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ABSTRACT

A key challenge developers might face when evolving a prod-
uct line is not to inadvertently affect users of existing prod-
ucts. In refactoring and conservative extension scenarios,
we can avoid this problem by checking for behavior preser-
vation, either by testing the generated products or by using
formal theories. Product line refinement theories support
that by requiring behavior preservation for all existing prod-
ucts. However, in many evolution scenarios, such as bug fix-
ing, there is a high chance that only some of the products
are refined. To support developers in these and other non
full-refinement situations, we define a theory of partial prod-
uct line refinement that helps to precisely understand which
products should not be affected by an evolution scenario.
This provides a kind of impact analysis that could, for ex-
ample, reduce test effort, since products not affected do not
need to be tested. Additionally, we formally derive a catalog
of eight partial refinement templates that capture evolution
scenarios, and associated preconditions, not covered before.
Finally, by analyzing 79218 commits from the Linux repos-
itory, we find evidence that the proposed templates could
cover a number of practical evolution scenarios.

CCS Concepts

eSoftware and its engineering — Software product
lines; Formal methods;

Keywords

product line evolution, product line maintenance, product
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1. INTRODUCTION

When evolving a product line [2, 16], it is often important
to make sure that the evolution is safe in the sense that ex-
isting users are not inadvertently affected by the performed
changes. This safe evolution concept [12] is formalized by a
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refinement notion [3] that requires every product of the ini-
tial product line to have compatible behavior with at least
one product of the newly evolved product line.! This is use-
ful to support developers in a number of evolution scenarios,
helping them to make sure that the changes they make do
not have unintended impact. For instance, users might sim-
ply need to refactor assets, or even add optional features,
and these are guaranteed not to affect existing products, pro-
vided that certain conditions are observed. The refinement
notion and its associated transformation templates help us
to precisely capture those conditions.

Although these notions of product line safe evolution and
refinement are useful in many practical evolution scenarios,
they are too demanding for other scenarios because they
require all products to preserve behavior. Nevertheless, we
argue here that we could still support developers even when
that does not apply. For example, adding functionality to
an asset changes the behavior of all products that use that
asset, so this is often not a product line refinement. However,
the behavior of products that do not use the modified asset
should not be affected. So we could still provide behavior
preserving guarantees for a proper subset of the products in
a product line.

This kind of partial guarantee can be useful as an im-
pact analysis for developers to be aware of which products
are affected in an evolution scenario. They could, for in-
stance, avoid checking behavior preservation of the refined
products, focusing only on testing the new functionality on
the subset of products that are impacted by the changes. A
notion of partially safe product line evolution could assist
developers by providing this kind of weaker, but still useful,
guarantee that covers common evolution scenarios not sup-
ported by refinement. This partially safe evolution concept
can be helpful not only in a practical product line develop-
ment context, but also in formal development situations and
in building tools that support product line development.

In fact, many evolution scenarios found in practice do not
characterize a full refinement. A bug fix, or changing a top
level (child of root) feature from optional to mandatory, for
example, are not full refinements because not all original
products are refined. More specifically, in the first situa-
tion, products containing the files changed due to the bug
fix are not refined; the other products, however, have the
same behavior since they are not changed. When a feature
is transformed from optional to mandatory, products that al-
ready had the changed feature are refined because they will

'«Full refinement” denotes the existing refinement notion [3],
which requires the full product set to be refined.
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present the same behavior in the new product line. However,
products that did not have the feature do not preserve be-
havior because, in the new line, they will present the extra
behavior associated to the changed feature. Furthermore,
Passos et al. [15] examined commits of the Linux reposi-
tory history,? and found that feature removal, which is not
a refinement unless the feature is dead or has no behavior,
often occurs. The partially safe evolution notion we propose
here can address these cases by requiring refinement for a
proper subset of the product line products. Transformation
templates derived from this notion capture the context and
required conditions for a number of scenarios, and precisely
provide the subset of refined products for those cases. For
example, in the feature removal scenario, the template could
guarantee that products that did not have the removed fea-
ture are refined.

We formalize the partially safe evolution notion in terms
of a partial refinement notion. As discussed, it only requires
behavior preservation for a subset of the existing products in
a product line.®> For scenarios where a change is intended to
refine all products, such as changing a feature from manda-
tory to optional, developers should rather use the full refine-
ment notion. Hence, they might choose to make use of the
full and partial refinement notions depending on the situa-
tion. Evolution in practice often interleaves different kinds
of changes, ranging from full refinement to no refinement
scenarios. So, to support practitioners, we derive a number
of properties, including that safe and partially safe evolution
transformations, when applied in different orders, might lead
to the same resulting product line. For example, developers
could refine an asset and then remove a feature, or apply
these transformations in the opposite order, and still reach
the same target. In addition, we propose transformation
templates representing abstractions of partial refinement sit-
uations encountered in practice. Templates work as a guide
for developers. Instead of reasoning over refinement notions,
they can use templates by means of pattern matching, which
can also be tool supported. The partial evolution templates
precisely determine which subset of products is refined for
each situation; developers might even obtain this subset au-
tomatically. So our templates effectively provide a change
impact analysis.

To evaluate the applicability of our templates, we use the
FEVER tool [8] to automatically analyze 79218 evolution
scenarios of the Linux repository. We found a number of in-
stances of the templates in the commit history and confirm
that they could have been applied, thus reinforcing the ap-
plicability of our templates. We also formalize the concepts
and prove properties and soundness of the templates in the
Prototype Verification System (PVS) [14].

To summarize, the main contributions of this work are (i)
a new concept of partial product line refinement that covers
partially safe evolution scenarios, (ii) a number of properties
to support users not only in partially safe evolution scenar-
ios, but also when these transformations are combined with
safe evolution ones, (iii) eight patterns that represent par-
tial safe evolution scenarios to guide developers and (iv) evi-
dence of applicability of our templates, based on an analysis

2Linux repository is
torvalds/linux.

