
Detecting Overly Strong Preconditions
in Refactoring Engines

Melina Mongiovi , Rohit Gheyi, Gustavo Soares, M�arcio Ribeiro, Paulo Borba, and Leopoldo Teixeira

Abstract—Refactoring engines may have overly strong preconditions preventing developers from applying useful transformations.

We find that 32 percent of the Eclipse and JRRT test suites are concerned with detecting overly strong preconditions. In general,

developers manually write test cases, which is costly and error prone. Our previous technique detects overly strong preconditions using

differential testing. However, it needs at least two refactoring engines. In this work, we propose a technique to detect overly strong

preconditions in refactoring engines without needing reference implementations. We automatically generate programs and attempt to

refactor them. For each rejected transformation, we attempt to apply it again after disabling the preconditions that lead the refactoring

engine to reject the transformation. If it applies a behavior preserving transformation, we consider the disabled preconditions overly

strong. We evaluate 10 refactorings of Eclipse and JRRT by generating 154,040 programs. We find 15 overly strong preconditions in

Eclipse and 15 in JRRT. Our technique detects 11 bugs that our previous technique cannot detect while missing 5 bugs. We evaluate

the technique by replacing the programs generated by JDOLLY with the input programs of Eclipse and JRRT test suites. Our technique

detects 14 overly strong preconditions in Eclipse and 4 in JRRT.

Index Terms—Refactoring, overly strong preconditions, automated testing, program generation

Ç

1 INTRODUCTION

REFACTORING is the process of changing a program to
improve its internal structure while preserving its

observable behavior [1], [2], [3]. Refactorings can be applied
manually, which may be time consuming and error prone,
or automatically by using a refactoring engine, such as
Eclipse [4], NetBeans [5], and JastAdd Refactoring Tools
(JRRT) [6], [7], [8], [9]. These engines contain a number of
refactoring implementations, such as Rename Class, Pull
Up Method, and Encapsulate Field. For correctly applying
a refactoring, and thus, ensuring behavior preservation, the
refactoring implementations might need to consider a num-
ber of preconditions, such as checking whether a method or
field with the same name already exists in a type. However,
defining and implementing preconditions is a nontrivial
task. Proving the correctness of the preconditions with res-
pect to a formal semantics of complex languages such as
Java, constitutes a challenge [10].

In practice, refactoring engine developers may imple-
ment the refactoring preconditions based on their experi-
ence, some previous work [11], or formal specifications [6].

Nevertheless, refactoring engines may have overly weak
and overly strong preconditions [12], [13], [14]. Overly weak
preconditions allow incorrect transformations to be applied,
while overly strong preconditions prevent developers from
applying behavior preserving transformations. Neither of
these problems are desirable. Vakilian and Johnson [15]
have shown that programmers prefer that the refactoring
engine does not reject a refactoring application, even if they
need to manually fix some problems afterwards.

Some approaches have proved the correctness of some
refactorings for a subset of Java [16], [17], [18]. They ensure
that the resulting programs compile and that the transforma-
tions preserve the program behavior. However, none of them
proved that such preconditions areminimal. As a result, those
approaches may reject useful transformations. In practice,
developers are concerned about testingwhether their refactor-
ing implementations have overly strong preconditions. For
example, we find that 32 percent of the assertions used in
the test suites of 10 refactoring implementations of Eclipse
(30 percent) and 10 of JRRT (36 percent) are concerned with
detecting overly strong preconditions. Moreover, we find
more than 40 bugs related to overly strong preconditions in
the Eclipse’s bug tracker. More than 50 percent of them were
already fixed. Testing refactoring engines is not trivial since it
requires complex inputs, such as programs and an oracle to
define the correct resulting program. In general, developers
manually select the input programs according to their experi-
ence, which is costly, and thus it may be difficult to establish a
good test suite considering all language constructs. Moreover,
even if they establish useful inputs, they may not have a sys-
tematic technique to detect the overly strong preconditions.

