
Science of Computer Programming 152 (2018) 116–160
Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

All roads lead to Rome:
Commuting strategies for product-line reliability analysis

Thiago Castro a,b,∗, André Lanna a, Vander Alves a,d, Leopoldo Teixeira c,
Sven Apel d, Pierre-Yves Schobbens e

a Computer Science Department, University of Brasília, Campus Universitário Darcy Ribeiro – Edifício CIC/EST, 70910-900, Asa Norte, Brasília –
DF, Brazil
b Systems Development Center, Brazilian Army, QG do Exército – Bloco G – 2º Andar, 70630-901, Setor Militar Urbano, Brasília – DF, Brazil
c Informatics Center, Federal University of Pernambuco, Av. Jornalista Aníbal Fernandes, s/n – Cidade Universitária (Campus Recife),
50740-560, Recife – PE, Brazil
d Department of Informatics and Mathematics, University of Passau, Innstr. 33, 94032 Passau, Germany
e Faculty of Computer Science, University of Namur, rue Grandgagnage 21, 5000 Namur, Belgium

a r t i c l e i n f o a b s t r a c t

Article history:
Received 22 November 2016
Received in revised form 20 October 2017
Accepted 24 October 2017
Available online 31 October 2017

Keywords:
Software product lines
Product-line analysis
Reliability analysis
Model checking
Verification

Software product line engineering is a means to systematically manage variability and
commonality in software systems, enabling the automated synthesis of related programs
(products) from a set of reusable assets. However, the number of products in a software
product line may grow exponentially with the number of features, so it is practically
infeasible to quality-check each of these products in isolation. There is a number of
variability-aware approaches to product-line analysis that adapt single-product analysis
techniques to cope with variability in an efficient way. Such approaches can be classified
along three analysis dimensions (product-based, family-based, and feature-based), but,
particularly in the context of reliability analysis, there is no theory comprising both
(a) a formal specification of the three dimensions and resulting analysis strategies and
(b) proof that such analyses are equivalent to one another. The lack of such a theory
hinders formal reasoning on the relationship between the analysis dimensions and derived
analysis techniques. We formalize seven approaches to reliability analysis of product lines,
including the first instance of a feature-family-product-based analysis in the literature.
We prove the formalized analysis strategies to be sound with respect to the probabilistic
approach to reliability analysis of a single product. Furthermore, we present a commuting
diagram of intermediate analysis steps, which relates different strategies and enables the
reuse of soundness proofs between them.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Software product line engineering is a means to systematically manage variability and commonality in software sys-
tems, enabling the automated synthesis of related programs (known as variants or simply products) from a set of reusable

* Corresponding author at: Computer Science Department, University of Brasília, Campus Universitário Darcy Ribeiro – Edifício CIC/EST, 70910-900, Asa
Norte, Brasília – DF, Brazil.

E-mail addresses: thiago.mael@aluno.unb.br (T. Castro), andrelanna@unb.br (A. Lanna), valves@unb.br (V. Alves), lmt@cin.ufpe.br (L. Teixeira),
apel@uni-passau.de (S. Apel), pierre-yves.schobbens@unamur.be (P.-Y. Schobbens).
https://doi.org/10.1016/j.scico.2017.10.013
0167-6423/© 2017 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.scico.2017.10.013
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:thiago.mael@aluno.unb.br
mailto:andrelanna@unb.br
mailto:valves@unb.br
mailto:lmt@cin.ufpe.br
mailto:apel@uni-passau.de
mailto:pierre-yves.schobbens@unamur.be
https://doi.org/10.1016/j.scico.2017.10.013
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2017.10.013&domain=pdf

T. Castro et al. / Science of Computer Programming 152 (2018) 116–160 117
assets (known as domain artifacts) [15,42,1]. In a product line, variability is modeled in terms of features, which are distin-
guishable characteristics that are relevant to stakeholders of the system [16]. This methodology improves productivity and
time-to-market, and it eases mass customization of software [42].

In recent years, product lines have been widely applied in both industry [50,36] and academia [1,15,28,42], in particular
to safety- and mission-critical systems [50,20,19,34,46]. Model checking is of particular interest to quality assurance of such
systems. It is a verification technique that explores all possible system states in a systematic manner, effectively checking
that a given system model satisfies a certain property [5].

The number of products in a product line may grow exponentially with the number of features, giving rise to an ex-
ponential blowup of the configuration space [1,6,14,13]. So, it is often infeasible to quality-check each of these products in
isolation. Nonetheless, software verification techniques for the single-product case are widely used by the industry, and it is
beneficial to exploit their maturity to increase quality while reducing cost and risk [5].

There is a number of approaches to product-line analysis that adapt established analysis techniques to cope with vari-
ability [47]. In particular, several model checking techniques have been successfully lifted to operate on product lines [47,
11–13,21,9,22,32,46,40]. Among these techniques, we focus on reliability analysis, which is the verification of a probabilistic
existence property [23] and can be seen as the probability that a system does not fail.

Product-line analyses can be classified along three dimensions: product-based (the analysis is performed on generated
products or models thereof), family-based (only domain artifacts and valid combinations thereof are checked), and feature-
based (domain artifacts implementing a given feature are analyzed in isolation, regardless of their valid combinations) [47].
More than one dimension can be exploited in a given technique, giving rise to feature-family-based and family-product-
based analyses, for instance. However, existing approaches to the problem of lifting standard analysis techniques to product
lines often focus on the family-based dimension [39,45,21,9,7] and relate it only to the product-based dimension to ensure
soundness. In the context of reliability analysis, particularly, there is no theory comprising both (a) a formal specification of
the three dimensions and resulting analysis strategies and (b) proof that such analyses are equivalent to one another (i.e.,
they compute the same reliability).

The lack of such a theory hinders formal reasoning on the relationship between the dimensions and derived analyses.
Indeed, proving that an analysis method yields a correct result is a fundamental issue, especially for critical systems. Fur-
thermore, a practitioner needs to be able to choose among existing analysis strategies according to the problem at hand,
based on their trade-offs in terms of space and time [47]. As long as there is no evidence that different strategies are
mutually equivalent, empirical studies comparing them will have limited results.

Based on the product-line analysis taxonomy proposed by Thüm et al. [47], we formalize seven approaches to reliability
analysis of product lines: two product-based, a family-based, a family-product-based, a feature-family-based, a feature-
product-based, and a feature-family-product-based. In particular, the latter of these is a novel approach, according to a
recent survey [47].

We prove the formalized analysis strategies to be sound with respect to the probabilistic approach to reliability analysis
of individual products. Furthermore, we present a commuting diagram of intermediate analysis steps, which relates different
strategies and enables the reuse of soundness proofs between them. In this sense, all strategy choices are guaranteed to yield
the same result.

The main contributions of this work are the following:

• The formalization of seven strategies for reliability analysis of software product lines, conforming to the classification
by Thüm et al. [47] (Section 4).

• A novel feature-family-product-based strategy for model checking of product lines (Section 4.5). To the best of our
knowledge, and according to the survey by Thüm et al. [47], this is the first strategy in its category.

• Proofs of commutativity between different strategies (Section 4). This improves the current understanding on how
analysis strategies for product lines relate to one another and establishes their soundness.

• A commuting diagram of intermediate analysis steps (Fig. 10), which relates different strategies and enables the reuse
of soundness proofs between them.

• A general principle for lifting analyses to product lines using algebraic decision diagrams (Section 4.2.2, Theorem 2).

This work first provides fundamental concepts necessary for the discussion of product-line analyses (Section 2), followed
by an explanation of stochastic models of product-line behavior and corresponding model checking techniques (Section 3).
We proceed with formal definitions of strategies and proofs of their commutativity (Section 4), ending with a discussion of
related work (Section 5) and ideas for further research regarding commonality of product line analysis strategies (Section 6).

2. Background

In this section, we lay the foundations for the upcoming discussion. The reader is expected to have some familiarity with
discrete-time Markov chains (DTMC), in particular from a state-based perspective (as presented, for instance, in the book by
Baier and Katoen [5]).

118 T. Castro et al. / Science of Computer Programming 152 (2018) 116–160
2.1. Software product lines

A software product line is a set of software-intensive systems sharing a common, managed set of features that satisfy
specific needs of a particular market or mission, and that are developed from a common set of core assets in a prescribed
way [15]. A feature model documents the features of a product line and their relationships [1]. For a feature model FM,
we denote its set of features by F . Each feature in this set has a name; feature names are used as atomic propositions to
express feature relationships as propositional logic formulae.

A given product is specified by a configuration. A configuration is a selection of features and, as such, is represented
by a set of atoms: a negated atom denotes feature absence, while a positive one denotes presence. We denote the set of
configurations over a feature set F as C . This set contains all 2|F | combinations of feature atoms, each of which must appear
in either positive or negative form, but never both. Valid configurations, that is, configurations that satisfy the constraints
expressed by the feature model FM, are denoted by �FM� ⊆ C . Each c ∈ �FM� specifies the features of a product of the
product line.

Product derivation is the process by which reusable assets are combined to form a product, according to a specified
configuration. Actual behavior is included or excluded from a generated product by means of presence conditions, which are
propositional formulae over features [17].

To operationalize satisfaction of presence conditions, we need to define Boolean functions over feature selections. There-
fore, we define an arbitrary (but fixed) total order of features by turning the set F of features into a list. This way, we can
unambiguously denote a configuration c ∈ �FM� as a Boolean tuple in B|F| , where B = {0, 1} is the set of Boolean values
(where 0 and 1 denote the Boolean values FALSE and TRUE, respectively). Such Boolean tuples have a fixed position for
each feature, with the i-th position denoting presence or absence of the i-th feature1 by the values 1 and 0, respectively. In
the upcoming discussion, whenever we refer to k-ary Boolean functions, we assume that Boolean k-tuples can be used as
arguments.

2.2. Reliability analysis

Reliability analysis can be defined as a probabilistic existence property [23]. This means the reliability of a system is
the probability that, starting from an initial state, the system reaches a set of target (also success) states. This value is
called reachability probability. To analyze this property, we first model the system’s behavior as a DTMC—a tuple (S, s0, P, T),
where S is a set of states, s0 ∈ S is the initial state, P is the transition probability matrix P : S × S → [0, 1], and T ⊆ S is
the set of target states.2 Moreover, each row of the transition probability matrix sums to 1, that is, ∀s∈S · P(s, S) = 1, where
P(s, S) = ∑

s′∈S P(s, s′).
For every state s ∈ S , we say that a state s′ is a successor of s iff P(s, s′) > 0. Accordingly, the set of successor states of

s, Succ(s), is defined as Succ(s) = {s′ ∈ S | P(s, s′) > 0}. A DTMC induces an underlying digraph where states act as vertices
and edges link states to their successors. This way, we say that a state s′ of a DTMC is reachable from a state s, denoted by
s � s′ , iff s′ is reachable from s in the DTMC’s underlying digraph. Likewise, we write s �� s′ to denote that s′ is unreachable
from s. This notation is also used with respect to a set T of states: s � T iff there is at least one state s′ ∈ T such that
s � s′ , and s �� T otherwise.

The reachability probability for a DTMC can be computed using probabilistic model checking algorithms, implemented
by off-the-shelf tools [5,33]. An intuitive and correct view of reachability probability, although not well-suited for efficient
implementation, is that a target state is reached either directly or by first transitioning to a state that is able to recursively
reach it. We present a formalization of this property, adapted from Baier and Katoen [5], that suits the purpose of this work.

Property 1 (Reachability probability for DTMCs). Given a DTMC D = (S, s0, P, T), a state s ∈ S , and a set T ⊆ S of target states,
the probability of reaching a state t ∈ T from s satisfies the following property:

PrD(s, T) =

⎧⎪⎨⎪⎩
1 if s ∈ T

0 if s �� T∑
s′∈S\T P(s, s′) · PrD(s′, T) + ∑

t∈T P(s, t) if s /∈ T ∧ s � T

Whenever T is a singleton {t}, we write PrD(s, t) to denote PrD(s, T).

In a product line, different products give rise to distinct behavioral models. To handle the behavioral variability that is
inherent to product lines, we resort to Parametric Markov Chains [18].

2.2.1. Parametric Markov Chains
Parametric Markov Chains (PMC) extend DTMCs with the ability to represent variable transition probabilities. Whereas

probabilistic choices are fixed at modeling time and represent possible behavior that is unknown until run time, variable

1 The actual order of features does not affect our results, since its only purpose is to consistently refer to values in Boolean tuples.
2 This definition departs from the one by Baier and Katoen [5] in two ways: (a) we abstract the possibility of multiple initial states and the computation

of other temporal properties (to focus on reliability analysis) and (b) we incorporate target states in the model (to abbreviate model checking notation).

T. Castro et al. / Science of Computer Programming 152 (2018) 116–160 119
transitions represent behavior that is unknown already at modeling time. These variable transition probabilities can be
leveraged to represent product-line variability [46,22,9].

Definition 1 (Parametric Markov Chain). A Parametric Markov Chain is defined by Hahn et al. [26] as a tuple P =
(S, s0, X, P, T), where S is a set of states, s0 is the initial state, X = {x1, . . . , xn} is a finite set of parameters, P is the
transition probability matrix P : S × S → FX , and T ⊆ S is the set of target (or success) states. The set FX comprises the
rational expressions over R with variables in X , that is, fractions of polynomials with Real coefficients. This way, the seman-
tics of a rational expression ε is a rational function fε(x1, . . . , xn) = p1(x1,...,xn)

p2(x1,...,xn)
from Rn to R, where p1 and p2 are Real

polynomials. For brevity, we hereafter refer to rational expressions simply as expressions.

By attributing values to the variables, it is possible to obtain an ordinary (non-parametric) DTMC. Parameters are given
values by means of an evaluation, which is a total function3 u : X → R for a set X of variables. For an expression ε ∈FX and
an evaluation u : X ′ → R (where X ′ is a set of variables), we define ε[X/u] to denote the expression obtained by replacing
every occurrence of x ∈ X ∩ X ′ in ε by u(x), also denoted by ε[x1/u(x1), . . . , xn/u(xn)].

For instance, suppose we have sets of variables X = {x, y} and X ′ = {x, y, z}, and an evaluation u = {x �→ 2, y �→ 5, z �→ 3}.
If ε ∈FX is the rational expression x −2y, then ε[X/u] = ε[x/2, y/5] = 2 −2 ·5 = −8. Note that, if u’s domain, X ′ , is different
from the set X of variables in ε, then ε[X/u] = ε[(X ∩ X ′)/u].

This definition can be extended to substitutions by other expressions. Given two variable sets X and X ′ , their respective
induced sets of expressions FX and FX ′ , and an expression ε ∈ FX , a generalized evaluation function u : X → FX ′ substi-
tutes each variable in X for an expression in FX ′ . The generalized evaluation ε[X/u] then yields an expression ε′ ∈ FX ′ .
Moreover, successive expression evaluations can be thought of as rational function compositions: for u : X → FX ′ and
u′ : X ′ → R,

ε[X/u][X ′/u′] = ε[x1/u(x1)[X ′/u′], . . . , xk/u(xk)[X ′/u′]] (1)

for x1, . . . , xk ∈ X (since u is a total function, we do not need to consider non-evaluated variables).
The PMC induced by an evaluation u is denoted by Pu = (S, s0, ∅, Pu, T) (alternatively, P[X/u]), where Pu(s, s′) =

P(s, s′)[X/u] for all s, s′ ∈ S . To ensure the resulting chain after evaluation is indeed a valid DTMC, one must use a well-
defined evaluation.

Definition 2 (Well-defined evaluation). An evaluation u : X → R is well-defined for a PMC P = (S, s0, X, P, T) iff, for all
s, s′ ∈ S , it holds that

• Pu(s, s′) ∈ [0, 1] (all transitions evaluate to valid probabilities)
• Pu(s, S) = 1 (stochastic property—the probability of disjoint events must add up to 1)

Hereafter, we drop explicit mentions to well-definedness whenever we consider an evaluation or a DTMC induced by
one, because we are only interested in this class of evaluations. Nonetheless, we still need to prove that specific evaluations
are indeed well-defined.

2.2.2. Parametric probabilistic reachability
To compute the reachability probability in a model with variable transitions, we use a parametric probabilistic reacha-

bility algorithm. A parametric model checking algorithm for probabilistic reachability takes a PMC P as input and outputs a
corresponding expression ε representing the probability of reaching its set T of target states. Hahn et al. [26] present such
an algorithm and prove that evaluating ε with an evaluation u yields the reachability probability for the DTMC induced in
P by the same evaluation u.

Fig. 1 [26] illustrates a single step of this parametric probabilistic reachability algorithm. The main idea is that, for a
given state s, the probability of one of its predecessors (s1) reaching one of its successors (s2) is given by the sum of
the probability of transitioning through s and the probability of bypassing it. In this example, other states and respective
transitions are omitted. Note that, since there is a self-loop with probability pc , there are infinite possible paths going
through s, each corresponding to a number of times the loop transition is taken before transitioning to s2. Hence, the sum
of probabilities for these paths correspond to the infinite sum

∑∞
i=0 pa(pc)

i pb = pa(
∑∞

i=0 pi
c)pb = pa

1
1−pc

pb .4

Definition 3 (State elimination step). Given a PMC P = (S, s0, X, P, T) and an arbitrary state s ∈ S , a state elimination step of
the algorithm by Hahn et al. [26] updates the transition matrix P to P′ , such that, for all states s1, s2 ∈ S \ {s},

P′(s1, s2) = P(s1, s2) + P(s1, s) · 1

1 − P(s, s)
· P(s, s2)

3 Hahn et al. [26] actually define it in a more general way as a partial function. However, for our purpose, it suffices to consider total functions.
4 Whenever 0 < x < 1, we have the following convergent sum: ∑∞

i=0 xi = 1
1−x .

120 T. Castro et al. / Science of Computer Programming 152 (2018) 116–160
Fig. 1. Elimination of state s in the algorithm by Hahn et al. [26].

The soundness of the parametric probabilistic reachability algorithm by Hahn et al. [26] is expressed by the following
lemma and summarized by the commuting diagram in Fig. 2.

Lemma 1 (Parametric probabilistic reachability soundness). Let P = (S, s0, X, P, T) be a PMC, u be a well-defined evaluation for P ,
and ε be the output of the parametric probabilistic reachability algorithm by Hahn et al. [26] for P and T . Then, PrPu (s0, T) = ε[X/u].

Proof. The algorithm by Hahn et al. [26] is based on eliminating states until only the initial and the target ones remain. Its
proof consists of showing that each elimination step preserves the reachability probability. We refer the reader to the work
by Hahn et al. [26] for more details on the algorithm itself and the proof mechanics. �

Fig. 2. Statement of Lemma 1.

2.3. Algebraic Decision Diagrams

An Algebraic Decision Diagram (ADD) [4] is a data structure that encodes k-ary Boolean functions Bk → R. As an ex-
ample, Fig. 3 depicts an ADD representing a binary function f . Each internal node in the ADD (one of the circular nodes)
marks a decision over a single parameter. Function application is achieved by walking the ADD along a path that denotes
this decision over the values of actual parameters: if the parameter represented by the node at hand is 1 (true), we take
the solid edge; otherwise, if the actual parameter is 0 (false), we take the dashed edge. The evaluation ends when we reach
a terminal node (one of the square nodes at the bottom).

In the example, to evaluate f (1, 0), we start in the x node, take the solid edge to node y (since the actual parameter
x is 1), then take the dashed edge to the terminal 0.8. Thus, f (1, 0) = 0.8. Henceforth, we will use a function application
notation for ADDs, meaning that, if A is an ADD that encodes function f , then A(b1, . . . , bk) denotes f (b1, . . . , bk). For
brevity, we also denote indexed parameters b1, . . . , bk as b̄, and the application A(b̄) by � A�b̄ .

ADDs have several applications, two of which are of direct interest to this work. The first one is the efficient application of
arithmetics over Boolean functions. We employ Boolean functions to represent mappings from product-line configurations
(Boolean tuples) to their respective reliabilities. An important aspect that motivated the use of ADDs for this variability-
aware arithmetics is that the enumeration of all configurations to perform Real arithmetics on the corresponding reliabilities
is usually subject to exponential blowup. ADD arithmetic operations are linear in the input size, which, in turn, can also be
exponential in the number of Boolean parameters (i.e., ADD variables), in the worst case. However, given a suitable vari-
able ordering, ADD sizes are often polynomial, or even linear [4]. Thus, for most practical cases, ADD operations are more
efficient than enumeration.

Fig. 3. ADD A f representing the Boolean function f on the left.

T. Castro et al. / Science of Computer Programming 152 (2018) 116–160 121
Fig. 4. Vending machine product line example.

An arithmetic operation over ADDs is equivalent to performing the same operation on corresponding terminals of the
operands. Thus, we denote ADD arithmetics by corresponding real arithmetics operators. Formally, given a valuation for
Boolean parameters b̄ = b1, . . . , bk ∈ Bk , it holds that:

1. ∀�∈{+,−,×,÷} · (A1 � A2)(b̄) = A1(b̄) � A2(b̄)

2. ∀i∈N · Ai
1(b̄) = A1(b̄)i

The second application of interest is the algorithmic encoding of the result of an if-then-else operation over ADDs again
as another ADD. For the ADDs Acond , Atrue, and Afalse , we define the ternary operator ITE (if-then-else) as

ITE(Acond, Atrue, Afalse)(c) =
{

Atrue(c) if Acond(c) �= 0

Afalse(c) if Acond(c) = 0

More details on the algorithms for ADD operations are outside the scope of this work and can be found elsewhere [4].