3We use the “partial refinement” term to denote the new re-
finement notion, which requires refinement only for a subset

of the original products from a product line.

available at http://github.com/
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of 79218 evolution scenarios of the Linux system.

This paper is organized as follow. In Section 2, we present
a motivating example from the Linux repository. We intro-
duce the partial refinement theory in Section 3 and relate it
with the full refinement theory. In Section 4, we present a
template catalog. We present evaluation results and related
work in Section 5 and Section 6, respectively. Finally, we
conclude in Section 7.

2. MOTIVATING EXAMPLE

To illustrate a common evolution scenario not covered
by the product line refinement notion, we refer to com-
mit ae3efc2776* of the Linux repository history. It
basically consists of a feature removal scenario. Fea-
ture LEDS_RENESAS_TPU represents a LED driver in
the Linux system. LEDS RENESAS TPU was removed
because it was superseded by the preexisting generic
PWM_RENESAS_TPU driver. The commit changes are il-
lustrated in Listing 1, 2 and 3. We use the “—” symbol in
each line to indicate that it was removed from the file.

In Listing 1, we observe changes to a Linux Kconfig file,?
which models features and their properties, and plays a
similar role to feature models and other variability mod-
els. Statements in Kconfig declare features by indicating
their names, types (the illustrated one is a boolean that
can assume y or n, when it is selected or not, respectively)
and relations with other features, as specified in Lines 3
and 4. In this case LEDS_RENESAS_TPU depends on
LEDS_CLASS, HAVE_CLK and GPIOLIB. Thus, the for-
mer can only be selected if the three other features are in-
cluded in the product. In terms of feature models, this con-
dition is akin to establishing LEDS_RENESAS_TPU as a
descendant of those features.

Listing 1: “drivers/leds/Kconfig”

—config LEDS_RENESAS TPU

bool ‘‘LED support for Renesas TPU’’

depends on LEDS_CLASS=y && HAVE_CLK
&& GPIOLIB

help

Listing 2: “drivers/leds/Makefile ”

1 —obj—3% (CONFIG_LEDS_RENESAS TPU) +=
leds—renesas—tpu.o

Listing 3: “drivers/leds/leds-renesas-tpu.c”

—#include <linux/module.h>
—#include <linux/init.h>

W N =

—MODULE LICENSE( ‘ ‘GPL v2’7);

The LEDS_RENESAS_TPU feature is implemented by the
leds-renesas-tpu.o asset, as we can see in the makefile in
Listing 2. These files represent Linux configuration knowl-
edge, relating feature expressions (presence conditions) to

‘Feature removal commit http://github.com/torvalds/
linux/commit/ae3e4c2776. Laurent Pinchart commited on
Jul 16, 2013; version v3.12-rcl.

*Kconfig language documentation https://www.kernel.org/
doc/Documentation /kbuild /kconfig-language.txt.
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asset names. This mapping was removed, since the inten-
tion was to remove the feature. However, a feature is only
completely removed when its implementation is deleted as
well, otherwise there would be unused assets. Listing 3 indi-
cates that this was actually done; we only show part of the
code associated to LEDS_RENESAS_TPU for a matter of
space, but the leds-renesas-tpu.c and leds-renesas-tpu.h files
were entirely removed from the repository.

With these deletions, products that had feature
LEDS_RENESAS_TPU will present different behavior, un-
less the PWM_RENESAS_TPU feature has a compati-
ble behavior to the previous one and the products hav-
ing the former also had the latter, but this may not be
true. Thus, in the new product line, we likely will not
find products that match the behavior of a product with
LEDS_RENESAS_TPU. Consequently, this is not consid-
ered a safe evolution scenario; the existing theory fails to
support developer in this case, even though we know that
products that do not have that feature should have the same
behavior. In fact, this scenario is partially safe considering
the configurations corresponding to the products that did
not have LEDS_RENESAS_TPU and are not impacted by
its removal. Since Linux users can choose to select or not
LEDS_RENESAS_TPU, there might be a number of prod-
ucts that do not have it. Supposing that 50% of the products
have LEDS_RENESAS_TPU, we could give support for half
of the products, which would make the gain significant by
avoiding, for instance, these products to be tested.

There are many other kinds of partially safe evolution
scenarios, such as asset additions and in these cases, both
implementation files and the respective mappings are added
to the product line. In this scenario, products that suffer
additions do not preserve behavior, but the evolution is still
safe considering only products that do not have the added
files. The percentage of refined products is directly propor-
tional to the frequency of the respective features. If the
affected feature is mandatory, the guarantee tends not to be
high, since this feature possibly appears in all products (in
this case we would give no guarantee). In contrast, when the
changed feature is optional and positioned just near the root
feature, for instance, the guarantee can achieve 50% of the
products, since no more than 50% of the valid products have
the respective feature, and this percentage increases when
the feature is positioned lower in the three. Therefore, we
believe that one could benefit from a notion of partially safe
evolution, that is able to handle unsafe evolution scenarios,
while still offering safe evolution guarantees considering a
subset of the products.

3. PARTIALLY SAFE EVOLUTION

To handle evolution scenarios such as the one illustrated
in the motivating example, we introduce a partial refinement
theory that formalizes our notion of partially safe evolution
of product lines. Moreover, we also present some properties
and analyze how partial and full refinement operations can
be interleaved, which might be often necessary in practice.

3.1 Partial Refinement

To define the partial refinement notion, we rely on exist-
ing concepts from the refinement theory [1, 3]. A product
line is defined as a well-formed triple: a feature model (FM)
that has features and dependencies among them; an asset
mapping (AM) that relates asset names and assets; a con-
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figuration knowledge (CK) that maps features to assets. We
do not require specific languages for these elements. The
FM, for instance, could be a variability model (VM), such
as the Linux Kconfig. For an arbitrary FM F, we assume
a semantics function [F], which returns the set of all valid
configurations generated from F. A configuration is a fea-
ture selection, which can usually be represented as a set of
feature names. There is also a semantics function for the
CK, denoted by [K]Z, that takes a CK K, an AM A, a con-
figuration ¢ and yields the respective product. In practice,
users select the desired features that constitute a configura-
tion. By processing the CK, it is then possible to obtain the
assets that constitute the product represented by a configu-
ration. A product is defined as a set of assets, and a product
p’ refines another product p, denoted by p C p’, whenever
p’ it at least as good as p, in the sense that it preserves the
observable behavior of p [3].

