with each kind of
error found in our study. We found that it does not detect
the following kinds of errors: incomplete type definition,
unknown type name, undeclared label, function cannot return
array type, continue statement not in loop statement, and
address of bit-field requested.

The sampling approaches one-enabled and one-disabled
do not detect the compilation error introduced by the trans-
formation presented in Figure 3. They compile only the con-
figurations in which one macro is enabled or disabled. In this
example, we had to enable two macros to detect the error.

We found a transformation applied to core.c of Apache
HTTPD (commits dfd16b1 and a677072) that introduced
a compilation error related to a bit-field requested address.
Figure 4a shows a code snippet of the original file. It de-
clares the struct conn_rec, which contains the signed int
double_reverse (lines 1 to 3). Figure 4b shows a code
snippet of the modified file. It tries to access the address of
double_reverse, which is a bit-field of size two (line 9).
This attempt of access causes a compilation error because the

114

Table 4: Kinds of compilation errors found in our study.

memory can be accessed byte by byte (8 bits) only. The mod-
ified version of the file contains 5,596 LOC and 14 macros.
The transformation has 131 LOC of textual diff and impacts
no macro. Developers fixed this error 44 days later after 3
more commits performed on this file. The number of macros
in a file may increase the code complexity, which may lead
developers to postpone the compilation of the configurations.
TypeChef does not detect this kind of error.

Change Impact Analysis: We found 163 transformations
(3.99%) that impacted more than four macros. Among them,
66 pairs have five impacted macros, 22 pairs have six im-
pacted macros, and 20 pairs have seven impacted macros.
We found a pair of ash.c file of BusyBox with 54 impacted
macros (commits cb81e64 and c470f44). We found that
132 of the transformations that introcuded compilation er-
rors do not have impacted macros, and 52 of them have one
impacted macro. Together, they represent 77.77% of the trans-
formations that introduced at least one compilation error. We
could detect them by combining the one-enabled and all-
disabled-enabled sampling algorithms. However, in our study,
the one-enabled approach would require compiling an aver-
age of 20 configurations for each transformation with at most
one impacted macro, while CHECKCONFIGMX compiled an
average of 3.42 configurations for each one.

The repositories of the analyzed systems have 4,076 com-
mits and we analyzed 3,913 (96.01%) pairs of them. The goal
of our approach consists of reducing the effort of compiling
all possible configurations by compiling only the impacted
ones. Therefore, it is useful to analyze fine-grained trans-
formations. We consider that a fine-grained transformation
typically impacts a small number of macros and consequently,
a small number of configurations. Nevertheless, CHECKCON-

FIGMX can also help developers to evaluate large files with
several impacted macros.

We focused on analyzing transformations that impacted
at most four macros since compiling more than 32 config-
urations may be costly. For example, for the purpose of
testing our approach in transformations that involve more
than four impacted macros, we analyzed one of them ap-
plied to event.c of Apache HTTPD (commits 11da82 and
273b7aa). The modified file has 27 macros, but only 7 of
them are impacted. We generated and compiled 256 config-
urations, and none of them introduced compilation errors.
CHECKCONFIGMX took 65.62s to evaluate this transforma-
tion. Step 2 spent 58.63s to compile the configurations, which
is almost 30 times higher than the CHECKCONFIGMX’s aver-
age time of this step during our experiment. We can similarly
evaluate the other transformations under this scenario. Devel-
opers should indicate the maximum number of macros that
they would like to consider.

Filter: After compiling all configurations of each trans-
formation, we performed the filter step and found 5,639
compilation error messages in 776 configurations of 214
transformations. We found 720 new messages in a transfor-
mation applied to ash.c of BusyBox (commits 59f351c
and 92e13c2). This number is much higher than the average
compilation errors messages (7.29) of the analyzed transfor-
mations with errors. We categorized them into 10 compilation
errors, of which 1 is false positive. We attempted to execute
TypeChef in the modified ash.c file (92e13c2) of this trans-
formation. However, we got a heap space error. Similarly, we
could not execute TypeChef in other files due to heap space
and missing libraries problems.