3. Markov-chain models of product lines

Reliability analysis, in our setting, is the application of probabilistic model checking to a probabilistic model of a software
system. However, for a product line, it may not be feasible to manually model each product (i.e., its probabilistic model)
and then analyze it, due to exponential blowup. Hence, we model the product line as a whole in terms of its common and
variable behavior, to enable the automatic derivation of probabilistic models corresponding to the behavior of each product
of the product line. Such variable behavioral models have properties that allow them to be used with different analysis
strategies, as we will show in Section 4. Although we show and use precise definitions of the resulting models, it is outside
the scope of this work to present modeling techniques to create them. Models can be produced, for example, by using
behavioral UML diagrams annotated with component reliabilities [22,41] or feature-oriented formalisms [9].

Since single-product analysis relies on DTMCs to model software behavior, we use PMCs to represent DTMC variability in
product-line analysis. To illustrate our approaches to variability representation and product-line analysis, yet without loss of
generality, we rely on an example product line of beverage vending machines (Fig. 4), slightly modified from the examples
in the work by Ghezzi and Molzam Sharifloo [22] and Classen et al. [14]. This product line consists of models of vending
machines that are able to deliver tea or soda (but never both) and, for each case, there is a beverage-specific optional
behavior of adding a certain quantity of lemon juice.

The feature model for this product line is depicted in Fig. 4a, where Soda and Tea are alternative features (i.e., they
cannot be simultaneously present in a feature selection) representing the behaviors of serving soda and tea, respectively.
Since adding lemon to a beverage is an optional behavior, it is modeled by the optional feature Lemon. If a product is
generated with the feature selection {Soda} (i.e., Lemon is not selected), a possible model of its probabilistic behavior is
depicted in Fig. 4b. If the feature selection is {Tea, Lemon}, the derived product has a probabilistic behavioral model as
in Fig. 4c.

In both example DTMCs, transitions indicate a change in the machine’s execution state, with probabilities representing
the reliabilities of the corresponding execution steps. These reliabilities are usually taken to be the probabilities that the

122 T. Castro et al. / Science of Computer Programming 152 (2018) 116–160
Fig. 5. Annotative PMC for the vending machine. (For interpretation of the references to color in this figure, the reader is referred to the web version of this
article.)

software components responsible for each step will successfully produce the expected outcome. In this sense, one can
notice most states have two outgoing transitions: one representing success and another representing failure. The states
with only one outgoing transition may be seen as execution control handoffs. Also, to help us identify variation points,
states are labeled according to the behavior they model and are correspondingly colored. Label c denotes common behavior
(present in all products), while s and t denote behaviors introduced by features Soda, and Tea, respectively. States labeled
tl correspond to the behavior of adding lemon to tea, that is, they only exist in products derived by a feature selection with
both features Tea and Lemon.

As with source code, the way variability is represented as PMCs and the way products (i.e., DTMCs) are generated from
the resulting variable assets can be classified in two main categories: annotation-based (or annotative) and composition-
based (or compositional) [29,1]. We now discuss both kinds of models, since each will play a role in the analysis strategies
presented in Section 4. We also present a correspondence between compositional and annotative models in Section 4.4.

3.1. Annotative models

To represent the variable behavior of a product line in an annotative way, we use a PMC in which variables are inter-
preted as configuration-specific behavior selectors. Such a PMC for the vending machine product line is shown in Fig. 5,
where we introduce blue dashed states to represent configuration-specific behavior selection. For instance, to represent the
variability for Tea-related behavior, we introduce a state labeled selt , which transitions to t0 (not shown) with probabil-
ity 1, if it is present, or transitions to the point right after the same behavior (a state correspondingly labeled aftt) with
probability 1, if it is absent.5 This mutually exclusive selection is represented by labeling transitions with the expressions t
and 1 − t , such that evaluating t as 1 yields the expected “present” behavior, while evaluating it with 0 yields the “absent”
behavior. The same approach is also applied to the behavior corresponding to adding lemon to tea. Some states of the model
for serving tea, as well as the behaviors corresponding to Soda and its lemon-adding variant, are omitted for brevity. The
whole model can be seen in Fig. A.1.

We generalize and formally define this annotative approach of variability representation as follows.

Definition 4 (Annotative PMC). An annotative PMC is a PMC (S, s0, X, P, T) such that for all states s ∈ S , either:

1. ∀s′∈S · P(s, s′) ∈ [0,1] ∧ P(s, S) = 1 (the probabilities of all outgoing transitions are constants that add up to 1); or
2. ∃s0,afts∈S ∃x∈X · Succ(s) = {s0,afts} ∧ P(s, s0) = x ∧ P(s,afts) = 1 − x (there are exactly two outgoing transitions, whose

probabilities are expressed as a single variable and its complement).

The states in Fig. 5 that fall in the second case are selt and seltl (as well as sels and selsl , which are not shown), while all
others fall in the first case. Each variable of an annotative PMC denotes the presence of a given behavior in a product. The
intended semantics is that the sets of states and transitions giving rise to the denoted behavior will be reachable within the
model if, and only if, its corresponding variable evaluates to 1.

For such an annotative PMC to represent the variable behavior of a product line with feature model FM, we must be able
to use it to derive the behavioral model of any product generated by a configuration c ∈ FM. However, the use of a PMC by
itself does not help with restricting the possible evaluations to achieve that. Evaluating the introduced variables with values
other than 0 and 1 may yield ill-formed DTMCs (e.g., violating the stochastic property). Also, a variable should evaluate to 1
if, and only if, the presence condition of the subsystem whose behavior is controlled by this variable is satisfied. Hence, we
need to constrain evaluations of this annotative PMC to reflect the corresponding feature model and presence conditions.

The first step towards this goal is to formalize what presence conditions mean in the context of variable behavioral
models. Thus, let px be the presence condition for the behavior identified by x. In our vending machine example, we would
have pt = Tea, ptl = Tea ∧ Lemon, ps = Soda, and psl = Soda ∧ Lemon. To precisely associate a variable to a presence

5 The states selt and aftt are analogous to the #ifdef and #endif macros of the C preprocessor, usually seen in preprocessor-based product lines.

T. Castro et al. / Science of Computer Programming 152 (2018) 116–160 123
condition, we define a higher-order function that maps a variable to a Boolean function over the features (see Section 2.1),
which we call presence function.

Definition 5 (Presence function). Given a set X of variables and a feature model FM, a presence function is a function p :
X → �FM� → B such that, for all x ∈ X and all c ∈ �FM�,

p(x)(c) =
{

1 if c |= px (presence condition is satisfied)

0 otherwise

where px is the presence condition associated with the variable x and c |= px means that the configuration c satisfies px .

Next, we must be able to use the feature model to define evaluations. For instance, the annotative PMC for the vending
machine product line would allow serving both tea and soda, if both t and s were evaluated to 1. However, this behavior
is forbidden by the feature model, which states that Tea and Soda are alternative features. By incorporating knowledge
of the feature model to evaluations, we can model all variant behavior as if it were optional and enforce the constraints of
alternative and OR features when evaluating the PMC. The solution to this problem are higher-order functions complying to
the following definition of an evaluation factory.

Definition 6 (Evaluation factory). Given a feature model FM and a set X of variables, an evaluation factory w : �FM� → X → R
is a function that, for a given configuration c ∈ �FM�, yields an evaluation w(c) ∈ X → R.

At this point we have defined what we mean by an annotative PMC as well as an abstract means to constrain possible
evaluations to the ones that make sense in the context of a given product line. For the particular case of annotative PMCs,
an evaluation factory must generate evaluations that interpret variables as presence values and according to the presence
conditions. Thus, we need to interpret the set {0, 1} of numbers as the set B of Boolean values and restrict the generated
evaluations to have this set as image. With this in mind, we define an annotative probabilistic model as follows:

Definition 7 (Annotative probabilistic model). An annotative probabilistic model is a tuple (P, p, w, FM) such that:

• P = (S, s0, X, P, T) is an annotative PMC (Definition 4);
• FM is a feature model;
• p : X → �FM� → B is a presence function (Definition 5); and
• w is an evaluation factory (Definition 6) such that, for all c ∈ �FM� and x ∈ X ,

w(c)(x) =
{

1 if p(x)(c) = 1

0 otherwise

Remark 1 (Pointwise definition of w). For practical purposes, it is worth noting that the right-hand sides of the definitions
of w (Definition 7) and of the presence function p (Definition 5) are the same. That is, one can operationalize w as
w(c)(x) = p(x)(c), so the annotative evaluation factory could be uniquely determined from an annotative PMC P , a presence
function p, and a feature model FM. Nonetheless, we keep w as part of the annotative model tuple for uniformity, since
it is the annotative counterpart of the composition factory w ′ in a compositional probabilistic model (Definition 17). The
definitions of the presence function and the annotative evaluation factory are only similar because the set of Real values in
the image of the possible evaluations (i.e., {0, 1}) in the annotative case correspond to our Real encoding of Boolean values.

Starting with such an annotative model, the derivation of a specific behavioral model of a product with configuration c ∈
�FM� is then carried out by applying the evaluation w(c) to the underlying PMC P . Since PMC evaluation is not restricted
to annotative PMCs, we define this process of DTMC derivation (which is the basis for product derivation) without resorting
to the just defined concept of annotative models.

Definition 8 (DTMC derivation). Given a PMC (S, s0, X, P, T), a feature model FM, and an evaluation factory w : �FM� → X →
R, the DTMC derivation function π : P MC X × (

�FM� → X → R
) × �FM� → DT MC is such that

π(P, w, c) = Pw(c)

where P MC X is the set of PMCs with variables set X . For brevity, we can also note �P� w
c to mean π(P, w, c).

Note that the analysis methods we exploit in this work rely on evaluations being well-defined (Definition 2). This is
where the restrictions we imposed on annotative models come into play: the evaluation factory of an annotative model
always yields well-defined evaluations for the underlying annotative PMC.

124 T. Castro et al. / Science of Computer Programming 152 (2018) 116–160
Lemma 2 (Evaluation well-definedness for annotative models). For every annotative model (P, p, w, FM), w(c) is a well-defined
evaluation for P , for all c ∈ �FM�.

Proof. By definition of well-defined evaluation for a PMC P = (S, s0, X, P, T) (Definition 2), an evaluation u is well-
defined iff Pu obeys the stochastic property and Pu assigns a valid probability value to each transition. That is,
∀s∈S · Pu(s, Succ(s)) = 1 and ∀s,s′∈S · Pu(s, s′) ∈ [0,1].

From Definition 7, P is an annotative PMC (Definition 4), so states with no variability (Case 1) satisfy the needed
properties by definition. For states s with variability (Case 2), it holds that

∃s1,s2∈S ∃x∈X · Succ(s) = {s1, s2} ∧ P(s, s1) = x ∧ P(s, s2) = 1 − x

Let us consider each property whenever u = w(c):

Stochastic property. By definition,∑
s′∈Succ(s)

Pw(c)(s, s′) = Pw(c)(s, s1) + Pw(c)(s, s2)

= P(s, s1)[X/w(c)] + P(s, s2)[X/w(c)]
= x[X/w(c)] + (1 − x)[X/w(c)]
= w(c)(x) + (1 − w(c)(x))

= 1

Valid probabilities. From Definition 7, we have that for every c ∈ �FM�, the image of w(c) is {0, 1} ⊆ [0, 1]. Hence, either
Pw(c)(s, s1) = 1 ∧ Pw(c)(s, s2) = 0 or Pw(c)(s, s1) = 0 ∧ Pw(c)(s, s2) = 1. That is, all possible transition probabilities
lie in the [0, 1] interval.

As there is no other case to consider, Pw(c) satisfies the required properties. Thus, w(c) is well-defined for P . �
In summary, an annotative probabilistic model represents all products of the product line, relying on presence conditions

to define which parts have to be removed to derive a concrete product model. Because of that, this type of model is also
known as 150% model [24], metaproduct [48], variant simulator [45], or product simulator [2].

3.2. Compositional models

A compositional representation of variable configuration-specific behavior consists of a hierarchy of PMCs whose variables
represent variation points, such that they can be composed with one another at predefined locations. To model a product
line in this way, we start with a PMC comprising all common behavior, while abstracting all variable configuration-specific
behavior. We then model each abstracted behavior as a DTMC, if it presents no further variability, or as another PMC,
otherwise. In the latter case, we follow the same procedure to abstract inner variation points, until all behavior is modeled.

Fig. 6 illustrates this concept. For the vending machine example, the top-level PMC P� would be as in Fig. 6a. In this
PMC, we introduce triples of dashed states that act as placeholders for the abstracted behavior. We call these states and
corresponding transitions slots. For instance, the top-level PMC in Fig. 6a has two slots, abstracting the behaviors of serving
tea and soda. The tea slot consists of two elements: (a) the set of states ct0 , ctsuc , and cterr , representing the initial, success,
and error states in the abstracted behavior, respectively; and (b) two transitions, annotated with the expressions t and 1 − t ,
denoting the probabilities of success and failure of this behavior, respectively. This way, we not only use the variable t as a
slot identifier, but give it the possibility to be interpreted as the reliability of the tea behavior.

Note that, despite being alternatives, the behaviors of serving tea and soda are both represented in this PMC. This
parametric model, by itself, does not prohibit the behavior of serving tea and soda subsequently. Like in the annotative
representation of the vending machine (Fig. 5), we do not enforce the rules of the feature model in the PMC itself. Instead,
we ensure valid combinations of features during the composition process, as we shall see later.

Fig. 6b shows the PMC Pt for the tea behavior, in which we use a slot to abstract the optional lemon-adding behavior,
whose behavior is modeled by the PMC Ptl in Fig. 6c. Since this tea-lemon PMC has no variability, it is in fact a regular
DTMC. We omit the PMCs for serving soda (Ps) and for adding lemon to soda (Psl), for brevity, but the complete example
can be seen in Fig. A.2 (Appendix A).

Formally, we define a compositional PMC as a PMC in which transition probabilities depend on the value of some
probabilistic reachability property of other PMCs. For a PMC defined this way, possible evaluations map variables to real
numbers within the interval [0, 1], instead of the binary set {0, 1} used for an annotative model (see Definition 6). To
compose PMCs modeled this way with one another, we augment the definition of a PMC with explicit mentions of success
and error states.

Definition 9 (Compositional PMC). A compositional PMC P is a tuple (S, s0, ssuc, serr, X, P, T), where:

T. Castro et al. / Science of Computer Programming 152 (2018) 116–160 125
Fig. 6. Compositional PMCs for the vending machine.

• S is a set of states, s0 ∈ S is the initial state, X is a set of variables, and P is a transition probability matrix, such that
(S, s0, X, P, T) is an annotative PMC (see Definition 4).

• States ssuc, serr ∈ S are called success and error states, respectively. Together with the initial state, s0, they define the
interface of the compositional PMC: interface(P) = {s0, ssuc, serr} (solid box around PMCs in Fig. 6).

• T = {ssuc}. That is, ssuc is the only target state.
• The success and error states are the only bottom strongly connected components [5] in P , that is:

– once one of them is reached, no other state is ever reachable; and
– they are the only states satisfying this property.
This restriction ensures that we model all executions as either successful (if the success state is reached) or non-
successful (if the error state is reached).

Definition 9 builds on Definition 4 to define the structure of compositional PMCs, but the intended semantics of variables
in this type of parametric Markov chain is different from the corresponding semantics in an annotative PMC. In a composi-
tional PMC, the condition that the outgoing transitions of a given node are either all constant or all variable (inherited from
Definition 4) relates to the concept of slots, whereas annotative PMCs treat variable transitions as behavioral switches. Infor-
mally, a slot for the variable x (dashed boxes in Fig. 6) marks the part of a product’s behavior where a configuration-specific
behavior (identified by x) takes place. Note that there can be more than one slot for a given behavior.

Definition 10 (Compositional PMC slot). For a compositional PMC P = (S, s0, ssuc, serr, X, P, T), a slot for x ∈ X is a triple
(sx0 , sxsuc , sxerr), where:

• sx0 , sxsuc , sxerr ∈ S;
• Succ(sx0) = {sxsuc , sxerr };
• P(sx0 , sxsuc) = x ∧ P(sx0 , sxerr) = 1 − x.

The set of slots for x in P is denoted by slotsP (x), and the set of states belonging to any slot in slotsP (x) is given by
slotStatesP (x) = {s ∈ S | ∃ς∈slotsP (x) · s ∈ ς}. We extend these definitions for the set of all slots in P for any variable in X

(slotsP (X)) and the set of states belonging to any slot in that set (slotStatesP (X)).

126 T. Castro et al. / Science of Computer Programming 152 (2018) 116–160
Fig. 7. Example of a partial composition of two PMCs. (For interpretation of the references to color in this figure, the reader is referred to the web version
of this article.)

With compositional PMCs at hand, we need to be able to derive a DTMC, modeling the behavior of a given product of
the product line, as in Section 3.1. Before we can handle the product-line aspect, we must define the mechanics of PMC
composition. The intuition is that composition is achieved by connecting the interface (solid outer box) of a compositional
PMC P ′ to the slots (dashed boxes) in a compositional PMC P that are meant to abstract the behavior in P ′ , that is,
slotsP (x) (see Fig. 7).

Definition 11 (Partial PMC composition). Given a compositional PMC P = (S, s0, ssuc, serr, X, P, T) and a variable x ∈ X , assume
that x occurs only once in P , and let P ′ = (S ′, s′

0, s
′
suc, s′

err, X ′, P′, T ′) be a compositional PMC to be composed on that single
slot marked by x. The partial PMC composition P[x/P ′] is a compositional PMC P ′′ = (S ′′, s′′

0, s′′
suc, s′′

err, X ′′, P′′, T ′′) such that:

• S ′′ = S � S ′ , where � denotes the disjoint union operator (all states are disjointly merged);
• s′′

0 = s0, s′′
suc = ssuc , and s′′

err = serr (the interface of P is preserved);
• X ′′ = X \ {x} ∪ X ′ (the occurrence of x is replaced by a copy of P ′ , whose variables are those of X ′);
• T ′′ = T (target states of the base PMC are preserved);
• P′′ is such that

– P′′(sx0 , s′
0) = 1 (new transition from a slot’s initial state to the initial state of the corresponding composed PMC)

– P′′(s′
suc, sxsuc) = 1 (new transition from the success state of a composed PMC to the success state of the corresponding

slot)
– P′′(s′

err, sxerr) = 1 (new transition from the error state of a composed PMC to the error state of the corresponding slot)
– P′′(sx0 , sxsuc) = 0 (slot’s success transition is removed)
– P′′(sx0 , sxerr) = 0 (slot’s error transition is removed)
– P′′(s′

suc, s′
suc) = 0 (success loops from composed PMCs are removed)

– P′′(s′
err, s′

err) = 0 (error loops from composed PMCs are removed)
– For all remaining combinations of s1, s2 ∈ S ′′:

P′′(s1, s2) =

⎧⎪⎨⎪⎩
P(s1, s2) if s1, s2 ∈ S \ slotStatesP (x)

P′(s1, s2) if s1, s2 ∈ S ′

0 otherwise

In summary, transitions among slot states of P are removed as well as the looping transitions from success and error
absorbing states of P ′ . Then, slot states are connected to respective interface states, yielding a partially composed PMC.
This process is illustrated in Fig. 7c, which depicts the partial composition of the compositional PMC P ′ (Fig. 7b) into P
(Fig. 7a) from the perspective of a single slot. New transitions are green bold, while red dashed transitions are the ones

T. Castro et al. / Science of Computer Programming 152 (2018) 116–160 127
Fig. 8. Dependency relation induced in the vending machine.

suppressed during composition. We say this transformation is partial because slots for variables other than x are not subject
to composition.

Since there might be more than one slot for a given variable, we extend the concept of partial composition to mean
the composition of n renamings of a given compositional PMC P ′ into each of the n slots for a single variable x in an-
other compositional PMC P . A full (total) composition is then obtained by composing PMCs over all slots in a given base
compositional PMC at once. Such a composition relies on a composition function—a function u′ : X → P that yields a compo-
sitional PMC P ∈ P to compose in the corresponding slots for any given variable. The detailed definitions of PMC renaming
(Definition 32) and total PMC composition (Definition 33) are presented in Appendix B.3.

In a composition, slots mark locations where behavioral model fragments (i.e., other compositional PMCs) can be inserted
to expand the base behavior. However, nothing so far prevents composition to happen at arbitrary slots (e.g., composing the
behavior of adding lemon to soda in the slot for t , which was meant to represent the behavior of serving tea). Thus, we
need a way to relate slots and the intended abstracted configuration-specific behaviors. We do so by naming compositional
PMCs with the same variables that are used in the slots that mark their places, by means of an identifying function.

Definition 12 (Identifying function). Let P = {P1, . . . , Pn} be a finite set of compositional PMCs Pi , each with a set Xi of
variables, where i ∈ {1, . . . , n}. An identifying function is a bijection idt : P → I , where I ⊃ ⋃

Pi
Xi is a set of variables that

contains all variables in the compositional PMCs Pi .

Since idt is a bijection, the set I of identifiers must have the same cardinality as P . In practical terms, we arbitrar-
ily identify PMCs that do not directly correspond to an abstracted behavior (i.e., those that are not directly referred by
variables in other PMCs). This is the case of top-level PMCs, which are mainly composed of states that are shared be-
tween the behaviors of all products. For the vending machine product line (Fig. A.2, summarized in Fig. 6), for which
P = {P�, Pt , Ptl , Ps, Psl }, we can define I = {�, t, tl, s, sl} and, correspondingly, idt = {P� �→ �, Pt �→ t, Ptl �→ tl,Ps �→ s,
Psl �→ sl}.