Product line refinement happens when all products in the
original product line are refined in the evolved product line,
as established in Definition 1. This applies when locally
refactoring code, or removing unused assets, for example.
We should notice that the definition only requires product
refinement to hold, therefore configurations are allowed to
change when matching a product of the original product line
with a product of the new product line. Thus, feature re-
naming is a full refinement, as feature names do not matter.

Definition 1 (Product line refinement). For arbitrary prod-
uct lines L = (F,A,K) and L' = (F', A’, K'), L' refines L,
denoted by L C L', whenever

Vee [F] - 3¢ € [F'] - [K]2 C K]S

Contrasting, the partial notion requires that only some
products are refined. So, in Definition 2, we use S as an in-
dex to denote the subset of refined product configurations.
More precisely, for product lines L and L', and set of config-
urations S, we say that L’ partially refines L for the configu-
rations in S when S is in both FMs, and product refinement
holds for all configurations that are in S. The first condi-
tion is necessary to guarantee that all configurations in S
are valid according to the respective product line. Other-
wise, we would not be able to generate valid products.

Definition 2 (Partial product line refinement). For arbi-
trary product lines L = (F,A,K) and L' = (F', A", K'),
and a set of configurations S, L’ partially refines L for the
configurations in S, denoted by L Cs L', whenever

SCIF] A SC[F'] A Vee S - [K]A C K'Y

With this relation,
ers in examples like the one in Section 2.
simply associate L with the product line before

the feature removal, and L’ represents the modi-
fied product line without the LEDS RENESAS TPU

we can now support develop-
We could

feature. Thus, S would be the set of all configu-
rations that do mnot contain LEDS_ RENESAS_TPU.
This would include configurations such as

{IMX WEIM,MVEBU_-MBUS,OMAP_OCP25CP,...}
and {ADB_IOP,ADB_MACII,PROC_EVENTS,..}.
Since the only modification is the feature removal, and
we filter the respective changed products by verifying
refinement only for configurations in S, partial refinement
holds. Hence, developers would only need to test products
that had LEDS_RENESAS_TPU, which could consequently



increase productivity. The previous theory gives no guar-
antees for this case, so developers would have no support
nor guarantees.

We should observe that in Definition 2 the configuration ¢
remains the same, so feature names do matter. Moreover, we
only check refinement for products in the scope of S. This
means that the larger the S, the better is the support. We
could try to provide some guarantee for products that are
not in the scope of S. However, this would involve having a
notion of partial product refinement, and this is not in the
scope of this work. It is also the case that, for an empty S,
partial refinement trivially holds. However, this means that
we would give no support, so developers will have no benefit
in establishing that.

The partial refinement relation is reflexive and transitive,
which are essential conditions to support stepwise partially
safe evolution. Theorem 1 establishes that every product
line is partially refined by itself. As required by Definition 2,
we need to assure that S is a subset of the valid configura-
tions generated from the respective product line.

Theorem 1 (Partial product line refinement reflexivity).
For a product line L and a set of configurations S, let F' be
the FM of L. If S C [F], then L Cg L.

One might want to consecutively perform partial refine-
ment operations, and the transitivity property guarantees
that this is feasible, and that it could still result in some
refined products. However, given that the partial refine-
ments might involve different subsets of products, we can
only guarantee that refinement holds for the intersection of
the configurations refined in each step. For instance, given a
product line L1, one could first fix a bug, obtaining a prod-
uct line L2, and then remove a feature, obtaining L3. As-
suming that S and T are the sets of configurations refined
in each step, S would be the set of configurations whose
products do not contain the changed files in the bug fix, and
T would be the set of configurations that do not have the
removed feature. The resulting product line L3 does not
partially refines L1 in terms of S or T in isolation, because
the products refined in the first step are not necessarily re-
fined in the second step, and vice versa. But L3 partially
refines L1 for the configurations that are in both sets: SNT.

Theorem 2 (Partial product line refinement transitivity).
For product lines L1, L2 and L3, and sets of configurations
Sand T,if L1 Cg L2 and L2 Cr L3, then L1 Cgnr L3.

3.2 Compositionality

Product lines are composed of three elements, which may
evolve separately to be later integrated to generate prod-
ucts. In this context, one might need to change a specific
artifact, for instance, the FM, without changing the AM
and CK. Developers could also modify different elements of
the product line. We analyze these scenarios and whether
such modifications preserve product line partial refinement.
Compositionality theorems are provided in the existing full
refinement theory, so it would be important to provide the
same kind of modular support for partial refinement too.

It is important to notice that FM equivalence and FM re-
finement lead to product line partial refinement only if S is
derived from the initial FM. Thus, we establish a weaker FM
equivalence notion, which allows the initial FM to have con-
figurations not derived from the final FM, differently from
the FM equivalence and refinement notions, that require the
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semantics of the initial FM to be equal or a subset of the
semantics of the final FM [3]. According to Definition 3, the
FMs only have a set of configurations S in common. If we
change a feature from optional to mandatory, for instance,
weaker equivalence holds. In this scenario, S would be the
set of configurations that already had the changed feature.

Definition 3 (Feature model weaker equivalence). For ar-
bitrary feature models F and F’, and a set of configurations
S, F is equivalent to F’ in terms of S, denoted by F =g F’,
whenever

Vee S-ce[F]Ace[F].