False Positives: We manually investigated all results of
our automated categorization. We found that 347 (36.83%) of
the compilation errors found by Step 3 were false positives.
Some problems, such as missing libraries and compilers
incompatibility may cause these errors. The subjects that
we analyzed are more than 10 years old and some of the
required libraries and compilers are not available anymore.
Therefore, using our approach in a controlled environment,
with all required libraries and compilers available, would
minimize these issues.

We implemented our approach as a per-file analysis. We
considered only the files analyzed in this experiment and their
dependencies, instead of the whole system. This may have
led to false positives. For example, we found that all of the
159 compilation errors detected by CHECKCONFIGMX in
two transformations of the xmltok_impl.c file of Expat are
false positives. The errors are related to the use of undeclared
variables. At first, CHECKCONFIGMX considered them as
real errors since the file has no include headers. However,
we investigated the commits and found that xmlparse.c in-
cludes ascii.h and xmltok_impl.c. Moreover, ascii.h
defines the variables used in the xmltok_impl.c, which
caused the compilation errors. Therefore, these errors do not

115

1 struct conn_rec {
2 signed int double_reverse :2;
3 };
4 void do_double_reverse (conn_rec *conn){...}
5 char * ap_get_remote_host(conn_rec *conn , ...)
6 {
7 if (the.) {
8 do_double_reverse(conn)
9 }

10 }
11 // This file contains 31 blocks of #ifdefs and #

ifs
12 // with 14 different macros

(a) Code snippet of the original core.c file.

1 struct conn_rec {
2 signed int double_reverse :2;
3 };
4 void do_double_reverse (int *double_reverse)

{...}
5 char * ap_get_remote_host(conn_rec *conn){
6 if (...) {
7 do_double_reverse (&conn ->double_reverse)
8 }
9 }

10 // This file contains 31 blocks of #ifdefs and #
ifs

11 // with 14 different macros

(b) Code snippet of the modified core.c file.

Figure 4: Code snippets of consecutive commits of core.c file. This transformation introduces a bit-field requested address compilation error.

appear in a global analysis since the compilation scope would
include the file that define the variables.

False Negatives: We investigated whether our approach
may have false negatives by using mutation testing. We man-
ually applied 70 mutations of 7 kinds in the last 10 versions
of the six largest BusyBox’s repository files. We manually
checked that they are not equivalent mutants. We used the
mutation score to measure the CHECKCONFIGMX’s rate of
false negatives since mutation testing results can be used as a
reference for new test cases or to measure quality on existing
tests [9]. We used the following mutation operators: remove
semicolon; remove declaration; change pointer operator; du-
plicate declaration; change declaration type; remove field;
and, remove return type. We included some defects that previ-
ous approaches [1, 17] found, but we did not find in our study,
such as remove semicolon. Previous approaches [1, 16, 17]
found bugs in real configurable systems caused by changes
similar to these mutation operators.

CHECKCONFIGMX killed all mutants. This result in-
creases our confidence that our approach may not report false
negatives. We also measured the effort reduction to evaluate
the transformations by using our tool instead of an exhaustive
approach, such as TypeChef. CHECKCONFIGMX identified
70 impacted macros, among the set of 1,287 macros. It evalu-
ated a median of 2 impacted configurations per transforma-
tion. The median of all possible configurations per transfor-
mation, without considering a feature model, is 8,388,608. So,
our approach reduced by at least 50% (an average of 99%) the
effort to evaluate the transformations when compared with
the exhaustive approach. Moreover, CHECKCONFIGMX may
be useful to reduce the number of compiled configurations
(effort) in a configurable system by comparing with sampling
approaches. For example, in this study CHECKCONFIGMX
compiled around five configurations on average. The ana-
lyzed transformations applied to ash.c of BusyBox had up
to four impacted macros and CHECKCONFIGMX compiled
32 configurations in the worst cases. The ash.c has around
49 macros on average (Table 1). Therefore, the one-enabled
sampling approach compiles 49 configurations to evaluate
this file.