An identifying function induces a dependency relation over PMCs, based on their names and the variables they employ to
abstract behavior in slots. If we denote this relation by ≺, in the vending machine example, we can say that Ptl ≺Pt ≺P� ,
meaning P� depends on Pt , which, in turn, depends on Ptl . Also, Psl ≺Ps ≺P� . Fig. 8a illustrates this dependency relation
as a dependency graph, in which edges are labeled according to the variables identifying the respective dependencies. There
should be no infinite descending chain under this relation, because otherwise one would infinitely compose PMCs and
never get a DTMC as a result. This could happen as a modeling error, for instance, as introduced by the hypothetical dashed
red cyclic dependency in Fig. 8b. Hence, we require the dependency relation among compositional PMCs to be well-founded,
meaning there can be no infinite sequence P1, P2, P3, . . . such that ∀i≥1 ·Pi+1 ≺Pi . This also prohibits cyclic dependencies,
since they would allow infinite chains.

Definition 13 (Dependency relation induced in compositional PMCs). Given a finite set P = {P1, . . . , Pn} of compositional PMCs
Pi , each with a set Xi of variables, and a corresponding identifying function idt : P → I , the binary relation ≺: P × P is
the well-founded dependency relation induced by idt and by the use of variables in the Pi . That is,

∀Pi ,P j∈P · idt(P j) ∈ Xi ⇔ P j ≺ Pi

We read P j ≺Pi as “Pi depends on P j ”.

A consequence of this definition is that, in a finite set of compositional PMCs with an identifying function, there must
be, at least, one PMC that depends on no other and has no variability whatsoever (a minimal PMC), and, at least, one PMC
on which no other depends (a maximal PMC). In the vending machine (Fig. A.2), the minimal PMCs are Ptl and Psl , while
P� is the single maximal PMC.

Definition 14 (Minimal and maximal compositional PMCs). Given a set P of compositional PMCs, an identifying function idt,
and the corresponding induced well-founded relation ≺, a compositional PMC P ∈ P is called minimal iff

128 T. Castro et al. / Science of Computer Programming 152 (2018) 116–160
Fig. 9. Feature disabler compositional PMC P⊥ .

�P ′∈P ·P ′ ≺ P

Conversely, P ∈ P is called maximal iff

�P ′∈P ·P ≺ P ′

Maximal PMCs can be seen as models of top-level behavior in a system, such as the main tasks usually represented
by UML activity diagrams. In an automation software charged with managing different workflows, for instance, one could
model each of the workflows as a separate behavior with internal variability, thus yielding as many maximal PMCs as
there are tasks to accomplish. The number of maximal PMCs in a compositional model is mainly a modeling decision, and
analyzing the whole product line amounts to analyzing each of these top-level behaviors. Thus, without loss of generality,
we consider models that have only one maximal PMC,6 which we denote by P� .

After composition, the variability in a compositional PMC is replaced by the variabilities of the PMCs composed into
it. That is to say, the set of variables of the resulting compositional PMC is given by

⋃k
i=1 Xi , the set of variables in all

composed PMCs. In the vending machine (Fig. 6), for instance, if we compose the tea PMC Pt (Fig. 6b) into the top-level
PMC P� (Fig. 6a) using the slot (ct0 , ctsuc , cterr), the resulting compositional PMC P�[t/Pt] will no longer have variable t ,
but will have a new variable tl , stemming from Pt . Consequently, to derive a product, one has to recursively perform the
composition operation until a plain DTMC is returned.

This recursive approach to derive a product by composition relies on an identifying function idt to assign PMCs to slots
corresponding to their identifiers. This composition depends upon satisfaction of a presence condition. Thus, before we can
properly define this approach of derivation by composition, we must define how to proceed with composition in the case
that the presence condition of a model to be composed is not satisfied. We achieve this result by composing the feature
disabler compositional PMC, depicted in Fig. 9. This compositional PMC models an always successful behavior, so composing
it would not affect the overall reliability of the base model.

Definition 15 (Feature disabler compositional PMC). The feature disabler compositional PMC, P⊥ = (S, s0, ssuc, serr, X, P, T), is
a compositional PMC such that:

• S = {s0, ssuc, serr}
• X = ∅
• P(s0, ssuc) = 1, P(ssuc, ssuc) = 1, and P(serr, serr) = 1. Otherwise, for s, s′ ∈ S , P(s, s′) = 0
• T = {ssuc}

Similar to what we have achieved with evaluation factories (Definition 6), we need to constrain the possible compositions
to ones that respect both: (a) satisfying presence conditions and (b) matching of slots and compositional PMCs via an
identifying function. To enable this, we define a composition factory as a higher-order function that constrains compositions
based on possible configurations of the modeled product line. This is the basis of product derivation.

Definition 16 (Composition factory). Given a set P of compositional PMCs, a set I of identifiers that is a superset of the
variables used in slots, and a feature model �FM�, a composition factory w ′ : �FM� → I → DT MC is a function that, for a
given configuration c ∈ �FM�, yields a composition function w ′(c) : I → DT MC .

To populate this definition with concrete composition factories, we fix the set I of identifiers as well as an identifying
function, thus inducing a dependency relation that establishes which models should be composed to get a probabilistic
model for a desired product. This way, a compositional model of a product line is a set of compositional PMCs closed under
this dependency relation.

Definition 17 (Compositional probabilistic model). A compositional probabilistic model for a product line with feature model
FM is a tuple (P, ≺, I, idt, p, w ′, FM), where:

6 The existence of minimal and maximal PMCs follows from the well-foundedness of ≺. More details are available at Appendix B.1.

T. Castro et al. / Science of Computer Programming 152 (2018) 116–160 129
• P = {P1, . . . , Pn} is a finite set of compositional PMCs Pi = (Si, si0 , sisuc , sierr , Xi, Pi, Ti) (Definition 9).
• I is a set of variables, such that I ⊃ ⋃

Pi
Xi and |I| = |P|. These variables are a superset of all variables in the compo-

sitional PMCs in P .
• idt : P → I is an identifying function for P (Definition 12).
• ≺: P × P is the well-founded dependency relation induced by idt and by the use of variables in the compositional

PMCs Pi (Definition 13).
• FM is a feature model.
• p : I → �FM� → B is a presence function (Definition 5) denoting presence conditions satisfaction.
• w ′ is a composition factory (Definition 16) recursively defined as

w ′(c)(x) =
{
Pi[x1/w ′(c)(x1), . . . , xk/w ′(c)(xk)] if p(x)(c) = 1

P⊥ otherwise

where Pi ∈ P , idt(Pi) = x ∈ I , and Xi = {x1, . . . , xk}.

This definition allows us to model the behavior of a product line in a compositional way. To leverage this model for
product-line analysis, we define a way to derive a DTMC that is consistent with the behavior of a product generated using
the same configuration.

Definition 18 (Derivation by composition). Given a compositional model (P, ≺, I, idt, p, w ′, FM) and a compositional PMC
P ∈ P with a set X of variables, the DTMC derivation by composition π ′(P, w ′, c) is defined as

π ′(P, w ′, c) = P[X/w ′(c)]

The notation is overloaded from PMC evaluation, since both are model transformations that operate on variables. Since
w ′ is defined recursively, we need to guarantee its execution terminates, which is why we require ≺ to be well-founded.
The termination proof (Lemma 11) is presented in Appendix B.2.

4. Reliability analysis strategies

The scenario on which we focus is analyzing the reliability of all products of a product line using model checking of a
probabilistic reachability property of Markov-chain models. For this task, one can choose a number of product-line analysis
strategies [47]. Following the taxonomy of Thüm et al. [47], we discussed possible strategies for each of the variability
representations (annotative and compositional) presented in Section 3.

Fig. 10 depicts these choices. Starting with a compositional (upper left corner) or an annotative model (upper right cor-
ner), one can follow any of the outgoing arrows while performing the respective analysis steps (abstracted as functions),
until reliabilities are computed (either real-valued reliabilities or an ADD representing all possible values). These analysis
steps can be feature-based (green solid arrows), product-based (blue dotted arrows), or family-based (red dashed arrows).
Thus, the arrows form an “analysis path” (a function composition), which defines the employed analysis strategy. Further-
more, Fig. 10 is a commuting diagram (as we will demonstrate later in this section), meaning that different analysis paths
are equivalent (i.e., they yield equal results) if they share the start and end points.

After choosing a variability representation, the analysis of any of the resulting models presents another choice: either
variability-free models (i.e., DTMC) are derived for each configuration (function π) and then analyzed (function α), or
variability-aware analysis is applied, using some form of parametric model checking (function α̂). The first choice yields a
product-based strategy (Section 4.1), whereby each variant is independently analyzed. The second one leverages parametric
model checking to produce expressions denoting the reliability of PMCs in terms of their variables (Section 2.2.2). These
variables carry the semantics they had in the model-checked PMC, so we correspondingly classify the resulting expressions
as annotative or compositional.

Evaluating these expressions provides another choice: to evaluate the expressions for each valid configuration (func-
tion σ), yielding feature-product-based (Section 4.3.1) and family-product-based (Section 4.2.1) strategies; or to interpret
the expressions in terms of ADDs (function lift), effectively evaluating them for the whole family of models at once
(function σ̂)—a step we call expression lifting. The latter represents feature-family-based (Section 4.3.2) and family-based
(Section 4.2.2) strategies.

As an example of walking through the choices of Fig. 10, suppose we start with a compositional model (upper-left
corner), perform parametric model checking (move down), and then lift the resulting expressions (move down one more
step) and evaluate them (move right), reaching a reliability ADD for the family as a whole. The arrows in this path are,
respectively, green solid, red dashed, and red dashed, meaning the analysis strategy is feature-family-based.

In the remaining sections, we detail each of these strategies and analysis steps with the goal of making statements about
their commuting relations. Section 4.1 presents product-based analysis strategies for both annotative and compositional
models, with the goal of establishing a baseline for the remaining soundness proofs. Section 4.2 discusses family-product-
based and family-based analyses of annotative models. Feature-product-based and feature-family-based analysis strategies

130 T. Castro et al. / Science of Computer Programming 152 (2018) 116–160
Fig. 10. Commutative diagram of product-line reliability analysis strategies. (For interpretation of the references to color in this figure, the reader is referred
to the web version of this article.)

are the subject of Section 4.3, which focuses on compositional models. Then, Section 4.4 bridges the gap between analyses
of annotative and compositional models (function γ in Fig. 10), establishing their commutativity. Finally, we leverage these
results to present the novel feature-family-product-based strategy in Section 4.5.

4.1. Product-based strategies

Product-based analysis strategies are based on the analysis of generated products or models thereof [47]. In Section 3,
we have discussed how to represent probabilistic behavioral models of product lines as PMCs, using both annotative and
compositional approaches. There, we also described how to derive models of individual products, both for the annotative
and the compositional approaches. The generated models are plain DTMCs, that is, their variability has been resolved at
derivation time. Thus, to analyze the generated models, one only needs to model-check the non-parametric probabilistic
reachability for every such model. We hereafter denote this non-parametric model checking analysis step by the following
function α.

Definition 19 (Non-parametric model checking). The non-parametric model checking step α : DT MC → [0, 1] consists of ap-
plying the algorithm by Hahn et al. [26]. For a DTMC D = (S, s0, P, T),

α(D) = PrD(s0, T)

Since a DTMC has no parameters, α yields constant functions, which we interpret as plain Real numbers.

Although there are more efficient algorithms for reliability model checking of regular (non-parametric) DTMCs, we use
the algorithm by Hahn et al. [26] in the above definition for uniformity, which eases understanding. Since this algorithm is
sound (Lemma 1), a working implementation of the presented theory is free to exploit another sound probabilistic reacha-
bility algorithm for performance reasons.

Now we are able to define product-based analysis for annotative and compositional models.

Strategy 1 (Product-based analysis of annotative models). Given an annotative model (P, p, w, FM), a product-based analysis
yields, for all c ∈ �FM�,

α(π(P, w, c))

or, alternatively,

T. Castro et al. / Science of Computer Programming 152 (2018) 116–160 131
α(�P� w
c)

Strategy 2 (Product-based analysis of compositional models). Given a compositional model (P, ≺, I, idt, p, w ′, FM), a product-
based analysis yields, for all c ∈ �FM�,

α(π ′(P�, w ′, c))

where P� is the maximal PMC in P under ≺.

So, a product-based analysis results in a mapping from configurations to respective reliability values, such as {c �→
α(π(P, w, c)) | c ∈ �FM�} for annotative models, for instance.

Both analysis strategies presented in this section derive models for individual products of a given product line
and then apply a single-product analysis technique as is. Since single-product analyses represent the base case upon
which product-line analyses are built, the product-based strategies establish a baseline for proving the soundness of
other strategies.

4.2. Family-based strategies

According to Thüm et al. [47], a family-based analysis strategy is one that (a) operates only on domain artifacts and
that (b) incorporates the knowledge about valid feature combinations. In this section, we explore this kind of strategy in
the context of annotative probabilistic models, because they encode the behavior of all products of a product line in a
single PMC. It is also possible to perform family-based analyses on a compositional model by first transforming it into an
annotative one, but this is discussed later in Section 4.4.

First, we show how to perform an analysis that yields a reliability expression, which can in turn be evaluated for each
valid configuration of the product line. This characterizes a family-product-based strategy (Section 4.2.1). Then, the afore-
mentioned analysis is leveraged to build a pure family-based (i.e., non-enumerative) strategy (Section 4.2.2). At first, it may
seem counterintuitive to present the family-product-based approach before the family-based one. However, we shall see
that our pure family-based approach builds upon concepts of the hybrid family-product-based approach, and that perform-
ing one or the other is a matter of choosing product-based or family-based analysis steps after a preliminary family-based
step.

4.2.1. Family-product-based strategy
A family-product-based strategy is a family-based strategy followed by a product-based strategy over intermediate re-

sults [47]. The preliminary family-based step of our family-product-based analysis consists of applying parametric model
checking of probabilistic reachability (Section 2.2.2) of the underlying PMC of the annotative model. This step is abstracted
as a function α̂, where the ˆ symbol denotes that it is a variability-aware version of the non-parametric model checking
function α (Definition 19).

Definition 20 (Parametric model checking). The parametric model checking analysis step α̂ : P MC X →FX consists of applying
the algorithm by Hahn et al. [26] for probabilistic reachability, which yields a rational expression ε ∈ FX for a PMC with
variables set X . For a PMC P = (S, s0, X, P, T), the input target states of the algorithm are the ones in T .

After performing parametric model checking, the result of reachability analysis is an expression over the same variables
as the annotative input PMC, denoting the PMC’s reliability as a function of these variables. Hence, we expect this annotative
reliability expression to be evaluated using the same evaluation functions that restricted the possible behaviors in the
original model. This expression evaluation, which can be seen as model derivation applied to expressions, is captured in
function σ .

Definition 21 (Expression evaluation). Given an expression ε over a set X of variables, an evaluation factory w , and a config-
uration c ∈ �FM�, we define the expression evaluation function in a similar fashion as DTMC derivation:

σ(ε, w, c) = ε[X/w(c)]
Likewise, we can use �ε� w

c to denote σ(ε, w, c).

The function σ is applied to the reliability expression for all valid configurations of the product line, yielding the final
product-based step. The resulting family-product-based approach for the analysis of annotative models is then defined as
follows.

132 T. Castro et al. / Science of Computer Programming 152 (2018) 116–160
Fig. 11. Example of family-product-based analysis (α̂ followed by σ) in contrast to a product-based analysis (π followed by α) of an annotative PMC, for a
configuration satisfying x’s presence condition.

Strategy 3 (Family-product-based analysis). Given an annotative model (P, p, w, FM), the family-product-based analysis yields,
for all c ∈ �FM�,

σ(α̂(P), w, c)

or, alternatively,

�α̂(P)� w
c

Fig. 11 illustrates the family-product-based strategy in contrast with the product-based one (Section 4.1), providing an
intuition for why they commute. DTMC derivation π and expression evaluation σ are both performed for a configuration c
such that c |= px . This way, w(c)(x) = 1 and the reliability is 0.9801. If x was absent (i.e., c �|= px), then the reliability would
be 0.99.

To be considered sound, a family-product-based analysis must be equivalent7 to performing a product-based analysis of
all products. This means that performing a parametric model checking step and then evaluating the resulting expression
for each valid product must yield the same result as first deriving the original annotative model for each product and then
performing non-parametric model checking on each resulting DTMC. To prove that this equivalence holds, we can leverage
a more general result about PMCs and well-defined evaluations.

Lemma 3 (Commutativity of PMC and expression evaluations). Given any PMC P = (S, s0, X, P, T) and a well-defined evaluation u,
it holds that

α(P[X/u]) = α̂(P)[X/u]

Proof.

α(P[X/u]) = α(Pu) (syntax change)

= PrPu (s0, T) (Definition 19)

and, since u is well-defined,

= α̂(P)[X/u] (Lemma 1 and Definition 20) �
Using this result, we are able to express the soundness of the family-product-based approach in the following theorem.

Theorem 1 (Soundness of family-product-based analysis). Given an annotative model (P, p, w, FM), for all c ∈ �FM�

α(�P� w
c) = �α̂(P)� w

c

Alternatively, α(π(P, w, c)) = σ(α̂(P), w, c).

7 Whenever two analysis strategies yield equal reliability values, we say they are r-equivalent.

T. Castro et al. / Science of Computer Programming 152 (2018) 116–160 133
Fig. 12. Statement of Theorem 1.

Proof. Since w(c) is a well-defined evaluation (Lemma 2), we can use it to instantiate u in Lemma 3. Thus, let P =
(S, s0, X, P, T).

α(�P� w
c) = α(P[X/w(c)]) (Definition 8)

= α̂(P)[X/w(c)] (Lemmas 2 and 3)

= �α̂(P)� w
c (Definition 21) �

As a major result, Theorem 1 states that the diagram in Fig. 12 commutes. This diagram corresponds to the upper
right quadrant in Fig. 10.

4.2.2. Family-based strategy
The pure family-based strategy starts by applying parametric model checking to the given annotative model, as in the

family-based step of the family-product-based strategy. However, instead of evaluating the resulting expression for each
variant, we lift it to an ADD-based reliability expression, which can be evaluated for all variants at once. While an expression
is evaluated with real values, a lifted expression is evaluated using ADDs, which represent Boolean functions from features
to real values. Each of these ADDs encode the values that a variable can assume according to each possible configuration,
also known as variational data [49]. Since this approach incorporates the knowledge of valid feature combinations, it is a
family-based strategy.

Let us take the vending machine product line (Fig. A.1) as an example. Its reliability expression after parametric model
checking has 8 terms, one of which is 0.124659 · t · tl . Starting from the evaluation factory w , we can derive functions ψx

that, for each variable x, take a configuration c ∈ �FM� as input and output the corresponding value w(c)(x). For t and tl ,
for instance, these functions would be as follows:

ψt(Tea,¬Soda,¬Lemon) = 1 ψtl (Tea,¬Soda,¬Lemon) = 0

ψt(Tea,¬Soda,Lemon) = 1 ψtl (Tea,¬Soda,Lemon) = 1

ψt(¬Tea,Soda,¬Lemon) = 0 ψtl (¬Tea,Soda,¬Lemon) = 0

ψt(¬Tea,Soda,Lemon) = 0 ψtl (¬Tea,Soda,Lemon) = 0

Having each of these functions represented by an ADD enables the efficient computation of the reliability expression as
another ADD r̂ , representing a Boolean function that could be defined pointwise as r̂(c) = 0.124659 · ψt(c) · ψtl (c) (we omit
the remaining terms for simplicity).

We now formally define expression lifting, as well as the mechanics of generating ADD-based evaluations and evaluating
lifted expressions.

Definition 22 (Expression lifting). For a given rational expression ε ∈ FX , whose semantics is a rational function R|X | → R,
and a product line with k features, we define the lifted expression lift(ε) = ε̂ as an expression which is syntactically equal
to ε, but whose semantics is lifted to a rational function (Bk →R)|X | → (Bk →R), such that:

• The function’s inputs are k-ary ADDs.
• Polynomial coefficients are interpreted as constant ADDs (e.g., the number 5 becomes c ∈ Bk �→ 5). We denote a constant

a lifted to a constant ADD as â, so that â(b̄) = a (where b̄ is a Boolean tuple).
• Arithmetic operators are lifted to their ADD-based counterparts.

Hence, the admitted evaluations for ε̂ are of type u : X → (Bk → R), so that variables are properly replaced by k-ary ADDs.

134 T. Castro et al. / Science of Computer Programming 152 (2018) 116–160
By the above definition, lifted expressions are syntactically equal to their original (non-lifted) counterparts. However,
instead of using Real arithmetics, we interpret operators, constants, and variables using ADDs and ADD arithmetics (Sec-
tion 2.3). These semantically lifted expressions are sound in the sense that they denote functions that, when evaluated with
a given configuration, yield the same results as if the variables of the original expressions would have been individually
evaluated for the same configuration.

Lemma 4 (Soundness of expression lifting). If ε is a rational expression over Real constants and variables xi ∈ X, |X | = n, A1, . . . , An
are ADDs, and ε̂ = lift(ε), then

ε̂[x1/A1, . . . , xn/An](b̄) = ε[x1/A1(b̄), . . . , xn/An(b̄)]
where b̄ is a vector of k Booleans, corresponding to a selection of the k features in a given product line.

Proof. The proof is by induction on the structure of the rational expression ε. The base cases are constant expressions and
single variables, for which the lemma holds. We then use induction and algebraic manipulation to prove for the arithmetic
case (i.e., ε = ε1 � ε2, where � ∈ {+, −, ×, ÷}) and for exponentiation. Proof details can be found in Appendix B.4. �

Note how a lifted expression demands a different type of evaluation, namely one that replaces variables with ADDs. To
handle this interdependency, we correspondingly lift the evaluation factory.