As captured in Theorem 3, FM weaker equivalence pre-
serves product line partial refinement. Given a product line
L, one can modify the FM only, by possibly adding, remov-
ing or modifying features and dependencies among them,
but preserving a set of configurations S. Whenever only the
FM is changed, there is still a partial product line refine-
ment with respect to the same S. Since a product line by
definition is well-formed [3], we know that L is well-formed.
However, we have no guarantee about L', more precisely,
whether configurations that are in F’ but are not in S lead
to valid products. In exceptional cases, these could refer to
features that are not in F’ or do not obey rules, such as hav-
ing a feature without having its parent. This is the reason
for requiring well-formedness. Refinement holds because we
are not checking products whose configurations are not in S.
Moreover, the weaker FM equivalence guarantees that S is in
both FMs. Neither the AM nor the CK change. Therefore,
we actually have exactly the same products if only checking
configurations from S.

Theorem 3 (Feature model weaker equivalence composi-

tionality). For a product line L = (F, A, K), a feature model

F’, and a set of configurations S, let L' = (F', A, K). If
~g F’ and L’ is well-formed, then L Cg L.

Defining partial refinement relations for the AM and CK
elements is part of our future work. We suspect that they
would also lead to product line partial refinement, as the
FM weaker equivalence does.

3.3 Combining full and partial refinement

We also reason about compositionality in terms of combin-
ing different refinement notions, since the theories are not
mutually exclusive; they are complementary. Thus, prac-
titioners may desire to perform partial and full refinement
operations together. For improvements or adding new fea-
tures with behavior preservation, one can make use of the
full refinement theory. After that, developers may need to
later remove another feature, such as the feature removal
scenario illustrated in Section 2. For these cases, the partial
refinement notion should be more appropriate. Hence, the
theories might be used interchangeably and we need to pro-
vide support, in the sense that when applying consecutive
transformations, refinement still holds for some products.

Full and partial refinement

When a partial refinement is followed by a full refinement,
we would ideally have partial refinement for products in S
by transitivity. This is not possible because, in the full re-
finement transformation, feature names do not matter, dif-
ferently from the partial refinement notion. In fact, as Def-
inition 1 admits configurations to change, even when S is



equal to the set of all valid configurations, full refinement is
not necessarily a particular case of partial refinement.
Definition 4 describes an alternative notion of partial re-
finement that allows configurations to change according to
a renaming function f. Then, given an initial configura-
tion ¢, refinement holds for the product generated from
f(c). In a feature renaming situation, supposing that we
change the feature name from P to P’, f would be defined
as f(c) = c[P'/P]. Basically, configurations are the same as
before, except that instead of having P we now have P’.

Definition 4 (Weak partial refinement). For arbitrary
product lines L = (F, A, K), L' = (F', A", K’) and a func-
tion f: Conf — Conf, L' partially refines L in terms of f,
denoted by L C¢ L', whenever

Ve € dom(f) - f(c) € [F']A [[K]]? C [[K/]]?(/C)'

The partial refinement notion is a particular case of Def-
inition 4 (when f is the identity function over S). Thus,
this weak notion supports situations where configurations
change, which are not covered by the default partial prod-
uct line refinement notion (Definition 2). Since the weak
definition is more general, we could have it only instead of
having both partial refinement relations. However, Defini-
tion 2 is less complex and developers only need to deal with
the alternative one for feature renaming scenarios.

We have a function f as an index because allowing con-
figurations to be arbitrarily modified having a set of config-
urations S as an index would lead to relations that are not
transitive. Transitivity does not hold for such a definition
because we have no control of the new configurations; they
could be arbitrary. Thus, when applying consecutive refine-
ments, we would not know if the configurations refined were
the same as the one refined in the first step. Hence, even
assuming two refinement operations in terms of the same S,
the transitivity does not hold for S. We do not desire to
have a partial refinement relation that is not a pre-order,
since this would seriously limit its applicability.

When one applies a partial refinement followed by a full
refinement, we have a weak partial refinement. A possible
scenario of such situation is found, for instance, when in-
stead of only renaming a feature, this operation follows an
asset change in a non behavior-preserving way. Since not all
products are refined because of the asset change operation,
the domain of the function is only the set of configurations
whose products do not have the changed asset. Suppos-
ing that L is the product line before these two operations
and L’ is the final product line, we then guarantee that
L C; L'. The function f in this case would also be de-
fined as f(c) = c¢[P’/P], since in the asset change operation
configurations were not changed. This notion is formalized
in Theorem 4. When a partial refinement is followed by a
full refinement, there is a function that maps configurations
from S to the final product line, so that the weaker partial
refinement holds.

Theorem 4 (Partial and full refinement). For product lines
L1, L2 and L3 and a set of configurations S, let F'3 be the
FM of L3. If L1 Cs L2 and L2 T L3, then, for some
function f: S — [F3], L1 Cy L3.

If the operations are conducted in the opposite order (full
refinement followed by partial refinement), the reasoning
and end result are analogous, so we omit the details here.
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Stronger full and partial refinement

Although the full and partial refinement correspondence is
not direct, there is a stronger definition for product line
refinement that has basically the same meaning of Defini-
tion 1, but it does not allow changes in configurations. Con-
sequently, this definition gives support to less scenarios when
comparing to the other one. Feature renaming, for instance,
is not a refinement according to this notion. Since configura-
tions are sets of feature names, when changing such names,
configurations containing them are impacted.

Definition 5 (Stronger product line refinement). For arbi-
trary product lines L = (F, A, K) and L' = (F', A", K'), L’
strictly refines L, denoted by L < L', whenever

Vee [F] - ce[F] A [K]Z T KT

Differently from product line refinement, the stronger no-
tion is more similar to the partial refinement notion (Defini-
tion 2). Since it does not allow any change in configurations,
we can then establish a more direct relationship. For prod-
uct lines L and L', the stronger full refinement is always a
partial refinement, provided that the set of configurations S
is present in L. As a consequence, by transitivity, when a
partial refinement is followed by a stronger full refinement,
this results in a partial refinement, as shown in Theorem 5.
If the refinements are performed in the opposite order, the
result is also a partial refinement.

Theorem 5 (Partial and stronger full refinement). For
product lines L1, L2 and L3 and set of configurations S,
if L1 Cs L2 and L2 < L3, then L1 Cg L3.