Our set of mutation operators may not be representative
of all the errors that actually happen in practice. However,
they were useful to show that our approach detected all errors
introduced by the mutations.

Time: We measured the total time of each step per-
formed by CHECKCONFIGMX during this study. CHECK-
CONFIGMX took on average 6s to evaluate each transforma-
tion applied to the systems. Developers can execute CHECK-
CONFIGMX whenever they modify a of a configurable sys-
tem with #ifdefs. In a few seconds, CHECKCONFIGMX
can report to them the set of possible compilation errors
introduced by the code changes.

For some files, the average time was higher than for
all files. For example, the average time to evaluate the
transformations applied to modutils-24.c of BusyBox
and mod_include.c of Apache was 9s. We found that
modutils-24.c has four transformations with 16 or 32 im-
pacted configurations. Moreover, we found compilation errors
in some of them. Therefore, the number of analyzed config-
urations increased the time to filter the errors. The time of
the filter step is smaller in other transformations with 16 or
32 impacted configurations since CHECKCONFIGMX did
not find compilation errors introduced by them. The most
time-consuming analysis was in a transformation applied to
hush.c of BusyBox (commits 68d5cb5 and 3eab24e). Our
approach took 20.28s to evaluate it. This transformation im-
pacted 32 configurations, in which our approach took 14s
to compile them all. The average time to evaluate all trans-
formations applied to hush.c file was not affected by this
transformation because it has a total of 696 transformations.

In general, the most time-consuming step is compiling the
configurations (Step 2). We use GCC to compile them and it
took on average 2.5s to compile all impacted configurations
of the analyzed transformations. On the other hand, the fastest
step is the change impact analysis (Step 1). Our approach took
on average 0.07s to identify the impacted macros. Finally, it
took on average 1.5s and 1.9s to perform the steps of filter
and categorization, respectively. Table 5 shows the average
time for analyzing all transformations.

116

Table 5: Averages of the runtime execution of CHECKCONFIGMX;
CS = Configurable System; File = The analyzed file; Time (s) =
Average times for: Impact Analysis (Step 1); GCC (Step 2); Filter
(Step 3); Categ. (Step 4); and, Total.

4.5 Threats to Validity
A feature model [10] has a significant role in the com-

pilation of a Software Product Line [6, 19], as each feature
may require specific configurations. However, we did not con-
sider them in our evaluation. By considering feature models
we may have fewer compilation errors. Still, other config-
urable systems may have similar scenarios in practice and
CHECKCONFIGMX can be useful to evaluate them.

CHECKCONFIGMX compiles one file per analysis. There-
fore, we may have false positives and negatives, since a local
change may have global impact. We can adjust our approach
to consider the whole system. Since we evaluated old com-
mits, we did not identify all required dependencies, such as
external libraries. Moreover, the developers may have used
an older version of a C compiler. These issues may lead our
approach to detect some false positives. We could minimize
this threat by using our approach in a controlled environment,
with all libraries and compilers available. The implementation
of compilers may vary according to the operating system [22].
We found different compilation errors by executing the same
GCC version in Ubuntu 14.04 and Mac OS X Yosemite on
httpd.c of BusyBox. Each compiler detected errors that the
other did not detect. The internal platform dependencies of
GCC may have bugs [22]. We may have detected some com-
pilation errors in this study that the developers using another
operating system cannot detect.

Our change impact analysis does not consider the C
programming language structures, which may cause false
positives or negatives. For example, if a developer removes a
variable that is used under a macro, CHECKCONFIGMX will
not try to compile and detect it if this macro is not impacted.
Although our change impact analysis is simple, we detected
a number of compilation errors. We can use other approaches
to change impact analysis to improve this step.

4.6 Answers to the Research Questions
Next, we summarize the answers of our research questions.

• RQ1: What kinds of compilation errors does CHECKCON-
FIGMX find?
CHECKCONFIGMX found 595 errors introduced by the
transformations. Table 4 presents all 20 kinds of compila-
tion errors that we found in 214 (5.46%) transformations
of BusyBox, Apache HTTPD, and Expat files.