Definition 23 (Lifted evaluation factory). Given an evaluation factory w defined over a feature model FM and a set X of
variables, the factory’s lifted counterpart is a function ŵ : X → (B|FM| → R) that yields an ADD for a given variable. This
function is such that, for every variable x ∈ X and all c ∈ �FM�,

ŵ(x)(c) = w(c)(x)

With a lifted evaluation factory, one can evaluate a lifted expression over the same set X in a variability-aware fash-
ion. The intuition is that we valuate each variable with an ADD that encodes all the real values it may assume for any
configuration of the product line.

Definition 24 (Variability-aware expression evaluation). Let ŵ be a lifted evaluation factory and ε̂ be a lifted expression. The
variability-aware expression evaluation function, σ̂ , is defined as

σ̂ (ε̂, ŵ) = ε̂[X/ŵ]

Remark 2. This definition of variability-aware evaluation is not restricted to reliability analysis or to the specific definitions
of probabilistic models presented in this text. Indeed, one can notice that it relies on the definitions of an expression with
rational function semantics and of an evaluation factory with respect to a given feature model.

Thus, we are able to prove the following theorem, which applies to product line analysis strategies that are based on
expression evaluation.

Theorem 2 (Soundness of variability-aware expression evaluation). If ε is an expression and w is an evaluation factory with respect
to a feature model FM, let ε̂ and ŵ be their respective lifted counterparts. Then, for all c ∈ �FM�,

σ̂ (ε̂, ŵ)(c) = σ(ε, w, c)

In other words, ε̂[X/ŵ](c) = ε[X/w(c)].

Proof. Using ŵ as a substitution,

ε̂[X/ŵ] = ε̂[x1/ŵ(x1), . . . , xn/ŵ(xn)]
Thus, for all c ∈ �FM�,

σ̂ (ε̂, ŵ)(c) = ε̂[X/ŵ](c) (Definition 24)

= ε̂[x1/ŵ(x1), . . . , xn/ŵ(xn)](c)

= ε[x1/ŵ(x1)(c), . . . , xn/ŵ(xn)(c)] (Lemma 4)

= ε[x1/w(c)(x1), . . . , xn/w(c)(xn)] (Definition 23)

= ε[X/w(c)]
= σ(ε, w, c) (Definition 21) �

T. Castro et al. / Science of Computer Programming 152 (2018) 116–160 135
Fig. 13. Example of lifted expression evaluation using p̂.

We have seen that, in a product line with feature model FM, the presence function p denotes a presence condition px

as a Boolean function p(x) : �FM� → B. Since this can be alternatively expressed as p(x) : B|FM| → B, the presence function
can also be encoded by ADDs, denoted by p̂(x). We now resort to the pointwise definition of w as w(c)(x) = p(x)(c)
(Remark 1), to define a lifted evaluation factory ŵ , for evaluating the lifted version of expressions resulting from parametric
model checking of an annotative model.

Lemma 5 (Soundness of lifted annotative evaluation factory). Given an annotative model (P, p, w, FM) and a function p̂ : X →
(B|FM| → B) that encodes presence conditions for variables as ADDs, then ŵ = p̂ is a lifted evaluation factory for w.

Proof. From Definition 7, we have that

w(c)(x) =
{

1 if p(x)(c) = 1

0 otherwise

Thus, from Remark 1, w(c)(x) = p(x)(c). Also, p(x)(c) = p̂(x)(c) by definition, so w(c)(x) = p̂(x)(c). �
Recalling the vending machine example, the presence conditions for the variables t and tl are, respectively, Tea and

Tea ∧ Lemon. Then, the ADDs p̂(t) and p̂(tl) are given by the Figs. 13a and 13b, where we use the notation presented
in Section 2.3. If we evaluate a lifted version of the example expression ε = 0.124659 · t · tl + 0.3439 · t (2 terms from
the actual reliability expression for the vending machine annotative model in Fig. A.1) with p̂, the resulting ADD will be
r̂ = 0.124659 · p̂(t) · p̂(tl) + 0.3439 · p̂(t), as depicted in Fig. 13c. Hence, for a given configuration c ∈ �FM�, if both Tea and
Lemon are present (i.e., p̂(t)(c) = 1 and p̂(tl)(c) = 1), then r̂(c) = 0.124659 · 1 · 1 + 0.3439 · 1 = 0.468559; if only Tea is
present, then r̂(c) = 0.124659 · 1 · 0 + 0.3439 · 1 = 0.3439; and if both Tea and Lemon are absent, then r̂(c) = 0.

Using the result from Lemma 5, we can now express the soundness of this family-based analysis step of evaluating lifted
expressions.

Theorem 3 (Soundness of expression evaluation using p̂). Given an annotative model (P, p, w, FM), ε = α̂(P), and ε̂ = lift(ε), let p̂
be the encoding of the presence condition function p to yield ADDs. If we use p̂ as a lifted evaluation factory, then for all c ∈ �FM�

�σ̂ (ε̂, p̂)�c = �ε� w
c

Alternatively, σ̂ (lift(ε), p̂)(c) = σ(ε, w, c).

Proof. For a given annotative model, Lemma 5 states that p̂ is a sound lifted counterpart of w . Hence, by Theorem 2,
ε[X/w(c)] = ε̂[X/p̂](c). In other words, �σ̂ (ε̂, p̂)�c = �ε� w

c . �

Fig. 14 illustrates the main result from Theorem 3. The depicted diagram, which corresponds to the lower right
quadrant in Fig. 10, is commutative because of this theorem.

Now that we have all analysis steps needed, we can formally define the family-based strategy.

Strategy 4 (Family-based analysis). Given an annotative model (P, p, w, FM), a family-based analysis yields

σ̂
(
lift(α̂(P)), p̂

)
The result of a family-based analysis is a Boolean function encoded as an ADD. Such an analysis is sound if, and only if,

it yields an ADD for which every valid configuration c ∈ �FM� results in the same probability as if the original annotative
model had been subject to product-based analysis for the same configuration c.

136 T. Castro et al. / Science of Computer Programming 152 (2018) 116–160
Fig. 14. Statement of Theorem 3.

Fig. 15. Alternative views of the statement of Theorem 4.

Theorem 4 (Soundness of family-based analysis). Given an annotative model (P, p, w, FM), for all c ∈ �FM� it holds that

�σ̂
(
lift(α̂(P)), p̂

)
�c = α(�P� w

c)

Proof. Follows from the successive application of Theorems 3 and 1:

�σ̂
(
lift(α̂(P)), p̂

)
�c = �α̂(P)� w

c (Theorem 3)

= α(�P� w
c) (Theorem 1) �

As a key result, Theorem 4 states that the diagrams in Fig. 15 commute. Both diagrams correspond to the right
half of the one in Fig. 10.

4.3. Feature-based strategies

A feature-based analysis strategy is one that (a) operates only on domain artifacts and that (b) analyzes the artifacts
belonging to each feature in isolation [47]. Compositional models describe modular behaviors that represent units of vari-
ability. A given PMC within a compositional model may represent the behavior associated with one or more features, or
even model part of a given feature’s behavior (in case of behavior scattering). In this sense, analyzing individual PMCs of a
compositional model can be seen as analyzing features in isolation, which is why we use this kind of probabilistic model to
discuss feature-based strategies. Moreover, since our focus is on reliability, which is highly influenced by feature interactions,
we cannot use a pure feature-based strategy [47]. Thus, we concentrate on feature-product-based and feature-family-based
analysis strategies.

Similar to what happens with family-based strategies (Section 4.2), the feature-family-based approach builds upon con-
cepts used by the feature-product-based strategy, and performing one or the other is a matter of choosing product-based or
family-based analysis steps after a preliminary feature-based step. Because of that, we first discuss the feature-product-based
strategy (Section 4.3.1), focusing on the feature-based step of applying parametric model checking to each compositional
PMC to generate corresponding compositional expressions. These reliability expressions can be evaluated for every possible
configuration, yielding a product-based step and giving rise to a feature-product-based strategy. Alternatively, we can lift
each expression and evaluate them using ADDs, in a similar fashion to what we did for the family-based strategy (Sec-
tion 4.2.2). This leads to an overall feature-family-based strategy, which we discuss in Section 4.3.2.

T. Castro et al. / Science of Computer Programming 152 (2018) 116–160 137
4.3.1. Feature-product-based strategy
A product-line analysis strategy is feature-product-based (a) if it consists of a feature-based analysis followed by a

product-based analysis and (b) if the analysis results of the feature-based analysis are used in the product-based analy-
sis [47]. The preliminary feature-based analysis step consists of applying the parametric model checking function α̂ to each
PMC in a compositional model, yielding corresponding reliability expressions. These resulting expressions preserve the de-
pendency relation, since each of them is defined in terms of the same variables as its originating PMC and can be assigned
the same identifier.

As an example, the compositional model of the vending machine product line (Fig. 6) yields the following expressions
after the feature-based analysis step: α̂(P�) = 1 · t · s, α̂(Pt) = 0.6561 · tl , and α̂(Ptl) = 0.81. Also, α̂(Ps) = 0.729 · sl and
α̂(Psl) = 0.81 for the remaining PMCs in Fig. A.2.

A bottom-up evaluation of variables can be applied for each valid configuration, giving rise to the product-based anal-
ysis step. This procedure consists of compositional expression evaluation, that is, expression evaluation using a compositional
evaluation factory derived from the composition factory used for the corresponding PMCs.

Definition 25 (Compositional evaluation factory). Given a compositional model (P, ≺, I, idt, p, w ′, FM), a compositional eval-
uation factory is defined as an evaluation factory (Definition 6) w : �FM� → I →R, such that for all c ∈ �FM� and x ∈ I ,

w(c)(x) =
{
σ(α̂(P), w, c) if p(x)(c) = 1

1 otherwise

where idt(P) = x. Alternatively, we can write

w(c)(x) =
{

�α̂(P)� w
c if p(x)(c) = 1

1 otherwise

In other words, whereas a composition factory composes a recursively derived version of PMC P ′ into slots identified
by a variable x of a PMC P , a compositional evaluation factory composes a recursively evaluated version of α̂(P ′) in every
occurrence of the variable x in α̂(P). This recursion always terminates, because ≺ is a well-founded relation (see Lemma 12,
in Appendix B.2).

We define the feature-product-based analysis of compositional models as a recursive evaluation of the expressions ob-
tained from the feature-based step, using the compositional evaluation factory shown above. This recursion starts from the
maximal PMC in the compositional model, traversing the dependency graph induced by ≺ (Fig. 8a) in a depth-first fashion.

For the vending machine product line (Fig. 6), for instance, the computation for configuration c = {Tea, Lemon} would
be as follows: Starting with α̂(P�), we evaluate the presence conditions for its variables, t and s. Since ps = Soda is not
satisfied, s is evaluated to 1, ending the computation for this branch. On the other hand, pt = Tea is satisfied, so we step
into this branch to compute α̂(Pt) under c. The only variable in this expression, tl , has its presence condition satisfied by
c, so we step further into this branch to compute α̂(Ptl) under c. Since this expression denotes a constant value, we return
this value and the recursion terminates, yielding the following constant expression:

�α̂(P�)�c = 1 · (0.6561 ·
�α̂(Ptl)�c︷ ︸︸ ︷
(0.81)

)︸ ︷︷ ︸
�α̂(Pt)�c

· (1)︸︷︷︸
�α̂(Ps)�c

We generalize and formalize this procedure as follows.

Strategy 5 (Feature-product-based analysis). Given a compositional model (P, ≺, I, idt, p, w ′, FM) and the compositional eval-
uation factory w , derived from the composition factory w ′ , the feature-product-based analysis yields, for all c ∈ �FM�,

σ(α̂(P�), w, c)

or, alternatively,

�α̂(P�)� w
c

where P� is the maximal PMC in P under the dependency relation ≺.

138 T. Castro et al. / Science of Computer Programming 152 (2018) 116–160
Fig. 16. Statement of Theorem 5.

To establish the soundness of the feature-product-based strategy, we need to compare it to the product-based strategy
for compositional models. We state this result in the following theorem.

Theorem 5 (Soundness of feature-product-based analysis). Given a compositional model (P, ≺, I, idt, p, w ′, FM), for all configura-
tions c ∈ �FM�, it holds that

σ(α̂(P), w, c) = α(π ′(P, w ′, c))

or, alternatively,

�α̂(P)� w
c = α(�P� w ′

c)

where P ∈ P and w is the compositional evaluation factory (Definition 25) derived from the composition factory w ′.

Proof. We use well-founded induction. The base of the induction is when P is minimal with respect to ≺. Since minimal
PMCs have empty sets of variables, π ′(P, w ′, c) =P and α̂(P) = α(P). Thus, the statement holds for the base case.

The general case is proved by expanding definitions in the proof goal and applying the induction hypothesis and
Lemma 3. The complete proof is presented in Appendix B.3. �

As a further major result, Theorem 5 states that the diagram in Fig. 16 commutes. This diagram relates to the
upper left quadrant in Fig. 10.

4.3.2. Feature-family-based strategy
Similar to the family-based strategy (Section 4.2.2), the feature-family-based strategy leverages ADDs to store and reason

about variational data. Since the preceding feature-based analysis yields expressions over reliabilities, this variational data
is made of Real values corresponding to the reliabilities of the products of a product line. Again, lifting expressions involves
lifting the corresponding evaluation factory. In this process, the presence conditions are encoded in ADDs to represent the
variability under feature selection. This encoding is achieved by the ADD operator ITE (if-then-else).

Let us revisit expression evaluation in the vending machine example (Fig. 6). We have seen the expression for tl is the
constant 0.81, so its lifted version is the constant ADD 0̂.81 (according to the notation introduced in Definition 22). The
expression for t , α̂(Pt) = 0.6561 · tl , has the variable tl . Thus, if the presence condition ptl = Tea∧ Lemon is satisfied, this
variable must be evaluated to the constant value 0.81, assuming the value 1 otherwise. Thus, the lifted expression ̂̂α(Pt)

is evaluated with an ADD encoding this choice, given by ϕ(tl) = ITE(̂p(tl), ̂0.81, ̂1) and depicted in Fig. 17a. The evaluated
lifted expression ̂̂α(Pt)[tl/ϕ(tl)] is the ADD product of the constant 0̂.6561 and ϕ(tl), shown in Fig. 17b. The procedure is
repeated for every composition, so that the variable t in the expression ˆ̂α(P�) would be replaced by the ADD in Fig. 17c,
which already encodes the combined presence conditions for t and tl .

The function ϕ shown in the example is the lifted version of the compositional evaluation factory w . We first present
a formal definition of ϕ and then proceed to proving its soundness. Soundness of the feature-family-based strategy follows
from this result and from the soundness of the feature-product-based strategy (Section 4.3.1).

Definition 26 (Lifted compositional evaluation factory). Given a compositional probabilistic model (P, ≺, I, idt, p, w ′, FM) and
the compositional evaluation factory w , derived from the composition factory w ′ , the lifted evaluation factory ϕ : I →
(B|FM| →R) is a function that, for any x ∈ I , yields an ADD ϕ(x) such that:

ϕ(x) = ITE(p̂(x), ̂̂α(P)[X/ϕ], 1̂)

where P ∈ P , idt(P) = x, ̂̂α(P) = lift(α̂(P)) and 1̂ is the constant ADD corresponding to the function (c ∈ �FM�) �→ 1.

T. Castro et al. / Science of Computer Programming 152 (2018) 116–160 139
Fig. 17. Example of lifted compositional expression evaluation.

The next lemma, which is the compositional counterpart of Lemma 5, states this function ϕ is indeed a lifted version
of w .

Lemma 6 (Soundness of lifted compositional evaluation factory). Given a compositional model (P, ≺, I, idt, p, w ′, FM) and the com-
positional evaluation factory w, derived from the composition factory w ′ (Definition 25), for all x ∈ I and all c ∈ �FM� it holds that

ϕ(x)(c) = w(c)(x)

Proof. We first expand the definitions of ϕ (Definition 26) and w (Definition 25), then proceed to compare corresponding
cases. The cases in which the presence condition is not satisfied are trivially equal; for the complementary case, we use
well-founded induction on the dependency relation ≺, along with the soundness result for expression lifting (Lemma 4).
The reader is invited to follow the complete proof in Appendix B.4. �

This way, the ADDs yielded by function ϕ from Definition 26 correctly encode the variation in values returned by the
compositional evaluation factory w . An immediate consequence is that the expressions resulting from the feature-based
analysis step can, indeed, be lifted and then evaluated using ϕ , and this gives us the same results as the corresponding (i.e.,
for the same configurations) product-based evaluations. This is expressed by the following theorem.

Theorem 6 (Soundness of expression evaluation using ϕ). Given a compositional probabilistic model (P, ≺, I, idt, p, w ′, FM), the
compositional evaluation factory w, derived from the composition factory w ′, and x ∈ I , let P = (S, s0, ssuc, serr, X, P, T) be such that
idt(P) = x, P ∈ P . If ε = α̂(P), ε̂ = lift(ε), and ϕ is the lifted compositional evaluation factory obtained from w (Definition 26),
then, for all c ∈ �FM�, it holds that

ε̂[X/ϕ](c) = ε[X/w(c)]

Proof. For the given compositional probabilistic model, Lemma 6 states ϕ is a sound lifted counterpart of w . Hence, by
Theorem 2, ε[X/w(c)] = ε̂[X/ϕ](c). In other words, �σ̂ (ε̂, ϕ)�c = �ε� w

c . �

So, Theorem 6 states that the diagram in Fig. 18 commutes. This diagram corresponds to the lower left quadrant
in Fig. 10.

The feature-family-based analysis strategy leverages the preceding results to yield an ADD encoding all reliabilities for
valid configurations of the product line. This process is formally defined as follows.

Strategy 6 (Feature-family-based analysis). Given a compositional model (P, ≺, I, idt, p, w ′, FM) and the lifted compositional
evaluation factory ϕ , derived from w ′ , the feature-family-based strategy yields

σ̂
(
lift(α̂(P�)),ϕ

)
where P� is the maximal PMC in P under the dependency relation ≺.

140 T. Castro et al. / Science of Computer Programming 152 (2018) 116–160
Fig. 18. Statement of Theorem 6.

Fig. 19. Alternative views of the statement of Theorem 7.

Similar to the family-based strategy, the feature-family-based strategy is sound if this ADD is such that applying it to
every valid configuration c ∈ �FM� results in the same probability as if the original compositional model had been derived
for c and the resulting DTMC had been model-checked for probabilistic reachability (product-based strategy). The difference
is that, in the feature-family-based case, this statement holds for every PMC in the compositional model.

Theorem 7 (Soundness of feature-family-based analysis). Given a compositional model (P, ≺, I, idt, p, w ′, FM) and the lifted com-
positional evaluation factory ϕ , derived from w ′, for every PMC P ∈ P and for all configurations c ∈ �FM� it holds that

�σ̂
(
lift(α̂(P�)),ϕ

)
�c = α(�P� w ′

c)

Proof. Let w be the compositional evaluation factory derived from the composition factory w ′ . The proof follows from
successive application of Theorems 6, 5:

�σ̂
(
lift(α̂(P)),ϕ

)
�c = �α̂(P)� w

c (Theorem 6)

= α(�P� w ′
c) (Theorem 5) �

As a key result, Theorem 7 states that the diagrams in Fig. 19 commute. Both diagrams correspond to the left half
of the one in Fig. 10.

4.4. Bridging compositional and annotative models

Thus far, we have discussed family-based analysis strategies applied to annotative models and feature-based analysis
strategies applied to compositional models. We now present a technique to transform any composition-based model into an
r-equivalent annotation-based model. This ability may be useful in the case that the reliability analysis of a given product
line is predictably more efficient if performed using a strategy suited for annotative models, such as our family-product-
based and family-based approaches. This transformation of models resembles variability encoding techniques, that is, the
rewriting of compile-time variability as load-time or run-time variability [1,43,45,2].

Although the concepts of compilation and execution are not defined for Markov chains, variability encoding, as estab-
lished in the literature, has the main goal of creating artifacts that can be analyzed by off-the-shelf tools. Correspondingly,
we are able to transform a compositional model, which cannot be directly model-checked (because it is split into a number

T. Castro et al. / Science of Computer Programming 152 (2018) 116–160 141
Fig. 20. Example ITE operator for PMCs. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

of PMCs), into an annotative model, which can be immediately issued to a parametric model checker. Thus, we address the
transformation of compositional models into annotative ones in terms of two variability encoding functions: one operating on
PMCs (Section 4.4.1) and the other for handling expressions (Section 4.4.2).

4.4.1. Variability encoding of PMCs
In terms of Markov chains, variability encoding can be realized by turning compositional models into annotative ones.

This means transforming both the underlying compositional PMCs and the composition factory w ′ into a single annotative
PMC with a corresponding evaluation factory. To accomplish this, we propose an if-then-else operator for PMCs that switches
between possible states with a Boolean variable.

For brevity, the formal definition of this operator (Definition 34) is available in Appendix B.5.1. We rely on Fig. 20
for intuition. Again, green bold arrows represent new transitions, whereas red dashed ones are removed. Intuitively, an
evaluation that maps x to 1 yields a PMC with the same behavior as P (consequent), while an evaluation that maps x to 0
yields a PMC with the same behavior as P ′ (alternative). We formalize this behavioral switching in terms of r-equivalence.