Commutativity of full and partial refinement

Finally, we also reason whether the stronger full refinement
and partial refinement transformations lead to the same
product line when applied in different orders, and we demon-
strate that this property holds. For instance, given a product
line L1, suppose that users perform a stronger full refine-
ment, such as locally refactoring an asset, obtaining L2 and
then partially refine the product line by removing a feature,
obtaining L4. Figure 1 represents a commutative diagram
that shows that if we first apply this same partial refinement
operation (yielding L3) and then refining the asset we ob-
tain the same L4. Thus, in this case, the order in which the
transformations are applied does not matter.

Figure 1: Commutative diagram

Properties like this one reflect what happens during de-
velopment, where practitioners might want to apply several
different operations consecutively and it is helpful to be sure
that applying refinements in a different order produce the
same result. We formally derive and prove two theorems
from the commutative diagram structure shown in Figure 1.

In Theorem 6, we give support in case developers are doing
first a partial refinement and then a strong full refinement.



The theorem establishes that there is an alternative way to
obtain the same resulting product line, that would be doing
the corresponding operations in the opposite order. The-
orem 7 is analogous. This theorem has an extra condition
when compared to the first one. This diagram only holds if S
is a subset of the valid configurations generated by the initial
product line L1. This condition is necessary, as otherwise
we could have invalid products, since invalid configurations
may not obey dependency rules among features. Thus, it
does not make sense to refine a product line in terms of an
S that is not part of the product line configurations.

Theorem 6 (Commutative diagram (1)). For product lines
L1, L2 and L4, and a set of configurations S, if L1 Cg L2
and L2 =< L4, then, for some product line L3, we have L1 <
L3N L3 Cgs L4.

Theorem 7 (Commutative diagram (2)). For product lines
L1, L3, L4 and a set of configurations S. Let F'1 be the FM
of L1. If S C [F1], L1 < L3 and L3 Cg L4, then, for some
product line L2, we have L1 Eg L2 A L2 < LA4.

For space restrictions, we omit all proofs. Also, in Sec-
tion 4 and Section 5, we present a restricted number of tem-
plates and queries. The full data can be found online.®

4. PARTIALLY SAFE EVOLUTION
TEMPLATES

As mentioned in Section 3, the partial refinement theory
can be applied to several contexts. In this section, we exem-
plify such contexts and define templates that are abstrac-
tions of practical evolution scenarios. Templates are helpful
because they free developers from understanding the theory;
the templates are easier to understand and provide guidance
on how to evolve a product line guaranteeing safe evolution
for a subset of the products. Additionally, they avoid errors
during an evolution process and increase developers confi-
dence. A template has a left-hand side pattern (LHS) and
a right-hand side pattern (RHS). They correspond to ab-
stractions that capture properties of the initial and evolved
product lines, respectively. In case one follows the syntactic
and semantic rules established by templates, it is guaran-
teed that partial refinement holds for a specified subset of
products S. The developer does not choose the value of S;
it is defined based on the FM, AM and CK of the prod-
uct lines in the templates. Establishing S this way helps to
understand the impact of the change, since products in the
scope of S are not impacted.

Remove feature

We first analyze feature removal situations, which is an usual
scenario in a product line development context. One often
decides to exclude features for diverse reasons [15]; for in-
stance, they are no longer used or not needed by customers.
We then define a REMOVE FEATURE template in Figure 2.
For these cases, products that did not have the removed fea-
ture in the original product line keep the same behavior, and
the others might not be refined. In this template, the three
product line elements are changed. By syntactically analyz-
ing the REMOVE FEATURE template in Figure 2, we observe
that the initial FM, F', has a feature O to be removed, and
consequently, F’ does not have it. We also notice that O is

6 http://github.com/spgroup/theory-pl-refinement
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descendant of P. Nothing else is changed in the FM, which
might have other features beyond the required O and P. We
assume that the initial CK has references to O, so from the
LHS to the RHS, the CK line (containing e’ and n’) refer-
encing O is removed. The AM also loses a mapping, which
represents the asset that implements O.

Figure 2: REMOVE FEATURE partial refinement template

The guarantees provided by the template only hold if some
conditions are valid. We need to make sure that when €’ is
true, O has been selected, otherwise it would make no sense
to exclude it from the CK. To do so, we require that ¢’ = O.
Consequently, a’ is removed, since it must be in a product
whenever O is selected. When a feature is removed, the in-
tuition is that the products that did not have the respective
feature do not change behavior. For the other ones, refine-
ment does not hold because they lose functionality unless
a’ adds no extra behavior to a product. To specify S to
capture that, we make use of the | operator, which filters
configurations from a FM according to a feature expression.
This expression may contain feature names and logical oper-
ators, such as and, not. The expression P A @, for instance,
is satisfied by a configuration ¢ when ¢ has features P and
Q. For an arbitrary FM F and a feature expression e, we
use F' | e to denote the set of configurations in [F] and
that do not satisfy e. Thus, we specify S as F' | O, giving
refinement guarantees only for product configurations that
are in F' and do not include O. Since we only remove the
line containing €’ and n’ from the CK, it is required that
O does not appear in e and other CK lines, otherwise the
feature would not be completely removed.

This template matches the example discussed in Section 2.
To illustrate that, we instantiate the meta-variables for the
example. In this case, F is instantiated with the initial Linux
VM containing LEDS_RENESAS_TPU, and F' is the resul-
tant VM without this feature. The initial CK is instantiated
with the Linux CK, including the line shown in Listing 2 and
the changed CK is the same, but without this mapping. The
Linux AM could be represented by mappings between the as-
set names to their respective contents. Using the feature re-
moval example, n’ would be drivers/leds/leds-renesas-tpu.c
and drivers/leds/leds-renesas-tpu.h, and a’, the respective
contents of these source code files. The other mappings,
such as n + a, correspond to other source file names and
the respective contents. The new AM is obtained from the
initial by removing the mapping n’ — a’, which corresponds
to the implementation of the removed feature. It is true
that ¢’ = O, since €’ is LEDS_RENESAS_TPU. This fea-
ture appears only in ¢’, since we did not find occurrences
of this feature in the remaining items of the CK. S is F' |
LEDS_RENESAS_TPU. Thus, for these configurations the
refinement holds. The other products are not refined since
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they have the removed feature, thus not preserving behavior.