• RQ2: How much effort does CHECKCONFIGMX reduce
to find compilation errors in terms of analyzed configura-
tions?
CHECKCONFIGMX reduced by at least 50% (an average
of 99%) the effort to evaluate the analyzed transforma-
tions by comparing with the exhaustive approach without
considering a feature model.

• RQ3: What is the rate of transformations that introduce at
least one compilation error?
CHECKCONFIGMX found that 5.46% of the analyzed
transformations introduced at least one compilation error.
The tool found 113 transformations that introduced one
compilation error; 34 transformations that introduced two
compilation errors; 17 transformations that introduced
three compilation errors; 14 transformations that intro-
duced four compilation errors; and, 35 transformations
that introduced at least five compilation errors.

• RQ4: What is the rate of compilation errors that occur in
transformations with no impacted macros?
CHECKCONFIGMX found 307 compilation errors in 132
transformations with no impacted macros. This indicates
that 55.86% of the compilation errors would be identified
by the all-disabled-enabled approach. CHECKCONFIGMX
found the following number of transformations that intro-
duced compilation errors: 48 with one impacted macro;
27 with two impacted macros; 11 with three impacted
macros; and, 8 with four impacted macros.

• RQ5: What is the CHECKCONFIGMX’s rate of false posi-
tives?
CHECKCONFIGMX found that 347 (36.83%) of the com-
pilation errors that Step 4 found are false positives. Using
our approach in a controlled environment would solve
these issues.

5. Related Work
Kästner et al. [11] propose TypeChef, a variability-aware

parser, which analyzes all possible configurations and per-
forms type checking. It parses code with conditional compila-
tion, using SAT solvers for decisions during the parsing pro-
cess. By using the abstract syntax tree enhanced with all vari-
ability information, they can search for configuration-related
bugs in all configurations. Such tools analyze the complete
configuration space, considering file inclusion and macro
expansions Our approach differs from those approaches in

117

the sense that we focus only on compiling the configurations
impacted by the change.

Medeiros et al. [14] propose an approach to improve
the TypeChef’s scalability problem. They generate stubs
to replace the original types and macros from header files.
They found 24 configuration-related syntax errors in 40
configurable systems. However, their approach also analyzes
all possible configurations. Although we do not identify
syntax errors in our study, we can detect them, as we show
in the mutation testing analysis. Moreover, our approach
compiles only the impacted configurations.

Later, Medeiros et al. [16] conduct a study to better under-
stand undeclared/unused variables and functions related to
configurability. They propose a strategy that considers only
one configuration of the header files to scale their study and
minimize possible setup problems. They implement checkers
for each kind of error that they want to detect. They detected
2 undeclared variables, 14 undeclared functions and 23 warn-
ings related to configurability. We found 20 kinds of errors, in
which one of them was related to an undeclared variable. A
transformation applied to xmlparser.c of Expat introduced
this kind of error. Although they have also evaluate the file
(commit 79aa349), they do not detect this compilation error
as we do, since manually analyzing a number of configura-
tions and error messages may be error prone. Our approach
compiles only impacted configurations. Moreover, we can
adapt Steps 2 and 3 of our approach to evaluate the warning
messages that they consider.

Previous studies have proposed various strategies for
dealing with configuration spaces [1, 13, 21]. Medeiros et
al. [17] compare 10 sampling algorithms regarding their fault-
detection capability and sample sets size. They found that
algorithms with the largest sample sizes detected the most
faults and the statement-coverage algorithm detected the low-
est number of faults. They also found that simple algorithms
with small sample sets, such as most-enabled-disabled, are the
most efficient in most contexts. However, these approaches
may not evaluate some configurations that are affected by
the change and may not detect some errors introduced by
them. For example, we found compilation errors that the
most-enabled-disabled cannot detect (Section 2).