Lemma 7 (R-equivalence for ITE). Given two compositional PMCs, P= (S, s0, ssuc, serr, X, P, T) and P ′= (S ′, s′
0, s

′
suc, s′

err, X ′, P′, T ′),
and a variable x /∈ X ∪ X ′ , let P ′′ = ITE(x, P, P ′). If (P ′′, p, w, FM) is an annotative model with P ′′ as its underlying PMC,8 where
p, w, and FM are arbitrarily chosen, then, for every c ∈ �FM�,

α(�ITE(x,P,P ′)� w
c) =

{
α(�P� w

c) if p(x)(c) = 1

α(�P ′� w
c) otherwise

Proof. We are interested in computing the probability of reaching s′′
suc from s′′

0 in P ′′ = ITE(x, P, P ′) under evaluation w(c).
Using the formal definition of ITE (Definition 34) and Definition 1, we are able to derive a reachability expression with only
two terms, each corresponding to the “activated” PMC (P or P ′). The complete proof can be found in Appendix B.5.1. �

The above lemma establishes the ITE operator has the effect of alternating behaviors if the resulting PMC is evaluated by
replacing the switching variable x with 0 or 1. With this result, we define the variability encoding of PMCs as a composition
of PMCs using the ITE operator in a recursive way, with minimal PMCs as the base case. The alternative choice (second
argument to ITE) is always the feature disabler PMC P⊥ (Definition 15), meaning no probabilistic behavior is actually
added if the presence condition is not satisfied. This is coherent with the corresponding case in a composition factory (see
Definition 17).

Definition 27 (Variability encoding function for PMCs). Given a compositional model (P, ≺, I, idt, p, w ′, FM) and P, P1, . . . ,
Pk ∈ P such that Pi ≺ P and xi = idt(Pi) for i ∈ {1, . . . , k}, the variability encoding function γ is defined as the following
derivation by composition (Definition 18):

γ (P) = P[x1/ITE(x1, γ (P1),P⊥), . . . , xk/ITE(xk, γ (Pk),P⊥)]

8 By Definition 9, any compositional PMC is also an annotative PMC (Definition 4). Thus, a compositional PMC can be the underlying PMC of an annotative
model.

142 T. Castro et al. / Science of Computer Programming 152 (2018) 116–160
Fig. 21. Statement of Theorem 8.

This recursion terminates, since the arguments to the recursive calls involved are less than the input with respect to
the well-founded relation ≺ (Lemma 11). Nonetheless, each variable xi , which was meant as a slot marker, is replaced by a
variable with the same name, but different meaning (i.e., intended to be evaluated with presence values). Since all variables
in the PMC yielded by γ have this issue, the composition factory from the original compositional model will no longer
be suitable. Thus, we must broaden the scope of variability encoding to also transform the composition factory w ′ into an
annotative evaluation factory.

Definition 28 (Variability encoding of PMCs). Given a compositional model (P, ≺, I, idt, p, w ′, FM), let P ∈ P be a PMC. Then,
(γ (P), p, w, FM) is an annotative model that encodes P ’s variability, where w is an evaluation factory as in Definition 7.

The main goal of variability encoding is to transform a compositional model into an annotative one, but this technique
can only be exploited if the reliability analysis of both the original and the transformed models yields the same results. This
fact is established by the following theorem.

Theorem 8 (R-equivalence of variability encoding and derivation by composition). Given a compositional model (P, ≺, I, idt, p,

w ′, FM) and P ∈ P , let (γ (P), p, w, FM) be its variability-encoded annotative model. Then, for all c ∈ �FM�,

α(�γ (P)� w
c) = α(π ′(P, w ′, c))

Proof. We use well-founded induction. For minimal PMCs (base of induction), γ (P) = P , so �γ (P)� w
c = P . Likewise,

π ′(P, w ′, c) =P , so the proposition holds trivially.
As induction hypothesis, we have that α(�γ (Pi)� w

c) = α(π ′(Pi, w ′, c)) for all Pi ∈ P such that Pi ≺ P . Expand-
ing α(�γ (P)� w

c) and using previous soundness and r-equivalence results, we leverage this induction hypothesis to reach
α(π ′(P, w ′, c)).

The detailed proof can be found in Appendix B.5.1. �

In summary, Theorem 8 establishes the commuting diagram in Fig. 21, which corresponds to the upper arc in
Fig. 10. Note that the derived DTMCs are not necessarily equal—this theorem only states α computes the same
reliability for both models.

4.4.2. Variability encoding of expressions
Aside from encoding variability in Markov chains, we can also encode variability in reliability expressions (represented

by the arc in the middle row of Fig. 10). Expressions derived from a compositional model can be combined to form a
single larger expression (in terms of operands). Applying such a transformation can be useful in cases where parsing and
evaluating each compositional expression is less efficient than doing so for the single variability-encoded expression. As
with PMCs, variability encoding of expressions can be defined in terms of a dedicated if-then-else operator for expressions.

Definition 29 (ITE operator for expressions). Given two expressions ε and ε′ over the sets X and X ′ of variables, respectively,
and a variable x, the if-then-else operator for expressions is defined as

ITE(x, ε, ε′) = x · ε + (1 − x) · ε′

The set of variables of the resulting expression is X ′′ = X ∪ X ′ ∪ {x}. Additionally, x is expected to be evaluated with a
Boolean value, that is, 0 or 1. Procedures that do not affect the semantics of expressions, such as distributing the terms over
the switching variable x and simplifying the resulting expression, can be leveraged in working implementations.

T. Castro et al. / Science of Computer Programming 152 (2018) 116–160 143
This if-then-else operator merges two expressions to form a third one that uses a new variable to represent a choice and
satisfies the following lemma.

Lemma 8 (Extensional equality for expression ITE). Given two expressions ε and ε′ over the sets X and X ′ of variables, respectively,
and a variable x, let X ′′ = X ∪ X ′ ∪ {x} and u : X ′′ → [0, 1] be an evaluation function such that u(x) ∈B. Then,

ITE(x, ε, ε′)[X ′′/u] =
{
ε[X/u] if u(x) = 1

ε′[X ′/u] if u(x) = 0

Proof. We prove this by expanding the definition of ITE and performing algebraic manipulation. The complete proof can
be found in Appendix B.5.2. �

The above lemma establishes that the ITE operator has the effect of alternating the semantics of the resulting expression
between the ones of its arguments, but only if this resulting expression is evaluated with an evaluation that replaces the
switching variable x by 0 or 1. Similar to the ITE operator for PMCs, we define variability encoding of expressions as a
composition of expressions using the ITE operator in a recursive way, with constant expressions (i.e., reliabilities of minimal
PMCs) as the base case.

Definition 30 (Variability encoding function for expressions). Given a compositional model (P, ≺, I, idt, p, w ′, FM) and
P, P1, . . . , Pk ∈ P such that Pi ≺ P and xi = idt(Pi) for i ∈ {1, . . . , k}, let ε = α̂(P) and εi = α̂(Pi). The variability en-
coding function γ is overloaded for expressions as

γ (ε) = ε[x1/ITE(x1, γ (ε1),1), . . . , xk/ITE(xk, γ (εk),1)]
This recursion terminates, since the arguments to the recursive calls involved are less than the input with respect to the
well-founded relation ≺ (see Lemma 11).

Similar to variability encoding of PMCs, the new variables after encoding have the same names as the previous ones,
but different meaning. Thus, we also transform the compositional evaluation factory w (Definition 25) into an annotative
evaluation factory (see Definition 7). This way, we ensure variables, which have all been transformed into conditionals, are
evaluated as expected of the ITE semantics.

Definition 31 (Variability encoding of expressions). Given a compositional model (P, ≺, I, idt, p, w ′, FM), and the composi-
tional evaluation factory w , derived from the composition factory w ′ , let w p be an annotative evaluation factory (w in
Definition 7) with the same presence conditions as w . That is, for all c ∈ �FM�,

w p(c)(x) =
{

1 if p(x)(c) = 1

0 otherwise

Then, for any P ∈ P and ε = α̂(P), γ (ε) encodes ε’s variability under the evaluation w p .

We state the soundness of variability encoding for expressions in terms of r-equivalence. For any configuration c ∈ �FM�,
a variability-encoded expression and its corresponding evaluation factory must yield the same reliabilities as the original
compositional expressions and the corresponding compositional evaluation factory.

Theorem 9 (Soundness of variability encoding for expressions). Given a compositional model (P, ≺, I, idt, p, w ′, FM) and P, P1, . . . ,
Pk ∈ P such that Pi ≺P and xi = idt(Pi) for i ∈ {1, . . . , k}, let ε = α̂(P). Let also w be the compositional evaluation factory derived
from w ′ (Definition 25) and w p be the annotative evaluation factory obtained from w (Definition 31). Then, for all c ∈ �FM� it holds
that

σ(γ (ε), w p, c) = σ(ε, w, c)

Proof. We use well-founded induction. For a minimal PMC P (base of induction), α̂(P) = ε has no variables. This way,
γ (ε) = ε and σ(ε, u) = ε for any evaluation u. Thus, both sides of the equality evaluate to ε and the proposition holds
trivially.

As induction hypothesis, we have that σ(γ (εi), w p, c) = σ(εi, w, c) for all εi = α̂(Pi) such that Pi ≺ P . Expanding
σ(γ (ε), w p, c) and using previous soundness and extensional equality results, we leverage this induction hypothesis to
reach σ(ε, w, c).

The detailed proof can be found in Appendix B.5.2. �

144 T. Castro et al. / Science of Computer Programming 152 (2018) 116–160
Fig. 22. Statement of Theorem 9.

Fig. 23. Commuting diagram leading to the feature-family-product-based strategy.

As a further key result, Theorem 9 establishes the commuting diagram in Fig. 22. This diagram corresponds to the
arc in the middle section of Fig. 10.

4.5. Feature-family-product-based strategy

So far, we have proved that all compositions of analysis steps leading up to reliabilities in Fig. 10 are r-equivalent. That
is, these analysis steps commute, and, consequently, any path in this diagram can be equally taken to reach the same
reliability value. By reflecting over the results condensed in this commuting diagram, we noticed a possible path that had
not yet been exploited. This “unbeaten path”, presented in Fig. 23 as an excerpt from Fig. 10, led us to derive a novel
feature-family-product-based analysis strategy:

1. Starting from a compositional model (upper left corner), we apply parametric model checking (α̂) to obtain composi-
tional expressions (feature-based step);

2. The resulting compositional expressions (lower left corner) are variability-encoded (γ) into a single annotative expres-
sion (family-based step); and

3. The annotative expression (lower right corner) is analyzed for each configuration c ∈ �FM� of the product line (product-
based step).

The existence of a feature-family-product-based class of analyses was foreshadowed in a recent survey, but no instance
has been found in the literature [47]. Thus, to the best of our knowledge, this is the first feature-family-product-based
analysis to be presented, either formally or informally. The precise conditions under which this approach outperforms the
others still need to be characterized by empirical studies. However, we believe it is an alternative to the family-product-
based approach for cases in which (a) the model at hand is compositional and (b) applying variability encoding to the PMCs
themselves is infeasible (e.g., the resulting annotative model is too big to be efficiently analyzed).

The novel strategy can be formally described as follows:

Strategy 7 (Feature-family-product-based analysis). Given a compositional model (P, ≺, I, idt, p, w ′, FM) and the composi-
tional evaluation factory w , derived from the composition factory w ′ , the feature-family-product-based analysis yields, for
all c ∈ �FM�,

σ
(
γ (α̂(P�)), w p, c

)
or, alternatively,

�(γ ◦ α̂)(P�)�
w p
c

where P� is the maximal PMC in P under the dependency relation ≺, and w p is the variability-encoded annotative
evaluation factory obtained from w (Definition 31).

T. Castro et al. / Science of Computer Programming 152 (2018) 116–160 145
Fig. 24. Statement of Theorem 10.

Since the diagram in Fig. 10 commutes, this analysis is sound with respect to the product-based analysis of the same
compositional model (Definition 2). This soundness property is established by the following theorem:

Theorem 10 (Soundness of feature-family-product-based analysis). Given a compositional model (P, ≺, I, idt, p, w ′, FM) and a com-
positional evaluation factory w, derived from the composition factory w ′, for every PMC P ∈ P and for all configurations c ∈ �FM� it
holds that

σ
(
γ (α̂(P)), w p, c

) = α
(
π ′(P, w ′, c)

)
where w p is the variability-encoded annotative evaluation factory obtained from w (Definition 31).

Proof. The proof follows from successive application of other commutativity theorems.

σ
(
γ (α̂(P)), w p, c

) = σ
(
α̂(P), w, c

)
(Theorem 9)

= α
(
π ′(P, w ′, c)

)
(Theorem 5) �

In summary, Theorem 10 states that the diagram in Fig. 24 commutes. This diagram corresponds to the upper left
quadrant and the middle arc in Fig. 10.

Together, the theorems demonstrated in this section constitute the main contribution of this work. Intermediate steps of
the presented analysis techniques commute, making the diagram in Fig. 10 fully commutative. Thus, any path constructed by
following the arrows in that diagram yields an analysis that is equivalent to the one yielded by any other path that shares
the same starting and ending points. This way, we guarantee all product-line reliability analysis techniques presented in
this work yield the same results if given the same input models. Furthermore, we formally described the different analysis
strategies in terms of reusable functions, making them comparable to one another.

5. Related work

Efficient analysis of software product lines is a relevant problem that has been tackled from many different perspectives,
as pointed out by a recent survey [47]. In particular, several model checking techniques have been successfully lifted to work
with product lines [11–13,22,21,9,32,3,40]. In contrast to existing research, our work presents different analysis techniques,
covering all groups identified in the taxonomy by Thüm et al. [47], and relates these techniques to one another. Moreover,
we present what is—to the best of our knowledge—the first feature-family-product-based analysis strategy in the literature.
Hence, we discuss the closest related work according to different criteria.

PMC-based analysis of product lines: Ghezzi and Molzam Sharifloo [22] propose a model-based approach to analyze
non-functional properties of product lines, illustrated by reliability and energy-consumption analysis. Their technique models
probabilistic behavior by organizing parametric Markov chains in a hierarchical data structure, derived from nested UML
sequence diagrams, annotated with the reliability of individual operations. Then, they employ parametric model checking
in a bottom-up fashion, yielding a hierarchy of reliability expressions that are evaluated for each product configuration of
interest. Although Ghezziand and Molzam Sharifloo also deal with modeling issues, their analysis technique can be seen
as an instance of the feature-product-based reliability analysis in our framework, where the PMCs obtained from the nested
sequence diagrams form the set P of compositional PMCs, and the decomposition tree induces the dependency relation ≺.
For that reason, our work provides formal evidence of the soundness of their approach.

Rodrigues et al. [46] introduced Featured Discrete-Time Markov Chains (FDTMC), an extension of DTMCs to cope with
variability and to represent the probabilistic behavior of product lines. This formalism, which is not restricted to reliability,
enables verification of any probabilistic property that can be expressed using Probabilistic Computation Tree Logic (PCTL) [27].
The authors present three family-based approaches to conduct such analyses, one of which relies on an encoding of an
FDTMC as a PMC to leverage off-the-shelf model checkers. Our work, in contrast, relies on models specifically tailored

146 T. Castro et al. / Science of Computer Programming 152 (2018) 116–160
to reliability analysis (a probabilistic reachability property), but incorporates different strategies to perform this analysis,
covering the currently accepted product-line analysis taxonomy [47] in its entirety. Furthermore, Rodrigues et al. do not
formally argue about the soundness of their approaches.

The framework we present can be leveraged to represent FDTMCs, provided that the reliability-specific constraints to
PMCs are relaxed. We can say that any PMC (S, s0, X, P, T), along with an evaluation factory w and a feature model FM,
represents an FDTMC (S, ν, FM, �) such that, for all s, s′ ∈ S and c ∈ �FM�:

• �(s, s′)(c) = P(s, s′)[X/w(c)]; and

• ν(s) =
{

1 if s = s0

0 otherwise

Feature-based model checking: Li et al. [35] and Liu et al. [37] have proposed feature-based approaches to the analysis
of non-probabilistic temporal properties of product lines. Using models of feature behavior based on transition systems and
required properties expressed with Computation Tree Logic (CTL) [10], they analyze each feature in isolation and generate
partial results that can be later reused. The composition of features in their proposed models relies on interface states, a
concept that we leveraged to define PMC interfaces and slots. However, the interfaces defined by Li et al. [35] can have an
arbitrary number of outgoing states, and Liu et al. [37] extended them to support inter-feature cycles. Our use of interfaces,
in contrast, is focused on reliability analysis (a probabilistic existence property expressed in PCTL), allowing us to define two
outgoing states to abstract success and error conditions, while also ruling out the existence of cycles. Moreover, both Li et al.
[35] and Liu et al. [37] treat feature modules as open systems, so they aggregate partial analysis results and CTL obligations
to the interfaces themselves. Since we focus on a compositional model of a single product line, we use a separate model
for intermediate feature reliability expressions. Because of these differences in modeling and in the nature of analyzed
properties, we see their work and our own as complementary.

Family-based model checking: Dubslaff et al. [21] created a framework for modeling probabilistic and non-deterministic
properties of dynamic product lines. This framework consists of modeling the behaviors of features in isolation, yielding
models that are later composed into a family-based model. The models and their compositions are established in terms
of Markov Decision Processes (MDP), enabling their representation in a way that allows the composed model to be model-
checked using off-the-shelf tools [9]. The focus of their work is on modeling probabilistic behavior of product lines in a way
that existing model checking techniques can be exploited. In contrast, our goal is to prove soundness of alternative analy-
sis strategies, leaving modeling issues out of scope. Although their modeling and analysis technique is sufficiently general
to enable reliability analysis of static product lines, which are our focus, it enables only family-based and product-based
strategies (which the authors call, respectively, all-in-one and one-by-one [21]), whereas our work also includes the feature-
based dimension. Nonetheless, their family-based technique is an alternative to ours, since it encodes the feature model’s
constraints in the behavioral model itself.

Kowal et al. [31] presented a formalism to describe performance models of product lines in a compositional fashion,
based on performance-annotated activity diagrams described in a delta-oriented language. Similar to our work, they provide
formal definitions and provide theorems stating the soundness of their approach (although proofs are not provided in the
paper). However, similar to Dubslaff et al. [21], they only address family-based analysis of a model derived from the delta
modules. Another difference to our work is that the semantics of their diagrams is expressed by continuous-time Markov
chains (CTMC), which are more appropriate to performance analysis than DTMCs. Because of that, the two pieces of work
complement each other. Future work could investigate the feasibility of defining alternative analysis strategies using their
models and an approach similar to ours.

Variability encoding: Previous research has exploited variability encoding (also called configuration lifting) as a technique
to produce family-based model checking of product lines [32,2,3,43]. von Rhein et al. [45] formalize variability encoding in
the context of programming languages, that is, the transformation of compile-time variability into load-time variability. This
transformation is realized using if-then-else operations and an encoding of features as control variables in the resulting
program, which the authors call a variant simulator. They prove their transformation preserves the behavior of variants
in the variability-encoded program for corresponding configurations. The concept of encoding variability in a simulator, as
mentioned before, inspired our definitions of variability encoding for PMCs and expressions. Furthermore, their overall proof
strategy resembles the one used throughout our work (i.e., comparison of results for corresponding configurations). However,
whereas von Rhein et al. [45] use trace semantics and a weak bisimulation relation to correlate behaviors, we perform this
task using structural analysis of the behavioral models. Despite being less general, structural analysis is sufficiently strong
for the purpose of proving that reliability is preserved, which is the main focus of our work.

Formal approaches to variability-aware analysis: The definition of product-line analysis techniques that are sound by
construction has been investigated recently [39,6,8,7], although not specifically in the context of model checking. Midtgaard
et al. [39] presented a methodology to derive family-based static analyses from single-product analyses based on abstract
interpretation. This approach enables the lifting of existing analyses to work with product lines, yielding variability-aware
analyses that are correct by construction. Although the authors only walked through a data-flow analysis scenario, they
claim the methodology could be applied to other analyses, including model checking. Similar to their work, we provide
soundness proofs of product-line analyses, conditioned on the soundness of a given single-product analysis. However, we

T. Castro et al. / Science of Computer Programming 152 (2018) 116–160 147
do not provide a framework for derivation of analysis strategies in general; instead, we focus on providing formal evidence
that a set of alternative strategies for reliability analysis are sound, while also highlighting the relations between their
intermediate steps. Moreover, whereas Midtgaard et al. handle only the family-based dimension of analysis, we also address
the feature-based dimension. In this sense, our work can also be seen as a preliminary investigation on deriving alternative
strategies to perform a given analysis.

Brabrand et al. [7] proposed a technique to automatically lift intraprocedural data-flow analyses to handle variability
in product lines. Similar to our work, the authors propose alternative analysis strategies, which are derived by gradually
introducing variability awareness in different components of an existing analysis. Brabrand et al. [7] also present a soundness
proof for the proposed strategies, whereby all of them are guaranteed to compute the same result as the base analysis. The
presented simultaneous and consecutive analysis strategies are similar to our family-based and family-product-based ones,
respectively, even though different properties are analyzed. However, Brabrand et al. [7] do not consider feature-based
analyses. Furthermore, our work breaks down analysis strategies in intermediate steps that can be composed in different
ways, enabling reuse of proofs.