Change asset

Another situation we analyze is an asset change. Developers
modify source files in many contexts, such as fixing bugs or
implementing new features. In such situations, one possibly
not desires to preserve behavior. Thus, this is often not
a safe evolution scenario, since products that contain the
changed asset might not preserve behavior. Therefore, we
give refinement guarantees for the other products, which are
the ones that do not have the changed assets. We define a
template that matches this scenario in Figure 3.

To specify S for this case, we use another restriction oper-
ator. For arbitrary FM F, CK K and set of asset names ns,
we use (F, K) | ns to denote the set of configurations in F se-
mantics but whose features are not present in products con-
taining assets from ns. Hence, S is defined as (F, K) | {n},
which is the set of configurations that are in F' whose fea-
tures are not implemented by the asset named n, which in
this case is the a asset. Since products containing a’ are
not refined, we can not give any guarantees for them. There
is also a well-formedness condition. Since we do not know
which changes were performed to a, and we define prod-
uct lines as well-formed triples, we need to demand well-
formedness for products containing a’.

Figure 3: CHANGE ASSET partial refinement template

It is possible to notice that in some of these scenarios,
not all product line elements change. The CHANGE As-
SET template assumes that both product lines have the same
F and K. More precisely, only the asset a is changed to a’.
Thus, only the asset content is modified, not the asset name,
which is the same for the initial and new lines (n). Although
this template does not capture situations where the FM and
CK change as well, one could obtain this effect by combin-
ing templates. The CHANGE ASSET template can be used
with the CHANGE CK LINE template (which will be intro-
duced later), for instance. Thus, developers could not only
change assets, but also change their reference in the CK. As
explained in Section 3, the guarantee is for the intersection
of the products refined in both steps and this can be auto-
matically calculated, as we define the S for both templates.

We capture not only unsafe evolution scenarios with the
CHANGE ASSET template. Supposing that one might refine
an asset, this template also matches. However, we would
give less support since we assume that the asset is being
changed in a non behavior-preserving way. Thus, the RE-
FINE ASSET template [12] is more appropriate in this sit-
uation because it assumes that the product line is safely
evolved and gives guarantees for all products. In contrast,
if the change impacts the product line behavior, the RE-
FINE ASSET template gives no support and developers should
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rather make use of the CHANGE ASSET template.

Add assets

Another possibility of partially evolving a product line is by
adding new assets and their references in the CK. This is
possibly not a safe evolution scenario, since some features
might be associated to new assets that change their behav-
ior. Thus, we characterize it as a partially safe evolution
scenario and give refinement guarantees only for products
that are not extended with the new assets. The template
illustrated in Figure 4 deals with this situation. It requires
the FM not to change. We now use meta-variables to repre-
sent the entire product lines. This is just to reference them
in the template conditions. The AM in PL’ is an extension
of the previous AM with new mappings, and new items are
added to the CK. However, nothing is removed. We are only
assuming additions to both entities.

The set of refined configurations in this case is similar to
the previous template, but instead of filtering according to
a single asset name n, we are filtering products that do not
have names present in dom(m), where dom(m) is the left
side of m; these are precisely the products that were not
extended. Another condition is that the assets in its must
appear in m. This is necessary, otherwise we could still
have non-refined products after filtering the configurations
that compose S. We also require that products from PL’
that are not in S to be well-formed. Since the AM and CK
are modified, we have no control of such additions, so we
demand well-formedness.

Figure 4: ADD ASSETS partial refinement template

This template does not require that A and K are mod-
ified, since m and its could be empty. However, in case
unused assets are added (by changing only the AM), one
should rather use the ADD UNUSED ASSETS safe evolution
template [12] to obtain refinement guarantees for all prod-
ucts. Moreover, if the three elements of the product line are
modified and the assets added are only in respect to the new
feature, this would also be a safe feature addition scenario
[12], provided that the added feature is optional. However,
in cases of non-safe feature additions, such as mandatory
feature additions, one could obtain support of the partial
refinement theory by dividing this modification in two parts:
first, only the FM would be modified by adding a mandatory
feature using the ADD NEW MANDATORY FEATURE template
[12], and then adding the respective assets by using the tem-
plate illustrated in Figure 4. The first step is safe, since it
is a FM refinement scenario. The second step, however, is
not totally safe because the mandatory feature added in the
previous step had no implementation, and now part of the
products are going to be modified with these new assets.
The guarantee would be for products that do not have the



added feature, as guaranteed by Theorem 5.

Templates derivation process

We derived the templates by adapting a catalog of safe evo-
lution templates [12, 3] for situations where not all products
are refined by products in the evolved product line. For
instance, the CHANGE ASSET template in Figure 3 essen-
tially adapts the REFINE ASSET [12] template by dropping
the precondition that the new asset a’ must refine a. This
way we allow any kind of change to a, but capture change
impact by precisely defining S. Verify completeness of the
templates and derive new ones are part of our future work.

5. EVALUATION

Although we suspected that the partially safe evolution
templates could be useful in a number of situations, it is im-
portant to better understand how often they could apply in
practice. To do that, we analyze 79218 evolution scenarios of
the Linux repository. We basically try to find only scenarios
that match our templates. Strictly, every evolution scenario
that matches our templates is partially safe, if we make S
empty, but it is not our goal to give no guarantees. In this
section, we detail the data extraction process in Section 5.1,
show the results obtained for each template in Section 5.2,
and discuss threats to validity in Section 5.3. The purpose
of this study is to discover whether the proposed templates
could be frequently applicable in a product line development
context. We would like to answer the following question:

RQ: How often are partially safe evolution tem-
plates applicable in a product line project?

In order to answer this question, we automatically ana-
lyze commits of the Linux project, where each commit cor-
responds to an evolution scenario composed of the product
lines just before and after the commit is performed. We mea-
sure the number of occurrences of the proposed templates,
since they represent partially safe evolution situations.