Qu et al. [20] present an approach that selects configura-
tions for regression testing using slicing-based code change
impact analysis [4]. They evaluated two open source C sys-
tems and a large industrial C/C++ system. The approach
discarded up to 60% of the configurations as redundant. Dif-
ferent from them, we analyze only the macros impacted by a
transformation, as our approach aims at reducing the effort
of compiling configurable systems with #ifdefs by using
change impact analysis. Although our change impact analysis
is simpler, we found 595 compilation errors introduced by
214 transformations applied to configurable systems.

In the context of the C language, there are some studies
proposing tools that perform static and dynamic analysis to

find bugs, such as memory leaks. Evans [8] presents Splint
to statically check C programs for security vulnerabilities
and coding mistakes. Novark et al. [5] propose Plug to de-
tect memory leaks in C and C++ programs. Nethercote and
Seward [18] present Valgrind, a framework for building dy-
namic analysis tools. They can detect, for example, threading
bugs. Current, we use GCC in our approach to detect compi-
lation errors. We can replace GCC (Step 2) to some of those
tools to detect other kinds of bugs.

6. Conclusions
In this work, we propose a change-centric approach to

compile configurable systems with #ifdefs. From two
versions of a file, it identifies the macros impacted by the
change. Next, our approach selects the set of impacted
configurations and compiles each one in both versions of
the file. It reports a set of compilation errors that occur only
in the modified file. We implemented our approach in an
automated tool called CHECKCONFIGMX.

We analyzed 3,913 transformations applied to 14 files of
the Git repositories of BusyBox, Apache HTTPD and Expat.
We found 595 compilation errors of 20 kinds introduced by
214 transformations. Most of them are related to undeclared
variables (49.74%) and no member in struct (31.76%). We
manually analyzed each error and found that 36.83% of
them are false positives. In general, missing libraries and
compilers incompatibility caused these errors. Using our
approach in a controlled environment, with all required
libraries and compilers available, would solve these issues.
CHECKCONFIGMX reduced by at least 50% the effort to
evaluate the analyzed transformations by comparing with the
exhaustive approach without considering a feature model.

By not considering the impact of the transformations ap-
plied to a configurable system, exhaustive approaches may
have to analyze all possible configurations. The evaluation
results show evidence that CHECKCONFIGMX can be useful
in analyzing code changes with up to four impacted macros
applied to files with a large number of macros. Still, for small
files with few macros our tool may have little gain by com-
paring with exhaustive approaches. A developer can perform
changes in the code and use CHECKCONFIGMX to assess
whether they introduced compilation errors. Usually, it takes a
few seconds to analyze fine-grained transformations. CHECK-
CONFIGMX reports only the new introduced compilation
errors.

Acknowledgments
We would like to thank Christian Kästner, Sven Apel

and the anonymous reviewers. This work was partially sup-
ported by the National Institute of Science and Technol-
ogy for Software Engineering (INES), funded by CNPq
grants 573964/2008-4, 477943/2013-6 and 460883/2014-3,
and CAPES grant 175956.

118

References
[1] I. Abal, C. Brabrand, and A. Wasowski. 42 variability bugs

in the Linux kernel: A qualitative analysis. In Proceedings
of the 29th International Conference on Automated Software
Engineering, pages 421–432, 2014.

[2] T. Berger, R. Rublack, D. Nair, J. Atlee, M. Becker, K. Czar-
necki, and A. Wasowski. A survey of variability modeling in
industrial practice. In Proceedings of the 7th International
Workshop on Variability Modelling of Software-intensive Sys-
tems, pages 1–7, 2013.

[3] T. Berger, S. She, R. Lotufo, A. Wasowski, and K. Czarnecki.
A study of variability models and languages in the systems
software domain. IEEE Transactions on Software Engineering,
pages 1611–1640, 2013.

[4] S. Bohner and A. Robert. Software Change Impact Analysis.
Wiley-IEEE Computer Society Press, 1996.

[5] M. Bond and K. McKinley. Tolerating memory leaks. In G. E.
Harris, editor, Proceedings of the 14th International Confer-
ence on Object Oriented Programming Systems Languages
and Applications, pages 109–126, 2008.

[6] P. Clements and L. Northrop. Software product lines: Practices
and patterns. Addison-Wesley, 2009.