Comparison of analysis dimensions: Kolesnikov et al. [30] empirically compared family-based, feature-based, and
product-based type checking of Java-based product lines. Their work was the first empirical study covering all three di-
mensions of analysis, providing guidance to practitioners over which type checking strategy to apply for a given product
line. In a sense, their research and our own are complementary, since each one deals with a different analysis type (type
checking and model checking). However, in contrast with their work, our focus is on the formal aspects of analysis—although
we argue our techniques can be implemented in a tool to perform empirical studies. Furthermore, Kolesnikov et al. neither
investigate combined strategies nor prove the soundness of the implemented type checkers.

von Rhein et al. [44] proposed a model for classification and comparison of product-line analyses (the PLA model),
whereby existing analyses are broken down into intermediate steps. This model abstracts possible steps as four opera-
tors for composing features, encoding variability, resolving variability, and generic processing of artifacts. As stated by the
authors themselves, the PLA model is helpful when describing complex analyses and designing new ones. Indeed, the PLA
model was a source of inspiration for designing our analysis techniques as reusable analysis steps. However, we found the
proposed operators to be too generic to be useful in our formal setup. In this sense, our work complements the work by
von Rhein et al. [44] with a formally defined relation among analyses and intermediate steps, albeit restricted to reliability
analysis.

Conceptual models and taxonomy: Thüm et al. [47] established the taxonomy for product-line analyses upon which we
based our work, that is, the classification of analysis techniques in three basic strategies (product-based, feature-based, and
family-based) and combinations thereof. von Rhein et al. [44] laid these strategies as dimensions in a cube, meaning analysis
strategies can be expressed as a combination of the number of analyzed products (sampling dimension), the granularity of
feature combinations (feature grouping dimension), and the extent to which variability is preserved or resolved during anal-
ysis (variability encoding dimension). Since our soundness proofs for variability encoding and feature composition apply to
single features (not necessarily maximal PMCs), our techniques range over the PLA plane of feature grouping and variability
encoding dimensions. Furthermore, given that sampling is a matter of restricting possible configurations and that we prove
that our techniques are sound configuration-wise, our work also covers the sampling dimension.

Meinicke et al. [38] recently surveyed existing product-line analysis tools and categorized them along four criteria:
product-line implementation technique (annotation-based versus composition-based approach), analysis technique (e.g., test-
ing, type checking, model checking), strategies for product-line analysis (i.e., the analysis strategies taxonomy by Thüm et
al. [47]), and strategy of the tool (product-based, variability-aware, and variability-encoding). Using this taxonomy, an im-
plementation of our techniques would cover all possibilities on the dimensions of implementation technique, strategies
for product-line analysis, and strategy of the tool, while the dimension of analysis technique would be fixed to reliability
analysis.

6. Conclusion

We formally presented seven approaches to reliability analysis of product lines, covering all strategies in the taxonomy
by Thüm et al. [47]. To the best of our knowledge, this is the first work to address all three dimensions of product-line
analysis (product-based, family-based, and feature-based) in the context of model checking, and also the first to present
an instance of feature-family-product-based analysis strategy. The soundness of our analysis techniques is established by
results on the commutativity of their intermediate steps, summarized by the commuting diagram in Fig. 10. This constitutes
formal evidence that, given a product line, each of the presented approaches yields the same results as the others, enabling
practitioners to choose among analysis strategies based on their space and time trade-offs. Future work can build on this
formal foundation to compare techniques in search for selection criteria.

The input models for our analysis approaches are based on the formalism of parametric Markov chains, meaning they
can be represented using the input language of parametric model checkers such as PRISM [33] and PARAM [25]. Indeed, the
parametric probabilistic reachability algorithm by Hahn et al. [26], used throughout this work as an instance of variability-
aware analysis function (α̂), is implemented by these tools. Therefore, we argue that our analysis approaches are feasible,
and that they can be implemented by a program that coordinates calls to an off-the-shelf parametric model checker accord-

148 T. Castro et al. / Science of Computer Programming 152 (2018) 116–160
Fig. A.1. Complete annotative PMC for the vending machine.

ing to variability information. The product-based techniques and variability encoding can be implemented by manipulating
the PMCs themselves.

Although our theory is focused on reliability analysis, we were able to prove a general result on lifting rational functions
over the Real numbers to work with ADDs (Lemma 4), which can be leveraged to evaluate algebraic expressions in the
context of product lines. Future work may also extend our analysis theory with product-line analyses other than reliability,
seeking commonalities in definitions and soundness proofs. As suggested by Fig. 10, we also believe that category theory
can be leveraged to analyze and describe such extended theories, as a means towards the broader goal of finding a set of
general principles relating different dimensions of product-line analysis.

Acknowledgements

We thank the anonymous reviewers for the useful suggestions for improvement. This work was partially supported by
the National Institute of Science and Technology for Software Engineering (INES)9, funded by CNPq [grant 465614/2014-0]
and FACEPE [grant APQ-0388-1.03/14]. Thiago Castro acknowledges support from the Science and Technology Department
of the Brazilian Army. Vander Alves would like to thank for the research grant CAPES ref. BEX 0557-16-1 / Alexander
von Humboldt ref. 3.2-1190844-BRA-HFSTCAPES-E. Leopoldo Teixeira is supported by FACEPE [grant APQ-0570-1.03/14] and
CNPq [grant 409335/2016-9]. Sven Apel is supported by the German Research Foundation (AP 206/4 and AP 206/6).

Appendix A. Probabilistic models

This section presents the probabilistic models of the beverage machine product line example (Section 3) in their entirety.
Fig. A.1 contains the annotative model, and the compositional model is depicted by Fig. A.2.

Appendix B. Additional proofs

This section contains formal definitions and proofs that were omitted from the main body of the paper to avoid digres-
sions.

B.1. Existence of minimal and maximal PMCs

Lemma 9 (Existence of minimal PMCs). Given a set P of compositional PMCs, an identifying function idt, and the corresponding
induced well-founded relation ≺, there exists, at least, one minimal PMC P = (S, s0, ssuc, serr, X, P, T). Furthermore, X = ∅, that is,
minimal PMCs are, in fact, DTMCs with defined interfaces and only two bottom strongly connected components (cf. Definition 9).

Proof. The existence of minimal PMCs follows directly from the fact that the induced relation ≺ is well-founded: otherwise,
all descending chains would be infinite.

Now suppose X �= ∅. Then, it has, at least, one element x. Since the set I of identifiers (image of idt) is a superset of all
Xi , x ∈ I . By definition, function idt is bijective, so there must be a compositional PMC P ′ ∈ P such that idt(P ′) = x. But
idt(P ′) ∈ X ⇒P ′ ≺P . Since P is minimal by hypothesis, this is a contradiction. �
Lemma 10 (Existence of maximal PMCs). Given a set P of compositional PMCs, an identifying function idt, and the corresponding
induced well-founded relation ≺, there exists, at least, one maximal PMC P = (S, s0, ssuc, serr, X, P, T).

Proof. The proof is by contraposition. Nonexistence of such maximal PMC means there are infinite ascending chains
P1 ≺ P2 ≺ P3 ≺ . . . for Pi ∈ P . Since P is finite, such infinite chain implies the existence of cycles, that is, at least,
one Pi transitively depending on itself. But cycles imply both ascending and descending infinite chains, contradicting the

9 http :/ /www.ines .org .br.

http://www.ines.org.br

T. Castro et al. / Science of Computer Programming 152 (2018) 116–160 149
Fig. A.2. Compositional PMCs for the vending machine.

well-foundedness of ≺. Hence, there are no infinite ascending chains under ≺ and, by contraposition, there is, at least, one
maximal PMC. �
B.2. Termination lemmas

The following lemma states the termination of the recursive definitions of the composition factory w ′ (Definition 17).

Lemma 11 (Derivation by composition terminates). For a compositional model (P, ≺, I, idt, p, w ′, FM), for all configurations c ∈
�FM�, the composition function w ′(c) terminates.

150 T. Castro et al. / Science of Computer Programming 152 (2018) 116–160
Proof. Let idt−1 : I → P be the inverse function of idt . To prove w ′(c) terminates, we note that the arguments in the
recursive calls in the definition of w ′ (Definition 17) strictly decrease if we use idt−1 as a measure function into the
well-founded set P .

Without loss of generality, let x = idt(P) for some P ∈ P with variables set X = {x1, . . . , xk}. The right-hand side of
w ′(c)(x) evaluates to either P⊥ (the feature disabler PMC) or P[x1/w ′(c)(x1), . . . , xk/w ′(c)(xk)]. In the first case, it trivially
terminates, since P⊥ have no slots; in the latter, the arguments to each recursive call are the variables xi ∈ X . By definition,
xi = idt(Pi) for some Pi ∈ P such that Pi ≺P . Thus, idt−1(xi) ≺ idt−1(x). Since ≺ is well-founded, w ′(c) terminates. �

The following lemma states that the recursion in Definition 25 terminates.

Lemma 12 (Compositional evaluation terminates). For a compositional model (P, ≺, I, idt, p, w ′, FM), for all configurations c ∈
�FM�, the compositional evaluation w(c) terminates.

Proof. Let idt−1 : I → P be the inverse function of idt . To prove w(c) terminates, we note that the arguments in recursive
calls to w(c) (Definition 25) strictly decrease if we use idt−1 as a measure function into the well-founded set P .

Indeed, without loss of generality, let x = idt(P) for some P ∈ P with variables set X = {x1, . . . , xk}. By definition of
σ , the right-hand side of w(c)(x) evaluates to either 1 or α̂(P)[x1/w(c)(x1), . . . , xk/w(c)(xk)]. In the first case, it trivially
terminates; in the second, the arguments to each recursive call are the variables xi ∈ X . By definition, xi = idt(Pi) for some
Pi ∈ P such that Pi ≺P . Thus, idt−1(xi) ≺ idt−1(x). Since ≺ is well-founded, w(c) terminates. �
B.3. Soundness of feature-product-based analysis

We first state formally what we mean by PMC renaming, which is a key concept in PMC composition.

Definition 32 (Compositional PMC renaming). Given a compositional PMC P = (S, s0, ssuc, serr, X, P, T), the i-th renaming of
P , P i = (Si, si

0, s
i
suc, si

err, Xi, Pi, T i), is an isomorphic compositional PMC with renamed states. That is, P i is such that:

• Si ∩ S = ∅.
• ∀i, j∈N · i �= j =⇒ Si ∩ S j = ∅.
• There exists a bijective mapping _i : S → Si from each state s j ∈ S to a state si

j ∈ Si .

• Xi = X .
• ∀s1,s2∈S · Pi(si

1, s
i
2) = P(s1, s2).

• T i = {si | s ∈ T }.

With the formal definition of PMC renaming, we are able to present a precise definition of a total composition, obtained
by composing PMCs over all slots in a given base compositional PMC at once.

Definition 33 (Total PMC composition). Given a compositional PMC (S, s0, ssuc, serr, X, P, T) with k variables x1, . . . , xk , and
a set P of k compositional PMCs (Si, si0 , sisuc , sierr , Xi, Pi, Ti), i ∈ {1, . . . , k}, let u′ : X → P be a function that yields a
compositional PMC P ∈ P to compose in the corresponding slots for any given variable. Let also ni = |slotsP (xi)| for
i ∈ 1, . . . , k, and P j

i = (S j
i , s

j
i0
, s j

isuc
, s j

ierr
, X j

i , P
j
i , T

j
i) for j ∈ 1, . . . , ni be the j-th renaming of Pi (Definition 32). The total PMC

composition P[X/u′], also denoted by P[x1/u′(x1), . . . , xk/u′(xk)], is a compositional PMC P ′ = (S ′, s′
0, s

′
suc, s′

err, X ′, P′, T ′)
such that:

• S ′ = S � ⊎n1
j=1 S j

1 � · · · � ⊎nk
j=1 S j

k , where � denotes the disjoint union operator (all states are disjointly merged);
• s′

0 = s0, s′
suc = ssuc , and s′

err = serr (the interface of P is preserved);

• X ′ = ⋃k
i=1 Xi (each occurrence of xi is replaced by a copy of Pi , whose variables are those of Xi);

• T ′ = T (target states of the base PMC are preserved);
• P′ is such that, for all slots (s

x j
i0

, s
x j

isuc
, s

x j
ierr

) of the base PMC P and interfaces (s j
i0
, s j

isuc
, s j

ierr
) of the renamed PMCs P j

i

(where i ∈ 1, . . . , k and j ∈ 1, . . . , ni),
– P′(s

x j
i0

, s j
i0
) = 1 (new transition from a slot’s initial state to the initial state of the corresponding composed PMC)

– P′(s j
isuc

, s
x j

isuc
) = 1 (new transition from the success state of a composed PMC to the success state of the corresponding

slot)
– P′(s j

ierr
, s

x j
ierr

) = 1 (new transition from the error state of a composed PMC to the error state of the corresponding slot)

– P′(s
x j , s

x j) = 0 (slot’s success transition is removed)

i0 isuc

T. Castro et al. / Science of Computer Programming 152 (2018) 116–160 151
– P′(s
x j

i0

, s
x j

ierr
) = 0 (slot’s error transition is removed)

– P′(s j
isuc

, s j
isuc

) = 0 (success loops from composed PMCs are removed)

– P′(s j
ierr

, s j
ierr

) = 0 (error loops from composed PMCs are removed)
– For all remaining combinations of s1, s2 ∈ S ′:

P′(s1, s2) =

⎧⎪⎨⎪⎩
P(s1, s2) if s1, s2 ∈ S \ slotStatesP (X)

P j
i (s1, s2) if s1, s2 ∈ S j

i

0 otherwise

The function u′ is called a composition function.

To establish the soundness of the feature-product-based strategy, we need to compare it to the product-based strategy
for compositional models. However, the latter relies on PMC composition, while the former is based on compositional
evaluation of expressions. To bridge this gap, we first note that, as far as reliability analysis is concerned, composing a PMC
P ′ into a slot of another PMC P is equivalent to evaluating the corresponding variable in P with the reliability expression
of P ′ (i.e., α̂(P ′)).

Lemma 13 (R-equivalence of total composition and evaluation). Let P,P1, . . . ,Pk be compositional parametric Markov chains, and
X = {x1, . . . , xk} be P ’s set of variables. Then,

α̂(P[x1/P1, . . . , xk/Pk]) = α̂(P[x1/α̂(P1), . . . , xk/α̂(Pk)])
where the equals sign denotes extensional equality. In other words, the two expressions (i.e., syntactic objects) are not necessarily
equal in a syntactical sense, but their corresponding rational functions (i.e., semantic objects) always yield equal values if given equal
inputs.

Proof. The main argument for this proof is the case where P has only one variable, that is, X = {x}. This way, we start by
proving that α̂(P[x/P ′]) = α̂(P[x/α̂(P ′)]) for a given compositional PMC P ′ = (S ′, s′

0, s
′
suc, s′

err, X ′, P′, T ′). Then, we extend
this to the general case where P has an arbitrary number of variables.

A generic illustration of P and P ′ is given by Figs. 7a and 7b, respectively. Let Pe = P[x/α̂(P ′)] be the PMC resulting
from evaluation, denoted by (Se, se0 , sesuc , seerr , Xe, Pe, Te), and Pc = P[x/P ′] be the PMC obtained by composition, denoted
by the tuple (Sc, sc0 , scsuc , scerr , Xc, Pc, Tc). Figs. B.3a and B.3b represent these PMCs and serve as a visual aid to the proof.

Since α̂ computes the probabilistic reachability property, we base this proof on the algorithm by Hahn et al. [26]. This
algorithm consists of successive eliminations of states, with the transition probability matrix being updated at each step.
A useful property, which Hahn et al. use to prove that the algorithm is sound, is that the probability of reaching the target
states in the input PMC is an invariant, that is, it remains the same throughout elimination steps.

Let us apply the algorithm by Hahn et al. [26] to Pc . For brevity, we show the composition via a single slot. In the case
where more slots exist, the following argument can be applied sequentially to each slot and corresponding renaming of P ′ .

Since the order in which states are eliminated is not fixed, we first eliminate states s′ ∈ S ′ \ interface(P ′). The intermediate
PMC at this point is given by Fig. B.3c. These eliminations are restricted to states in S ′ , because the only transitions in Pc

between states in S and states in S ′ are the ones connecting interface and slot (by construction—see Definition 11).
Now, we eliminate the interface states. Performing a single step of the algorithm by Hahn et al. (Definition 3), we

eliminate s′
0 and update Pc so that

Pc(sx0 , s′
suc) = Pc(sx0 , s′

suc) + Pc(sx0 , s′
0) · 1

1 − Pc(s′
0, s′

0)
· Pc(s′

0, s′
suc)

= 0 + 1 · 1

1 − 0
· PrP

′
(s′

0, s′
suc)

= PrP
′
(s′

0, s′
suc)

Similarly, Pc(sx0 , s′
err) = PrP

′
(s′

0, s
′
err). Repeating these steps for s′

suc and s′
err , Pc is updated to have Pc(sx0 , sxsuc) =

PrP
′
(s′

0, s
′
suc) and Pc(sx0 , sxerr) = PrP

′
(s′

0, s
′
err) (see Fig. B.3d).

At this stage, all states s′ ∈ S ′ have been eliminated, so that Sc = S = Se . Furthermore, for all s1, s2 ∈ S \ slotStatesP (x),
the transition probability matrices are such that Pc(s1, s2) = P(s1, s2) = Pe(s1, s2) (Definition 11). Thus, the only difference
between Pc and Pe are the transitions for slot states: (sx0 , sxsuc) and (sx0 , sxerr).

For the “success” slot, Pc(sx0 , sxsuc) = PrP
′
(s′

0, s
′
suc), which is syntactically equal to Pe(sx0 , sxsuc). So, we must prove that the

“error” transitions, Pc(sx0 , sxerr) and Pe(sx0 , sxerr), are extensionally equal. But s′
suc and s′

err are the only two bottom strongly
connected components of the underlying digraph of P ′ (Definition 9). Thus, by Theorem 10.27 of Baier and Katoen [5],

152 T. Castro et al. / Science of Computer Programming 152 (2018) 116–160
Fig. B.3. Generic PMCs in Lemma 13.

PrP
′
u (s′

0, s
′
suc) + PrP

′
u (s′

0, s
′
err) = 1, where P ′

u is the DTMC obtained by applying some well-defined evaluation u to P ′ . Since
the choice of u is arbitrary, Pc(sx0 , sxerr) is extensionally equal to Pe(sx0 , sxerr).

This means that, at the current point of application of the probabilistic reachability algorithm to Pc , Pc = Pe . Pe and the
partially analyzed Pc have the same probability of reaching the target state ssuc . Moreover, since the algorithm preserves
this probability at each step, the probabilistic reachability in Pc is the same at this point as before the algorithm started,
and will remain the same until the algorithm stops. Hence, α̂(P[x/P ′]) = α̂(P[x/α̂(P ′)]).

To extend this proof to the case where P has an arbitrary number of variables, we repeat the argument that the
choice of states for elimination is arbitrary. Let us assume, as induction hypothesis, that the lemma holds for a PMC with
n variables. If P has n + 1 variables, we apply the same reasoning as in the single-variable case for one of P ’s slots,
(sxn+10

, sxn+1suc
, sxn+1err

). After eliminating only the states corresponding to a composition at the given slot, we have the
following extensional equalities: Pc(sxn+10

, sxn+1suc
) = Pe(sxn+10

, sxn+1suc
) and Pc(sxn+10

, sxn+1err
) = Pe(sxn+10

, sxn+1err
). Also, the

resulting PMC Pc has n remaining slots, one for each variable. By the induction hypothesis, after eliminating the states cor-
responding to all compositions in Pc , we have that Pc and Pe are extensionally equal. Hence, α̂(P[x1/P1, . . . , xn+1/Pn+1]) =
α̂(P[x1/α̂(P1), . . . , xn+1/α̂(Pn+1)]). �

Furthermore, since a composition of only DTMCs into a PMC yields another DTMC, both parametric and non-parametric
model checking of this resulting chain (which has no variability) produce the same result. Thus, we have the following
corollary of Lemma 13.

T. Castro et al. / Science of Computer Programming 152 (2018) 116–160 153
Corollary 1 (R-equivalence of total composition with DTMCs and evaluation). Let P be a compositional PMC, D1, . . . ,Dk be DTMCs,
and X = {x1, . . . , xk} be P ’s variables set. Then,

α(P[x1/D1, . . . , xk/Dk]) = α(P[x1/α(D1), . . . , xk/α(Dk)])

Now we have the tools to prove that our feature-product-based analysis is sound. We recall Theorem 5:

Theorem 5 (Soundness of feature-product-based analysis). Given a compositional model (P, ≺, I, idt, p, w ′, FM), for all configura-
tions c ∈ �FM�, it holds that

σ(α̂(P), w, c) = α(π ′(P, w ′, c))

or, alternatively,

�α̂(P)� w
c = α(�P� w ′

c)

where P ∈ P and w is the compositional evaluation factory (Definition 25) derived from the composition factory w ′ .

Complete proof. We use well-founded induction. The base of the induction is when P is minimal with respect to ≺. In
this case, X = ∅, so π ′(P, w ′, c) = P , that is, α(π ′(P, w ′, c)) = α(P). Likewise, α̂(P) = α(P), so that σ(α̂(P), w, c) =
σ(α(P), w, c) = α(P). Thus, for the base case, σ(α̂(P), w, c) = α(π ′(P, w ′, c)).