5.1 Data extraction

We assess the templates using FEVER.” This tool is able
to analyze commits from the Linux repository. FEVER re-
ceives Linux versions as input and collects all commits from
the respective releases. Then, the differences are processed
and the resulting information is stored in a Neo4j database.®
To find occurrences of our templates, we query the database
populated by FEVER filtering evolution scenarios by ex-
pressing the conditions for each template, such as whether
they touch the FM. We also manually check some evolution
scenarios to make sure they really match the templates. Al-
together, we analyzed 79218 evolution scenarios from the
database we had access to, and this corresponds to all com-
mits between the Linux versions 3.11 and 3.16. The first
commit was performed on September 2"¢ of 2013 and the
last one was on August 3™ of 2014, so this comprises roughly
one year of development. We try to match each evolution
scenario with the templates, based on their conditions.

REMOVE FEATURE: scenarios that modify all three ele-
ments of the product line, removing elements. These three
modifications must be correlated, as exemplified in Sec-
tion 2. Thus, the removed mappings need to be from the
removed features in the FM. Similarly, the removed assets in

"http://github.com/NZR/SPLR-FEVER- Tool.
8Neo4j website http://neodj.com.
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the CK need to also be excluded from the implementation.
These rules are detailed in Listing 4. From the MATCH
clause, we have all commits in which the CK and source
code are both changed. We then have the WHERE clause
to filter them with extra conditions. For instance, the first
condition is that this commit should affect the FM as well,
and the change must be a removal. Moreover, the name
of the feature in the FM needs to be the same name of
the feature edited in the mapping change (CK). All distinct
commits obeying these rules are then returned.

Listing 4: Remove feature Neodj® query

1 MATCH (file:ArtefactEdit)<——(c:commit)
——>(mapping: MappingEdit )
2 WHERE
3 (c)——>(:FeatureEdit{change: ‘ ‘Remove’’,
name: mapping . feature }) AND
file .change="‘‘REMOVED’ > AND
mapping. target_change="‘‘REMOVED’ > AND

4
5
6
7 return distinct c

CHANGE ASSET: we classified an evolution scenario as a
change asset instance when neither the Linux FM nor the
Linux CK changed and when at least one source file changed.
It was also necessary that the commit had no source files
added or removed. Therefore, we only capture cases where
the only change is in source code and non-code files, such
as documentation. If only a .txt file is modified, we do not
consider it a change asset instance.

CHANGE CK LINE, ADD CK LINES and REMOVE CK LINES:
we identify these templates with only one query because
they are very similar and we noticed that in some cases an
evolution scenario was an instance of the CHANGE CK LINE
template, but the Git diff algorithm was showing it as a re-
moval followed by an addition. Since the tool relies on this
classification, we could have non-precise results, so we pre-
ferred to detect mapping changes and check manually which
templates match the respective evolution scenario. For all
of them, we required the implementation and FM elements
not to change. We also identified the other templates in a
similar way, and the results are presented next.

5.2 Results

We illustrate the results of running FEVER against the
79218 commits in Table 1. According to Dintzner et al. [§],
around 80% of feature oriented changes in Linux only touch
the implementation, and do not affect the FM or CK. Con-
firming that, the CHANGE ASSET template had the highest
occurrence rate. This might be due to Linux maturity level,
and also to the fine granularity of the commits observed in
the analyzed period. However, asset refinements also match
this pattern and, since the number of occurrences is ex-
tremely high, we could not manually verify all cases. Thus,
a number of these occurrences might be full refinements. By
further manual analysis in 50 instances (arbitrarily chosen
between versions 3.15 and 3.16), only 7 turned out to be
asset refinements. The other 43 are non-refinements and
the majority of them were bug fixes. Developers fixed such
bugs mostly by modifying if-then-else conditions. Based on
this analysis, we suspect that partial refinements occur more
frequently, and this makes the CHANGE ASSET template far
more applicable than the REFINE ASSET template.

Each scenario is classified as compatible with no more
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than one template, except for the ADD CK LINES, CHANGE
CK LINE and REMOVE CK LINES templates. Since they were
all found with the same query, we noticed that some scenar-
ios actually had instances of more than one from the three
patterns. Thus, a scenario might be classified as an instance
of both REMOVE CK LINES and ADD CK LINES templates,
so we had to proceed with a manual analysis as follows.
FEVER returned 202 instances of the ADD ASSETS tem-
plate, of which 49 were manually checked to confirm they
really match the template. Two of them did not, because
they were also modifying the FM, so they were actually fea-
ture additions. These two instances were removed from Ta-
ble 1. Although we specified in the query that the resultant
scenarios must not touch the Linux FM, these two cases
were accidentally returned by the tool. The other 47 match
exactly our conditions and are instances of the template.
There are at least 21 assets removals. We did not investi-
gate the reason of for lower removal rate. The results might
be different considering another interval and project.

There are at least 26, 15 and 11 scenarios respectively
corresponding to mapping changes, additions and removals.
We manually checked the 52 instances. These numbers are
not very high because modifications focusing only on the
mapping rarely occur, as the templates CHANGE CK LINE,
ADD CK LINES and REMOVE CK LINES have a low frequency
when comparing to others, such as ADD ASSETS. This might
happen because most of the commits modify at least one
source code file and some of them modify also the FM. The
CHANCGE CK LINE template presents the highest number of
instances of the three patterns, probably because developers
often remove and add mappings together with the respective
source code associated or references to the FM as well. It is
also possible that an evolution scenario captured by one of
our templates corresponds to many commits. Since we try
to match each commit separately with the templates, this
would explain the low occurrence.

We confirmed that 59 of the 92 feature removal scenar-
ios match our REMOVE FEATURE template. Our query re-
turned also some non-removals, such as scenarios where the
features were actually being moved. We did not consider
these cases to match our pattern, since the feature was not
actually removed. For the 33 remaining scenarios, we read
the commit messages and confirmed whether they were men-
tioning feature removals. For the cases that did not mention
any removal, we manually analyzed and only included in our
results cases that were indeed instances of the template.