[7] M. Ernst, G. Badros, and D. Notkin. An empirical analysis of C
preprocessor use. IEEE Transactions on Software Engineering,
pages 1146–1170, 2002.

[8] D. Evans. Static detection of dynamic memory errors. In
Proceedings of the Conference on Programming Language
Design and Implementation, pages 44–53, 1996.

[9] R. Just, D. Jalali, L. Inozemtseva, M. Ernst, R. Holmes, and
G. Fraser. Are mutants a valid substitute for real faults in
software testing? In Proceedings of the 22nd ACM SIGSOFT
International Symposium on the Foundations of Software
Engineering, pages 654–665, 2014.

[10] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson.
Feature-oriented domain analysis (FODA) feasibility study.
Technical report, Carnegie-Mellon University Software Engi-
neering Institute, 1990.

[11] C. Kästner, P. Giarrusso, T. Rendel, S. Erdweg, K. Ostermann,
and T. Berger. Variability-aware parsing in the presence of
lexical macros and conditional compilation. In Proceedings
of the 17th International Conference on Object Oriented
Programming Systems Languages and Applications, pages 805–
824, 2011.

[12] C. Kästner, S. Apel, T. Thüm, and G. Saake. Type checking
annotation-based product lines. Transactions on Software
Engineering and Methodology, 21(3):1–39, 2012.

[13] D. Kuhn, D. Wallace, and A. Gallo. Software fault interactions
and implications for software testing. IEEE Transactions on
Software Engineering, 30:418–421, 2004.

[14] F. Medeiros, M. Ribeiro, and R. Gheyi. Investigating
preprocessor-based syntax errors. In Proceedings of the 12th
International Conference on Generative Programming: Con-
cepts & Experiences, pages 75–84, 2013.

[15] F. Medeiros, C. Kästner, M. Ribeiro, S. Nadi, and R. Gheyi.
The love/hate relationship with the C preprocessor: An inter-
view study. In Proceedings of the 29th European Conference
on Object-Oriented Programming, pages 495–518, 2015.

[16] F. Medeiros, I. Rodrigues, M. Ribeiro, L. Teixeira, and
R. Gheyi. An empirical study on configuration-related issues:
Investigating undeclared and unused identifiers. In Proceedings
of the 15th International Conference on Generative Program-
ming: Concepts and Experiences, pages 35–44, 2015.

[17] F. Medeiros, C. Kästner, M. Ribeiro, R. Gheyi, and S. Apel.
A comparison of 10 sampling algorithms for configurable
systems. In Proceedings of the 38th International Conference
on Software Engineering, pages 643–654, 2016.

[18] N. Nethercote and J. Seward. Valgrind: a framework for heavy-
weight dynamic binary instrumentation. In Proceedings of
the 28th Programming Language Design and Implementation,
pages 89–100, 2007.

[19] K. Pohl, G. Bockle, and F. Linden. Software Product Line En-
gineering: Foundations, Principles and Techniques. Springer-
Verlag, 2005.

[20] X. Qu, M. Acharya, and B. Robinson. Configuration selection
using code change impact analysis for regression testing.
In Proceedings of the 28th IEEE International Conference
on Software Maintenance, pages 129–138. IEEE Computer
Society, 2012.

[21] R. Tartler, D. Lohmann, C. Dietrich, C. Egger, and J. Sincero.
Configuration coverage in the analysis of large-scale system
software. In Proceedings of the 6th Workshop on Programming
Languages and Operating Systems, pages 1–5, 2011.

[22] X. Yang, Y. Chen, E. Eide, and J. Regehr. Finding and
understanding bugs in C compilers. In Proceedings of the
32nd Conference on Programming Language Design and
Implementation, pages 283–294, 2011.

119

	Introduction
	Motivating Example
	A Change-Centric Approach to Compile Configurable Systems
	Overview
	Change Impact Analysis
	Selecting Impacted Configurations
	Filtering and Categorizing Compilation Errors

	Evaluation
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Related Work
	Conclusions