We now have to prove that σ(α̂(P), w, c) = α(π ′(P, w ′, c)) for an arbitrary P ∈ P . Our induction hypothesis is that
σ(α̂(Pi), w, c) = α(π ′(Pi, w ′, c)) for all Pi ∈ P such that Pi ≺ P . Thus, let xi = idt(Pi), i ∈ {1, . . . , k}. By Definition 21, we
have:

σ(α̂(P), w, c) = α̂(P)[x1/w(c)(x1), . . . , xk/w(c)(xk)]
For each xi , from the definition of the compositional evaluation factory w (Definition 25),

w(c)(xi) =
{
σ(α̂(Pi), w, c) if p(xi)(c) = 1

1 otherwise

=
{
α(π ′(Pi, w ′, c)) if p(xi)(c) = 1 (by induction hypothesis)

1 otherwise

But, from the definition of the composition factory w ′ (Definition 17),

w ′(c)(xi) =
{
Pi[Xi/w ′(c)] if p(xi)(c) = 1

P⊥ otherwise

=
{
π ′(Pi, w ′, c)) if p(xi)(c) = 1 (Definition 18)

P⊥ otherwise

Applying α to both sides,

α(w ′(c)(xi)) =
{
α(π ′(Pi, w ′, c)) if p(xi)(c) = 1

α(P⊥) otherwise

and, since α(P⊥) = 1,

=
{
α(π ′(Pi, w ′, c)) if p(xi)(c) = 1

1 otherwise

= w(c)(xi)

Thus, w(c)(xi) = α(w ′(c)(xi)) and we have the following:

σ(α̂(P), w, c) = α̂(P)[x1/w(c)(x1), . . . , xk/w(c)(xk)]
= α̂(P)[x1/α(w ′(c)(x1)), . . . , xk/α(w ′(c)(xk))]
= α(P[x1/α(w ′(c)(x1)), . . . , xk/α(w ′(c)(xk))]) (Lemma 3)

= α(P[x1/w ′(c)(x1), . . . , xk/w ′(c)(xk)]) (Corollary 1)

= α(π ′(P, w ′, c)) (Definition 18) �

154 T. Castro et al. / Science of Computer Programming 152 (2018) 116–160
B.4. Lifting lemmas

This appendix covers details of lemmas related to lifting of expressions and of compositional evaluation factories.

Lemma 4 (Soundness of expression lifting). If ε is a rational expression over Real constants and variables xi ∈ X, |X | = n, A1, . . . , An

are ADDs, and ε̂ = lift(ε), then

ε̂[x1/A1, . . . , xn/An](b̄) = ε[x1/A1(b̄), . . . , xn/An(b̄)]
where b̄ is a vector of k Booleans, corresponding to a selection of the k features in a given product line.

Complete proof. The proof is by structural induction on the expression ε. The base cases are constant expressions and
single variables:

• ε = c, where c ∈R:
In this case, ε̂ = ĉ. Since ε has no variables (and neither has ε̂), we apply the empty evaluation []. Thus, ε̂[](b̄) =
ĉ(b̄) = c = ε = ε[].

• ε = x:
In this case, ε̂ = x. If A is an arbitrary ADD, then: ε̂[x/A](b̄) = A(b̄) = ε[x/A(b̄)].

Now we have to prove the statement holds for ε = ε1 � ε2 (where � ∈ {+, −, ×, ÷}) and for ε = εi
1 (where i ∈ N). As

induction hypothesis, assume that the following holds for the expressions ε1 and ε2:

ε̂[x1/A1, . . . , xn/An](b̄) = ε[x1/A1(b̄), . . . , xn/An(b̄)] (I.H.)

Let u : X → (Bk →R) be a lifted evaluation such that u(xi) = Ai is an ADD. We then have the following:

• ε = ε1 � ε2, where � ∈ {+, −, ×, ÷}:
In this case, ε̂ = ε̂1 � ε̂2. Hence,

ε̂[X/u](b̄) = (
ε̂1 � ε̂2

)[X/u](b̄)

= (
ε̂1[X/u] � ε̂2[X/u])(b̄) (evaluation)

= ε̂1[X/u](b̄) � ε̂2[X/u](b̄) (ADD arithmetics)

= ε̂1[x1/A1, . . . , xn/An](b̄)

� ε̂2[x1/A1, . . . , xn/An](b̄) (expanding u)

= ε1[x1/A1(b̄), . . . , xn/An(b̄)]
� ε2[x1/A1(b̄), . . . , xn/An(b̄)] (induction hypothesis)

= (
ε1 � ε2

)[x1/A1(b̄), . . . , xn/An(b̄)] (evaluation)

= ε[x1/A1(b̄), . . . , xn/An(b̄)]
• ε = εi

1, where i ∈N:

In this case, ε̂ = ε̂1
i . Hence,

ε̂[X/u](b̄) = ε̂1
i[X/u](b̄)

= ε̂1[X/u]i(b̄) (evaluation)

= ε̂1[X/u](b̄)i (ADD arithmetics)

= ε̂1[x1/A1, . . . , xn/An](b̄)i (expanding u)

= ε1[x1/A1(b̄), . . . , xn/An(b̄)]i (induction hypothesis)

= εi
1[x1/A1(b̄), . . . , xn/An(b̄)] (evaluation)

= ε[x1/A1(b̄), . . . , xn/An(b̄)] �
The soundness of lifted compositional evaluation factories is now presented in its complete form. First, we recall the

corresponding lemma’s statement.

T. Castro et al. / Science of Computer Programming 152 (2018) 116–160 155
Lemma 6 (Soundness of lifted compositional evaluation factory). Given a compositional model (P, ≺, I, idt, p, w ′, FM) and the com-
positional evaluation factory w, derived from the composition factory w ′ (Definition 25), for all x ∈ I and all c ∈ �FM� it holds that

ϕ(x)(c) = w(c)(x)

Complete proof. If P ∈ P is such that idt(P) = x, then

ϕ(x)(c) = ITE(p̂(x), ̂̂α(P)[X/ϕ], 1̂)(c)

=
{
̂̂α(P)[X/ϕ](c) if p̂(x)(c) �= 0

1̂(c) if p̂(x)(c) = 0

By Lemma 4, ̂̂α(P)[X/ϕ](c) = α̂(P)[x1/ϕ(x1)(c), . . . , xk/ϕ(xk)(c)]. Also, ∀c∈�FM� · 1̂(c) = 1. Thus,

ϕ(x)(c) =
{
α̂(P)[x1/ϕ(x1)(c), . . . , xk/ϕ(xk)(c)] if p̂(x)(c) �= 0

1 if p̂(x)(c) = 0
(2)

On the other hand, w is defined (Definition 25) as

w(c)(x) =
{

�α̂(P)� w
c if p(x)(c) �= 0

1 if p(x)(c) = 0

Expanding the definition of �α̂(P)� w
c , we have

w(c)(x) =
{
α̂(P)[x1/w(c)(x1), . . . , xk/w(c)(xk)] if p(x)(c) �= 0

1 if p(x)(c) = 0
(3)

Since p̂(x)(c) = p(x)(c), we compare corresponding cases in the Equations (2), (3). The cases in which p(x)(c) = 0 are
trivially equal. Otherwise, we use well-founded induction.

The base of our induction are minimal PMCs. A minimal PMC P has no variables (X = ∅), so α̂(P)[X/u] = α(P) for any
evaluation u. Since w(c) is an evaluation, and considering ϕ(x)(c) takes a variable x to a Real number (thus, also being
an evaluation), we have that ̂̂α(P)[X/ϕ](c) = α̂(P)[X/w(c)] in this case. For non-minimal PMCs, assume, as induction
hypothesis, that ̂̂α(P j)[X j/ϕ](c) = α̂(P j)[X j/w(c)] for all P j ≺P , where j ∈ {1, . . . , k}. Then, for any x j ∈ X ,

ϕ(x j)(c) =
{
̂̂α(P j)[X j/ϕ](c) if p̂(x j)(c) �= 0

1 if p̂(x j)(c) = 0
(4)

w(c)(x j) =
{
α̂(P j)[X j/w(c)] if p(x j)(c) �= 0

1 if p(x j)(c) = 0
(5)

However, the induction hypothesis implies the right-hand sides of the Equations (4), (5) are equal. Thus, ϕ(x j)(c) =
w(c)(x j) for all x j ∈ X , which means

α̂(P)[x1/ϕ(x1)(c), . . . , xk/ϕ(xk)(c)] = α̂(P)[x1/w(c)(x1), . . . , xk/w(c)(xk)]
and, by well-founded induction, the cases where p(x)(c) = 1 in the Equations (2), (3) are also equal. Hence, ϕ(x)(c) =
w(c)(x). �
B.5. Variability encoding

This appendix deals with formal definitions and complete proofs related to variability encoding of PMCs and of rational
expressions.

B.5.1. Variability encoding of PMCs
We start by formally defining the ITE operator for PMCs, which was only presented as an intuition in the main body of

the paper.

Definition 34 (ITE operator for PMCs). Given two compositional PMCs, P = (S, s0, ssuc, serr, X, P, T) and P ′ = (S ′, s′
0, s

′
suc, s′

err,

X ′, P′, T ′), and a variable x /∈ X ∪ X ′ , the if-then-else operator for PMCs is defined as

ITE(x,P,P ′) = P ′′

where P ′′ = (S ′′, s′′, s′′
suc, s′′

err, X ′′, P′′, T ′′) is a compositional PMC such that:
0

156 T. Castro et al. / Science of Computer Programming 152 (2018) 116–160
• S ′′ = S ∪ S ′ ∪ {s′′
0, s′′

suc, s′′
err}• The state s′′

0 is the new initial one, s′′
suc is the new success state, and s′′

err is the new error state.
• X ′′ = X ∪ X ′ ∪ {x}
• T ′′ = {s′′

suc}• P′′ is such that:
– P′′(s′′

0, s0) = x
– P′′(s′′

0, s′
0) = 1 − x

– P′′(ssuc, s′′
suc) = P′′(s′

suc, s′′
suc) = P′′(s′′

suc, s′′
suc) = 1

– P′′(ssuc, ssuc) = P′′(s′
suc, s′

suc) = 0
– P′′(serr, s′′

err) = P′′(s′
err, s′′

err) = P′′(s′′
err, s′′

err) = 1
– P′′(serr, serr) = P′′(s′

err, s′
err) = 0

– For all remaining combinations of s1, s2 ∈ S ′′:

P′′(s1, s2) =

⎧⎪⎨⎪⎩
P(s1, s2) if s1, s2 ∈ S

P′(s1, s2) if s1, s2 ∈ S ′

0 otherwise

This ITE operator is mainly useful because of its r-equivalence property. We recall Lemma 7 and present its complete
proof:

Lemma 7 (R-equivalence for ITE). Given two compositional PMCs, P = (S, s0, ssuc, serr, X, P, T) and P ′ = (S ′, s′
0, s

′
suc, s′

err, X ′,
P′, T ′), and a variable x /∈ X ∪ X ′ , let P ′′ = ITE(x, P, P ′). If (P ′′, p, w, FM) is an annotative model with P ′′ as its underlying
PMC,10 where p, w, and FM are arbitrarily chosen, then, for every c ∈ �FM�,

α(�ITE(x,P,P ′)� w
c) =

{
α(�P� w

c) if p(x)(c) = 1

α(�P ′� w
c) otherwise

Complete proof. We are interested in computing the probability of reaching s′′
suc from s′′

0 in P ′′ = ITE(x, P, P ′) under
evaluation w(c). In P ′′ , s′′

0 �= s′′
suc and s′′

suc is reachable from s′′
0 (since s′′

suc is, by definition, reachable from ssuc and s′
suc).

Hence, the reachability of s′′
suc from s′′

0 satisfies Definition 1, by which the probability of reaching state s2 from state s1 in a
DTMC D = (S, s0, P, T) is given by

PrD(s1, s2) =
∑

s′∈S\{s2}
P(s1, s′) · PrD(s′, s2) + P(s1, s2)

By Definition 34, P′′(s′′
0, s0) = x, P′′(s′′

0, s′
0) = 1 − x, and P′′(s′′

0, s′′) = 0 for all other s′′ ∈ S ′′ . Thus,

α(�P ′′� w
c) = PrP

′′
w(c) (s′′

0, s′′
suc)

=
∑

s′′∈S ′′\{s′′suc}
P′′

w(c)(s′′
0, s′′) · PrP

′′
w(c) (s′′, s′′

suc) + P′′
w(c)(s′′

0, s′′
suc)

=
∑

s′′∈S ′′\{s′′suc}
P′′

w(c)(s′′
0, s′′) · PrP

′′
w(c) (s′′, s′′

suc) + 0

= P′′
w(c)(s′′

0, s0) · PrP
′′
w(c) (s0, s′′

suc) + P′′
w(c)(s′′

0, s′
0) · PrP

′′
w(c) (s′

0, s′′
suc)

= w(c)(x) · PrP
′′
w(c) (s0, s′′

suc) + (1 − w(c)(x)) · PrP
′′
w(c) (s′

0, s′′
suc)

Since w(c)(x) equals 1 if p(x)(c) = 1 and 0 otherwise (Definition 7),

α(�P ′′� w
c) =

{
PrP

′′
w(c) (s0, s′′

suc) if p(x)(c) = 1

PrP
′′
w(c) (s′

0, s′′
suc) otherwise

But, since s0 ∈ S and the only state in S that can reach s′′
suc is ssuc (Definition 34), the probability of reaching s′′

suc from
s0 is the probability of reaching ssuc from s0 multiplied by the transition probability from ssuc to s′′

suc:

10 By Definition 9, any compositional PMC is also an annotative PMC (Definition 4). Thus, a compositional PMC can be the underlying PMC of an annotative
model.

T. Castro et al. / Science of Computer Programming 152 (2018) 116–160 157
PrP
′′
w(c) (s0, s′′

suc) = PrP
′′
w(c) (s0, ssuc) · P′′

w(c)(ssuc, s′′
suc)

= PrPw(c) (s0, ssuc) · 1

= PrPw(c) (s0, ssuc)

= α(�P� w
c)

Similar reasoning applied to S ′ leads to PrP
′′
w(c) (s′

0, s
′′
suc) = α(�P ′�c). Hence,

α(�P ′′� w
c) =

{
α(�P� w

c) if p(x)(c) = 1

α(�P ′� w
c) otherwise

�

The above lemma establishes the ITE operator has the effect of alternating behaviors if the resulting PMC is evaluated
by replacing the switching variable x with 0 or 1. However, the PMC operands of ITE are part of a compositional model,
so their own variables are interpreted as placeholders to be used during composition, instead (see Section 3.2). To cope
with this mismatch, we only use the ITE operator with PMCs that are either plain DTMCs or that result themselves from
variability encoding.

The resulting theorem stating the soundness of this variability encoding for PMCs is recalled and proved next.

Theorem 8 (R-equivalence of variability encoding and derivation by composition). Given a compositional model (P, ≺, I, idt, p,

w ′, FM) and P ∈ P , let (γ (P), p, w, FM) be its variability-encoded annotative model. Then, for all c ∈ �FM�,

α(�γ (P)� w
c) = α(π ′(P, w ′, c))

Complete proof. We use well-founded induction. For minimal PMCs (base of induction), γ (P) = P , so �γ (P)� w
c =P . Like-

wise, π ′(P, w ′, c) =P , so the proposition holds trivially.
As induction hypothesis, we have that α(�γ (Pi)� w

c) = α(π ′(Pi, w ′, c)) for all Pi ∈ P such that Pi ≺ P . For brevity, in
the following equations, we use �i to denote ITE(xi, γ (Pi), P⊥).

α(�γ (P)� w
c) = �α̂(γ (P))� w

c (Theorem 1)

= �α̂(P[x1/�1, . . . , xk/�k])� w
c (Definition 27)

= �α̂(P[x1/α̂(�1), . . . , xk/α̂(�k)])� w
c (Lemma 13)

= �α̂(P)[x1/α̂(�1), . . . , xk/α̂(�k)]� w
c (Lemma 3)

= α̂(P)[x1/α̂(�1), . . . , xk/α̂(�k)][X/w(c)] (Definition 21)

= α̂(P)[x1/α̂(�1)[X/w(c)], . . . ,
. . . , xk/α̂(�k)[X/w(c)]] (Equation (1))

= α̂(P)[x1/�α̂(�1)� w
c , . . . , xk/�α̂(�k)� w

c] (Definition 21)

= α̂(P)[x1/α(��1 � w
c), . . . , xk/α(��k � w

c)] (Theorem 1)

= α(P[x1/α(��1 � w
c), . . . , xk/α(��k � w

c)]) (Lemma 3)

leaving us with the following partial result:

α(�γ (P)� w
c) = α(P[x1/α(��1 � w

c), . . . , xk/α(��k � w
c)]) (6)

Each variable substitution expands to two different cases, corresponding to whether c satisfies the presence condition
associated with xi or not. Let us examine the substitution for a given xi :

α(��i � w
c) = α(�ITE(xi, γ (Pi),P⊥)� w

c)

=
{
α(�γ (Pi)� w

c) if p(xi)(c) = 1

α(�P⊥� w
c) otherwise

(Lemma 7)

=
{
α(π ′(Pi, w ′, c)) if p(xi)(c) = 1

α(�P⊥� w ′
c) otherwise

(by induction hypothesis)

= α(w ′(c)(xi)) (Definitions 17 and 18)

that is,

158 T. Castro et al. / Science of Computer Programming 152 (2018) 116–160
α(��i � w
c) = α(w ′(c)(xi)) (7)

Hence, we can substitute Equation (7) into Equation (6):

α(�γ (P)� w
c) = α(P[x1/α(��1 � w

c), . . . , xk/α(��k � w
c)]) (Equation (6))

= α(P[x1/α(w ′(c)(x1)), . . . , xk/α(w ′(c)(xk))]) (Equation (7))

= α(P[x1/w ′(c)(x1), . . . , xk/w ′(c)(xk)]) (Corollary 1)

= α(π ′(P, w ′, c)) (Definition 18) �
B.5.2. Variability encoding of expressions

We start by proving that the ITE operator for expressions has the intended semantics. This result is expressed by
Lemma 8, which we now recall.

Lemma 8 (Extensional equality for expression ITE). Given two expressions ε and ε′ over the sets X and X ′ of variables, respectively,
and a variable x, let X ′′ = X ∪ X ′ ∪ {x} and u : X ′′ → [0, 1] be an evaluation function such that u(x) ∈B. Then,

ITE(x, ε, ε′)[X ′′/u] =
{
ε[X/u] if u(x) = 1

ε′[X ′/u] if u(x) = 0

Complete proof. The proof is mainly algebraic. Expanding the definition of ITE, we have:

ITE(x, ε, ε′)[X ′′/u] = (x · ε + (1 − x) · ε′)[X ′′/u]
= (x · ε)[X ′′/u] + ((1 − x) · ε′)[X ′′/u]
= x[X ′′/u] · ε[X ′′/u] + (1 − x)[X ′′/u] · ε′[X ′′/u]
= u(x) · ε[X ′′/u] + (1 − u(x)) · ε′[X ′′/u]

=
{
ε[X ′′/u] if u(x) = 1

ε′[X ′′/u] if u(x) = 0

which, considering that the sets of variables in ε and ε′ are X and X ′ , respectively, and that these sets are subsets of X ′′ ,
leads to

ITE(x, ε, ε′)[X ′′/u] =
{
ε[X/u] if u(x) = 1

ε′[X ′/u] if u(x) = 0
�

Using this result and the definitions in the main body of the paper, we can prove that variability encoding for expressions
is sound.

Theorem 9 (Soundness of variability encoding for expressions). Given a compositional model (P, ≺, I, idt, p, w ′, FM) and P, P1, . . . ,
Pk ∈ P such that Pi ≺P and xi = idt(Pi) for i ∈ {1, . . . , k}, let ε = α̂(P). Let also w be the compositional evaluation factory derived
from w ′ (Definition 25) and w p be the annotative evaluation factory obtained from w (Definition 31). Then, for all c ∈ �FM� it holds
that

σ(γ (ε), w p, c) = σ(ε, w, c)

Complete proof. We use well-founded induction. For a minimal PMC P (base of induction), α̂(P) = ε has no variables. This
way, γ (ε) = ε and σ(ε, u) = ε for any evaluation u. Thus, both sides of the equality evaluate to ε and the proposition holds
trivially.

As induction hypothesis, we have that σ(γ (εi), w p, c) = σ(εi, w, c) for all εi = α̂(Pi) such that Pi ≺ P . For brevity, we
use �i to denote ITE(xi, γ (εi), 1) in the following equations.

σ(γ (ε), w p, c) = σ(ε[x1/�1, . . . , xk/�k], w p, c) (Definition 30)

= ε[x1/�1, . . . , xk/�k][X/w p(c)] (Definition 21)

= ε[x1/�1[X/w p(c)], . . . , xk/�k[X/w p(c)]] (Equation (1))

yielding the following equation:

σ(γ (ε), w p, c) = ε[x1/�1[X/w p(c)], . . . , xk/�k[X/w p(c)]] (8)

T. Castro et al. / Science of Computer Programming 152 (2018) 116–160 159
Each variable substitution expands to two different cases, corresponding to whether c satisfies the presence condition
associated with xi or not. Let us examine the substitution for a given xi :

�i[X/w p(c)] = ITE(xi, γ (εi),1)[X/w p(c)]

=
{
γ (εi)[X/w p(c)] if p(xi)(c) = 1 (w p(c)(xi) = 1) (Lemma 8)

1[X/w p(c)] otherwise (w p(c)(xi) = 0)

=
{
σ(γ (εi), w p, c) if p(xi)(c) = 1 (Definition 21)

1 otherwise

=
{
σ(εi, w, c) if p(xi)(c) = 1 (by induction hypothesis)

1 otherwise

= w(c)(xi) (Definition 25)

that is,

�i[X/w p(c)] = w(c)(xi) (9)

Hence, substituting Equation (9) into Equation (8), we have

σ(γ (ε), w p, c) = ε[x1/�1[X/w p(c)], . . . , xk/�k[X/w p(c)]] (Equation (8))

= ε[x1/w(c)(x1), . . . , xk/w(c)(xk)] (Equation (9))

= ε[X/w(c)]
= σ(ε, w, c) (Definition 21) �

References

[1] S. Apel, D.S. Batory, C. Kästner, G. Saake, Feature-Oriented Software Product Lines – Concepts and Implementation, Springer, 2013.
[2] S. Apel, H. Speidel, P. Wendler, A. von Rhein, D. Beyer, Detection of feature interactions using feature-aware verification, in: Proceedings of the 26th

IEEE/ACM International Conference on Automated Software Engineering, ASE, IEEE Computer Society, 2011, pp. 372–375.
[3] S. Apel, A. Von Rhein, P. Wendler, A. Groslinger, D. Beyer, Strategies for product-line verification: case studies and experiments, in: Proceedings of the

International Conference on Software Engineering, ICSE, IEEE Press, 2013, pp. 482–491.
[4] R.I. Bahar, E.A. Frohm, C.M. Gaona, G.D. Hachtel, E. Macii, A. Pardo, F. Somenzi, Algebraic decision diagrams and their applications, Form. Methods Syst.