Template Instances
CHANGE ASSET (and possi- 65129
bly REFINE ASSET)

ADD ASSETS 200
REMOVE ASSETS 21
CHANGE CK LINE 26
ADD CK LINES 15
REMOVE CK LINES 11
REMOVE FEATURE 92

Table 1: Template occurrence

As just explained, the numbers in Table 1 are lower
bounds of the cases we could confirm. From the 79218 com-
mits, 6391 are merge commits, which are discarded by the
tool because they correspond to integration, not evolution,
scenarios. Although there might be changes during manual
merges, they are not really relative to a single previous prod-
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uct line, as captured by our templates. Hence, we could give
support for approximately 90% of the cases. There are, in
fact, 7333 commits that, together with its previous commits,
do not match any of our templates, which could include, for
instance, commits that only change feature dependencies in
the FM, or commits that represent feature additions.

5.3 Threats to validity

As this is a preliminary evaluation, in this section, we
discuss internal, external and construct validity.

Construct: As already mentioned in Section 5.2, to find
occurrences of the CHANGE ASSET template, we search for
any change in the implementation and do not analyze which
type of modification was performed, thus also having com-
mits which actually represent occurrences of the REFINE AS-
SET template [12]. We manually examined 50 commits, so
we can not generalize for the 65219 occurrences. Scenarios
matching the other templates can be safe only in abnormal
cases, so we do not take them into consideration.

Internal: We should consider that the tool we use may
have bugs and false positives/negatives. We manually an-
alyzed several instances, so there is evidence that, except
for change asset instances, most of the results returned are
correct. We did not find false negatives, but if we could
detect and reduce them, we would have even better results.
False negatives rate also depends on the number of commits
matched to an evolution scenario. We analyzed each com-
mit separately. For instance, one could remove a feature in
two parts: first, the FM and CK could be changed, and in
the subsequent commit only the implementation would be
removed. In this situation, these two commits would not
match any template, although, in sequence, they constitute
a feature removal scenario. We also consider as internal va-
lidity the queries precision, since it is not trivial to precisely
classify commit changes.

External: We only examined a small part of the Linux
repository history. Hence, we can not generalize the result
for other history periods or projects, which may have dif-
ferent development practices, such as commits with coarser
granularity and different programming languages. Perhaps,
if we analyze other projects, the CHANGE ASSET template
could be used together with others, since one might change
not only the implementation but also the FM and the CK
in a single commit. However, as a consequence, other tem-
plates could have a higher rate of occurrence. Although we
do not include other projects, we consider the Linux system
significant because of its popularity and complexity.

6. RELATED WORK

Dintzner et al. [7] present a classification of feature
changes as well as a tool named FMDiff to automatically
analyze differences in Linux variability models. The change
categories are specific to structures found in Kconfig spec-
ifications, such as feature dependency changes. Finally,
they evaluate the tool by analyzing commits from the Linux
repository history. Thiim et al. [18] classify FM edits into
refactorings, specializations, generalizations and arbitrary
edits by using satisfiability solvers. Our work differs be-
cause it is not our goal at the moment to build a tool and to
analyze the feature model structure only. However, our the-
ory could be mechanized in such tools to provide even more
support for developers when making changes to the FM, by
providing the subset of refined configurations in each case.



Passos et al. [15] propose a pattern catalog containing fea-
ture addition and removal templates applicable in the Linux
context. The main difference from their patterns to ours
is that they do not focus on giving guarantees for develop-
ers in partially safe evolution scenarios. Additionally, they
present both refinement and potential non-refinement tem-
plates. To verify the scenarios occurrence in practice, they
conducted an experiment by manually analyzing the Linux
repository trying to find instances of their templates and dis-
carded the ones that did not present a significant occurrence
rate. While they focus on proposing templates not only
representing refinement scenarios but also non-refinements,
our aim is to propose a new refinement theory and non-full-
refinement templates. They also suggest the need for a new
theory to address non-full-refinement scenarios.

Nieke et al. [13] analyze feature model evolution and de-
fine temporal feature models, which allow features to have
expiration date. For instance, if a feature is removed it is no
longer valid. It is also possible to have locked configurations.
A configuration that is locked should never be broken. This
information is achieved through analyzing possible changes,
such as feature renaming, deletion, among others, to tempo-
ral FMs. This work resembles ours because it gives support
for some partial refinements regarding the variability model.
Developers can change some configurations and still be cer-
tified that the locked ones remain valid. However, they only
analyze the variability model and do not propose a partial
refinement theory, differently from our work.

A number of researchers [5, 10, 11, 6] use model checking
techniques [4] to verify products lines. Sabouri and Khos-
ravi [17] try to tackle the well-known state space explosion
problem by statically analyzing product family models, be-
fore checking them against properties (expressed in linear
temporal logic [9]), to avoid re-verifying products by using
previous results. This work is related to ours, since in both
proposals, not all products are verified. However, we defined
a partial refinement theory and verify product refinement,
whereas their focus is not refinement, but to verify general
properties, such as whether a product has a specific feature.

7. CONCLUSION

In this work, we define a partial refinement theory for
product lines with the aim of covering unsafe product line
evolution scenarios not supported by any previous theory.
We establish connections between such theories by showing
how they can be used together and suggest a template cat-
alog which represents common partial evolution scenarios
found in practice. For each template, we analyze the change
impact and give guarantee of refinement for a proper sub-
set of the original products. Finally, we gather template
occurrence evidence in the Linux project.

As future work, we plan to formalize partial refinement
notions for the AM and CK artifacts and define composi-
tionality theorems regarding these notions. We shall also
prove more commutative properties, and this includes en-
larging our refinement notion to have transformation func-
tions relating product lines before and after evolution. We
also intend to expand our empirical analysis, which is still
preliminary, by evaluating projects other than Linux, and
determining exactly the value of S for each scenario. We
could also investigate the completeness of the templates. Fi-
nally, we would like to develop a tool to support developers
on software product line evolution.
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