Des. 10 (1997) 171–206, https://doi.org/10.1023/A:1008699807402.
[5] C. Baier, J.P. Katoen, Principles of Model Checking, Representation and Mind Series, The MIT Press, 2008.
[6] E. Bodden, T. Tolêdo, M. Ribeiro, C. Brabrand, P. Borba, M. Mezini, S P LLI F T : statically analyzing software product lines in minutes instead of years, in:

Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI, 2013, pp. 355–364.
[7] C. Brabrand, M. Ribeiro, T. Tolêdo, J. Winther, P. Borba, Intraprocedural dataflow analysis for software product lines, in: Transactions on Aspect-Oriented

Software Development X, Springer, 2013, pp. 73–108.
[8] S. Chen, M. Erwig, Type-based parametric analysis of program families, ACM SIGPLAN Not. 49 (2014) 39–51, https://doi.org/10.1145/2692915.2628155.
[9] P. Chrszon, C. Dubslaff, S. Klüppelholz, C. Baier, Family-based modeling and analysis for probabilistic systems – featuring ProFeat, in: Proceedings of

the 19th International Conference on Fundamental Approaches to Software Engineering, FASE, Springer, 2016, pp. 287–304.
[10] E.M. Clarke, E.A. Emerson, Design and synthesis of synchronization skeletons using branching-time temporal logic, in: Logic of Programs, Workshop,

Springer, 1982, pp. 52–71.
[11] A. Classen, M. Cordy, P. Heymans, A. Legay, P.Y. Schobbens, Formal semantics, modular specification, and symbolic verification of product-line behaviour,

Sci. Comput. Program. 80 (Part B) (2014) 416–439, https://doi.org/10.1016/j.scico.2013.09.019.
[12] A. Classen, M. Cordy, P.Y. Schobbens, P. Heymans, A. Legay, J.F. Raskin, Featured transition systems: foundations for verifying variability-intensive

systems and their application to LTL model checking, IEEE Trans. Softw. Eng. 39 (2013) 1069–1089, https://doi.org/10.1109/TSE.2012.86.
[13] A. Classen, P. Heymans, P. Schobbens, A. Legay, Symbolic model checking of software product lines, in: Proceedings of the 33rd International Conference

on Software Engineering, ICSE, ACM, 2011, pp. 321–330.
[14] A. Classen, P. Heymans, P.Y. Schobbens, A. Legay, J.F. Raskin, Model checking lots of systems, in: Proceedings of the 32nd ACM/IEEE International

Conference on Software Engineering, ICSE, ACM Press, 2010, p. 335.
[15] P. Clements, L. Northrop, Software Product Lines: Practices and Patterns, Addison–Wesley Professional, 2001.
[16] K. Czarnecki, U.W. Eisenecker, Generative Programming: Methods, Tools, and Applications, ACM Press/Addison–Wesley Publishing Co., 2000.
[17] K. Czarnecki, K. Pietroszek, Verifying feature-based model templates against well-formedness OCL constraints, in: Proceedings of the 5th International

Conference on Generative Programming and Component Engineering, GPCE, ACM, 2006, pp. 211–220.
[18] C. Daws, Symbolic and parametric model checking of discrete-time Markov chains, in: Proceedings of the First International Conference on Theoretical

Aspects of Computing, ICTAC, Springer, 2005, pp. 280–294.
[19] D. Domis, R. Adler, M. Becker, Integrating variability and safety analysis models using commercial UML-based tools, in: Proceedings of the 19th

International Software Product Line Conference, SPLC, ACM, 2015, pp. 225–234.
[20] F. Dordowsky, R. Bridges, H. Tschöpe, Implementing a software product line for a complex avionics system, in: Proceedings of the 15th International

Conference on Software Product Lines, SPLC, IEEE, 2011, pp. 241–250.
[21] C. Dubslaff, C. Baier, S. Kluppelholz, Probabilistic model checking for feature-oriented systems, in: Transactions on Aspect-Oriented Software Develop-

ment XII, in: Lect. Notes Comput. Sci., vol. 8989, Springer, 2015, pp. 180–220.
[22] C. Ghezzi, A. Molzam Sharifloo, Model-based verification of quantitative non-functional properties for software product lines, Inf. Softw. Technol. 55

(2013) 508–524, https://doi.org/10.1016/j.infsof.2012.07.017.

http://refhub.elsevier.com/S0167-6423(17)30225-3/bib464F53504Cs1
http://refhub.elsevier.com/S0167-6423(17)30225-3/bib566172696162696C697479456E636F64696E67s1
http://refhub.elsevier.com/S0167-6423(17)30225-3/bib566172696162696C697479456E636F64696E67s1
http://refhub.elsevier.com/S0167-6423(17)30225-3/bib4170656C53696D756C61746F72s1
http://refhub.elsevier.com/S0167-6423(17)30225-3/bib4170656C53696D756C61746F72s1
https://doi.org/10.1023/A:1008699807402
http://refhub.elsevier.com/S0167-6423(17)30225-3/bib62616965725F7072696E6369706C65735F32303038s1
http://refhub.elsevier.com/S0167-6423(17)30225-3/bib53504C4C696674s1
http://refhub.elsevier.com/S0167-6423(17)30225-3/bib53504C4C696674s1
http://refhub.elsevier.com/S0167-6423(17)30225-3/bib496E74726170726F6365647572616Cs1
http://refhub.elsevier.com/S0167-6423(17)30225-3/bib496E74726170726F6365647572616Cs1
https://doi.org/10.1145/2692915.2628155
http://refhub.elsevier.com/S0167-6423(17)30225-3/bib50726F66656174s1
http://refhub.elsevier.com/S0167-6423(17)30225-3/bib50726F66656174s1
http://refhub.elsevier.com/S0167-6423(17)30225-3/bib43544Cs1
http://refhub.elsevier.com/S0167-6423(17)30225-3/bib43544Cs1
https://doi.org/10.1016/j.scico.2013.09.019
https://doi.org/10.1109/TSE.2012.86
http://refhub.elsevier.com/S0167-6423(17)30225-3/bib636C617373656E5F73796D626F6C69635F32303131s1
http://refhub.elsevier.com/S0167-6423(17)30225-3/bib636C617373656E5F73796D626F6C69635F32303131s1
http://refhub.elsevier.com/S0167-6423(17)30225-3/bib4D6F64656C436865636B696E674C6F74734F6653797374656D73s1
http://refhub.elsevier.com/S0167-6423(17)30225-3/bib4D6F64656C436865636B696E674C6F74734F6653797374656D73s1
http://refhub.elsevier.com/S0167-6423(17)30225-3/bib436C656D656E747353504C32303031s1
http://refhub.elsevier.com/S0167-6423(17)30225-3/bib437A61726E65636B69475032303030s1
http://refhub.elsevier.com/S0167-6423(17)30225-3/bib50726573656E6365436F6E646974696F6E73s1
http://refhub.elsevier.com/S0167-6423(17)30225-3/bib50726573656E6365436F6E646974696F6E73s1
http://refhub.elsevier.com/S0167-6423(17)30225-3/bib44617773504D43s1
http://refhub.elsevier.com/S0167-6423(17)30225-3/bib44617773504D43s1
http://refhub.elsevier.com/S0167-6423(17)30225-3/bib536166657479554D4Cs1
http://refhub.elsevier.com/S0167-6423(17)30225-3/bib536166657479554D4Cs1
http://refhub.elsevier.com/S0167-6423(17)30225-3/bib53504C4176696F6E696373s1
http://refhub.elsevier.com/S0167-6423(17)30225-3/bib53504C4176696F6E696373s1
http://refhub.elsevier.com/S0167-6423(17)30225-3/bib647562736C6166665F70726F626162696C69737469635F32303135s1
http://refhub.elsevier.com/S0167-6423(17)30225-3/bib647562736C6166665F70726F626162696C69737469635F32303135s1
https://doi.org/10.1016/j.infsof.2012.07.017

160 T. Castro et al. / Science of Computer Programming 152 (2018) 116–160
[23] L. Grunske, Specification patterns for probabilistic quality properties, in: Proceedings of the International Conference on Software Engineering, ICSE,
ACM, 2008, pp. 31–40.

[24] A. Haber, K. Hölldobler, C. Kolassa, M. Look, B. Rumpe, K. Müller, I. Schaefer, Engineering delta modeling languages, in: Proceedings of the 17th
International Software Product Line Conference on, SPLC, ACM Press, 2013, p. 22.

[25] E.M. Hahn, H. Hermanns, B. Wachter, L. Zhang, Param: a model checker for parametric Markov models, in: Proceedings of the 22nd International
Conference on Computer Aided Verification, CAV, Springer, 2010, pp. 660–664.

[26] E.M. Hahn, H. Hermanns, L. Zhang, Probabilistic reachability for parametric Markov models, Int. J. Softw. Tools Technol. Transf. 13 (2011) 3–19, https://
doi.org/10.1007/s10009-010-0146-x.

[27] H. Hansson, B. Jonsson, A logic for reasoning about time and reliability, Form. Asp. Comput. 6 (1994) 512–535, https://doi.org/10.1007/BF01211866.
[28] R. Heradio, H. Perez-Morago, D. Fernandez-Amoros, F.C. Javier, E. Herrera-Viedma, A bibliometric analysis of 20 years of research on software product

lines, Inf. Softw. Technol. 72 (2016) 1–15, https://doi.org/10.1016/j.infsof.2015.11.004.
[29] C. Kästner, S. Apel, M. Kuhlemann, Granularity in software product lines, in: Proceedings of the 13th International Conference on Software Engineering,

ICSE, ACM Press, 2008, p. 311.
[30] S. Kolesnikov, A. von Rhein, C. Hunsen, S. Apel, A comparison of product-based, feature-based, and family-based type checking, in: Proceedings of the

12th International Conference on Generative Programming, GPCE, ACM, 2013, pp. 115–124.
[31] M. Kowal, I. Schaefer, M. Tribastone, Family-based performance analysis of variant-rich software systems, in: Proceedings of the 17th International

Conference on Fundamental Approaches to Software Engineering, vol. 8411, Springer, 2014, pp. 94–108.
[32] M. Kowal, M. Tschaikowski, M. Tribastone, I. Schaefer, Scaling size and parameter spaces in variability-aware software performance models, in: Pro-

ceedings of the 30th IEEE/ACM International Conference on Automated Software Engineering, ASE, 2015, pp. 407–417.
[33] M. Kwiatkowska, G. Norman, D. Parker, PRISM 4.0: verification of probabilistic real-time systems, in: Proceedings of the 23rd International Conference

on Computer Aided Verification, CAV, Springer, 2011, pp. 585–591.
[34] J.T. Lanman, R. Darbin, J. Rivera, P.C. Clements, C.W. Krueger, The challenges of applying service orientation to the U.S. Army’s live training software

product line, in: Proceedings of the 17th International Software Product Line Conference, SPLC, ACM, 2013, pp. 244–253.
[35] H.C. Li, S. Krishnamurthi, K. Fisler, Modular verification of open features using three-valued model checking, Autom. Softw. Eng. 12 (2005) 349–382,

https://doi.org/10.1007/s10515-005-2643-9.
[36] F.J. van der Linden, K. Schmid, E. Rommes, Software Product Lines in Action: The Best Industrial Practice in Product Line Engineering, Springer, 2007.
[37] J. Liu, S. Basu, R.R. Lutz, Compositional model checking of software product lines using variation point obligations, Autom. Softw. Eng. 18 (2010) 39–76,

https://doi.org/10.1007/s10515-010-0075-7.
[38] J. Meinicke, T. Thüm, R. Schröter, F. Benduhn, G. Saake, An overview on analysis tools for software product lines, in: Proceedings of the 18th Interna-

tional Software Product Line Conference, SPLC, ACM Press, 2014, pp. 94–101.
[39] J. Midtgaard, A.S. Dimovski, C. Brabrand, A. Wąsowski, Systematic derivation of correct variability-aware program analyses, Sci. Comput. Program. 105

(2015) 145–170, https://doi.org/10.1016/j.scico.2015.04.005.
[40] V. Nunes, P. Fernandes, V. Alves, G. Rodrigues, Variability management of reliability models in software product lines: an expressiveness and scalability

analysis, in: Proceedings of the Sixth Brazilian Symposium on Software Components Architectures and Reuse, SBCARS, 2012, pp. 51–60.
[41] V. Nunes, D. Mendonça, G. Rodrigues, V. Alves, Towards compositional approach for parametric model checking in software product lines, in: Proceed-

ings of the International Workshop on Architecting Dependable Systems, WDAS, SBC, 2013.
[42] K. Pohl, G. Böckle, F.J. van der Linden, Software Product Line Engineering: Foundations, Principles and Techniques, Springer, 2005.
[43] H. Post, C. Sinz, Configuration lifting: verification meets software configuration, in: Proceedings of the 23rd IEEE/ACM International Conference on

Automated Software Engineering, ASE, IEEE Computer Society, 2008, pp. 347–350.
[44] A. von Rhein, S. Apel, C. Kästner, T. Thüm, I. Schaefer, The PLA model, in: Proceedings of the Seventh International Workshop on Variability Modelling

of Software-intensive Systems, VaMoS, ACM Press, 2013, p. 1.
[45] A. von Rhein, T. Thüm, I. Schaefer, J. Liebig, S. Apel, Variability encoding: from compile-time to load-time variability, J. Log. Algebraic Methods Program.

85 (2016) 125–145, https://doi.org/10.1016/j.jlamp.2015.06.007.
[46] G.N. Rodrigues, V. Alves, V. Nunes, A. Lanna, M. Cordy, P. Schobbens, A.M. Sharifloo, A. Legay, Modeling and verification for probabilistic properties

in software product lines, in: Proceedings of the 16th IEEE International Symposium on High Assurance Systems Engineering, HASE, IEEE Computer
Society, 2015, pp. 173–180.

[47] T. Thüm, S. Apel, C. Kästner, I. Schaefer, G. Saake, A classification and survey of analysis strategies for software product lines, ACM Comput. Surv. 47
(2014) 1–45, https://doi.org/10.1145/2580950.

[48] T. Thüm, I. Schaefer, S. Apel, M. Hentschel, Family-based deductive verification of software product lines, ACM SIGPLAN Not. 48 (2013) 11–20, https://
doi.org/10.1145/2480361.2371404.

[49] E. Walkingshaw, C. Kästner, M. Erwig, S. Apel, E. Bodden, Variational data structures, in: Proceedings of the ACM International Symposium on New
Ideas, New Paradigms, and Reflections on Programming & Software (Onward!), ACM Press, 2014, pp. 213–226.

[50] D.M. Weiss, The product line hall of fame, in: Proceedings of the 12th International Software Product Line Conference, SPLC, IEEE Computer Society,
2008, p. 395.

http://refhub.elsevier.com/S0167-6423(17)30225-3/bib4772756E736B6553706563696669636174696F6Es1
http://refhub.elsevier.com/S0167-6423(17)30225-3/bib4772756E736B6553706563696669636174696F6Es1
http://refhub.elsevier.com/S0167-6423(17)30225-3/bib444F5047656E65726174696F6Es1
http://refhub.elsevier.com/S0167-6423(17)30225-3/bib444F5047656E65726174696F6Es1
http://refhub.elsevier.com/S0167-6423(17)30225-3/bib504152414Ds1
http://refhub.elsevier.com/S0167-6423(17)30225-3/bib504152414Ds1
https://doi.org/10.1007/s10009-010-0146-x
https://doi.org/10.1007/BF01211866
https://doi.org/10.1016/j.infsof.2015.11.004
http://refhub.elsevier.com/S0167-6423(17)30225-3/bib526570726573656E746174696F6E5461786F6E6F6D79s1
http://refhub.elsevier.com/S0167-6423(17)30225-3/bib526570726573656E746174696F6E5461786F6E6F6D79s1
http://refhub.elsevier.com/S0167-6423(17)30225-3/bib54797065436865636B696E67436F6D70617269736F6Es1
http://refhub.elsevier.com/S0167-6423(17)30225-3/bib54797065436865636B696E67436F6D70617269736F6Es1
http://refhub.elsevier.com/S0167-6423(17)30225-3/bib4B6F77616C32303134s1
http://refhub.elsevier.com/S0167-6423(17)30225-3/bib4B6F77616C32303134s1
http://refhub.elsevier.com/S0167-6423(17)30225-3/bib6B6F77616C5F7363616C696E675F32303135s1
http://refhub.elsevier.com/S0167-6423(17)30225-3/bib6B6F77616C5F7363616C696E675F32303135s1
http://refhub.elsevier.com/S0167-6423(17)30225-3/bib505249534Ds1
http://refhub.elsevier.com/S0167-6423(17)30225-3/bib505249534Ds1
http://refhub.elsevier.com/S0167-6423(17)30225-3/bib41726D7953504Cs1
http://refhub.elsevier.com/S0167-6423(17)30225-3/bib41726D7953504Cs1
https://doi.org/10.1007/s10515-005-2643-9
http://refhub.elsevier.com/S0167-6423(17)30225-3/bib4C696E64656E53504C696E416374696F6Es1
https://doi.org/10.1007/s10515-010-0075-7
http://refhub.elsevier.com/S0167-6423(17)30225-3/bib416E616C79736973546F6F6C73537572766579s1
http://refhub.elsevier.com/S0167-6423(17)30225-3/bib416E616C79736973546F6F6C73537572766579s1
https://doi.org/10.1016/j.scico.2015.04.005
http://refhub.elsevier.com/S0167-6423(17)30225-3/bib6E756E65735F766172696162696C6974795F32303132s1
http://refhub.elsevier.com/S0167-6423(17)30225-3/bib6E756E65735F766172696162696C6974795F32303132s1
http://refhub.elsevier.com/S0167-6423(17)30225-3/bib43504D43s1
http://refhub.elsevier.com/S0167-6423(17)30225-3/bib43504D43s1
http://refhub.elsevier.com/S0167-6423(17)30225-3/bib506F686C53504C45s1
http://refhub.elsevier.com/S0167-6423(17)30225-3/bib436F6E66696775726174696F6E4C696674696E67s1
http://refhub.elsevier.com/S0167-6423(17)30225-3/bib436F6E66696775726174696F6E4C696674696E67s1
http://refhub.elsevier.com/S0167-6423(17)30225-3/bib504C414D6F64656Cs1
http://refhub.elsevier.com/S0167-6423(17)30225-3/bib504C414D6F64656Cs1
https://doi.org/10.1016/j.jlamp.2015.06.007
http://refhub.elsevier.com/S0167-6423(17)30225-3/bib4644544D43s1
http://refhub.elsevier.com/S0167-6423(17)30225-3/bib4644544D43s1
http://refhub.elsevier.com/S0167-6423(17)30225-3/bib4644544D43s1
https://doi.org/10.1145/2580950
https://doi.org/10.1145/2480361.2371404
http://refhub.elsevier.com/S0167-6423(17)30225-3/bib566172696174696F6E616C4461746153747275637475726573s1
http://refhub.elsevier.com/S0167-6423(17)30225-3/bib566172696174696F6E616C4461746153747275637475726573s1
http://refhub.elsevier.com/S0167-6423(17)30225-3/bib53504C486F46s1
http://refhub.elsevier.com/S0167-6423(17)30225-3/bib53504C486F46s1
https://doi.org/10.1007/s10009-010-0146-x
https://doi.org/10.1145/2480361.2371404

	All roads lead to Rome: Commuting strategies for product-line reliability analysis
	1 Introduction
	2 Background
	2.1 Software product lines
	2.2 Reliability analysis
	2.2.1 Parametric Markov Chains
	2.2.2 Parametric probabilistic reachability

	2.3 Algebraic Decision Diagrams

	3 Markov-chain models of product lines
	3.1 Annotative models
	3.2 Compositional models

	4 Reliability analysis strategies
	4.1 Product-based strategies
	4.2 Family-based strategies
	4.2.1 Family-product-based strategy
	4.2.2 Family-based strategy

	4.3 Feature-based strategies
	4.3.1 Feature-product-based strategy
	4.3.2 Feature-family-based strategy

	4.4 Bridging compositional and annotative models
	4.4.1 Variability encoding of PMCs
	4.4.2 Variability encoding of expressions

	4.5 Feature-family-product-based strategy

	5 Related work
	6 Conclusion
	Acknowledgements
	Appendix A Probabilistic models
	Appendix B Additional proofs
	B.1 Existence of minimal and maximal PMCs
	B.2 Termination lemmas
	B.3 Soundness of feature-product-based analysis
	B.4 Lifting lemmas
	B.5 Variability encoding
	B.5.1 Variability encoding of PMCs
	B.5.2 Variability encoding of expressions

	References