Vakilian and Johnson [15] use refactoring alternate paths to
identify usability problems related to overly strong precondi-
tions in refactoring engines. They discover usability problems

� M. Mongiovi, R. Gheyi, and G. Soares are with the Department of Com-
puting and Systems, Federal University of Campina Grande, Campina
Grande, PB 58429-900, Brazil. E-mail: melina@computacao.ufcg.edu.br,
{rohit, gsoares}@dsc.ufcg.edu.br.

� M. Ribeiro is with the Computing Institute, Federal University of Alagoas,
Macei�o, AL 57072-900, Brazil. E-mail: marcio@ic.ufal.br.

� P. Borba and L. Teixeira are with the Informatics Center, Federal Univer-
sity of Pernambuco, Recife, PE 50732-970, Brazil.
E-mail: {phmb, lmt}@cin.ufpe.br.

Manuscript received 15 Apr. 2016; revised 19 Mar. 2017; accepted 5 Apr.
2017. Date of publication 11 Apr. 2017; date of current version 22 May 2018.
Recommended for acceptance by M. Kim.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TSE.2017.2693982

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 44, NO. 5, MAY 2018 429

0098-5589� 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-5720-9038
https://orcid.org/0000-0002-5720-9038
https://orcid.org/0000-0002-5720-9038
https://orcid.org/0000-0002-5720-9038
https://orcid.org/0000-0002-5720-9038
https://orcid.org/0000-0002-6154-1666
https://orcid.org/0000-0002-6154-1666
https://orcid.org/0000-0002-6154-1666
https://orcid.org/0000-0002-6154-1666
https://orcid.org/0000-0002-6154-1666
mailto:
mailto:
mailto:
mailto:

by analyzing the interactions of users that had problems with
tools in general. They manually inferred usability problems
from the detected critical incidents.

Our previous work uses Differential Testing [19] to auto-
matically identify transformations rejected by refactoring
engines due to overly strong preconditions (DT tech-
nique) [13]. It automatically generates a number of programs
as test inputs using JDOLLY, a Java program generator [12].
Next, it applies the same refactoring to each test input using
two different implementations, and compares both results.
The technique uses SAFEREFACTOR [20], [21] to automatically
evaluate whether a transformation preserves the program
behavior. SAFEREFACTOR automatically evaluates whether two
versions of a program have the same behavior by automati-
cally generating test cases only for the common methods
impacted by the change. To use this technique, developers
need access to at least two refactoring engines. However, it
can only be used if both refactoring engines implement the
same refactoring.

In this work, we propose Disabling Preconditions (DP), a
new technique to detect overly strong preconditions in refac-
toring implementations by disabling preconditions. Hereafter
we refer to disabling preconditions as the process of prevent-
ing to reportmessages to the user, raised by the preconditions.
Amessage is reportedwhen a precondition is unsatisfied.We
automatically generate a number of programs as test inputs,
using JDOLLY. For each generated program, we attempt to
apply the transformation using the refactoring implementa-
tion that is being tested.When the refactoring implementation
rejects a transformation, it reports a message to the user
describing the problem. For each kind ofmessage, we identify
code fragments related to the precondition that yields the
message. There may be a number of preconditions related to
each message, but for simplicity we consider, for each refac-
toring implementation, one precondition per message in our
technique. Next, we modify the refactoring implementation
to disable the code fragments that prevented the refactoring
application. We propose the DP changes to facilitate and sys-
tematize the process of modifying the code to allow disabling
preconditions. They include an If statement around the code
fragment thatwewant to disable.

The final step of our technique consists of evaluating
whether the identified preconditions are overly strong. For
each rejected transformation, we attempt to apply the refac-
toring that is being tested using the refactoring implementa-
tion with the preconditions that raise the reported messages
disabled. If it still rejects the transformation, thus reporting
another message, we repeat this process until the refactor-
ing implementation applies a transformation. If a transfor-
mation applied by the refactoring implementation with
some disabled preconditions preserves the program behav-
ior according to SAFEREFACTOR, then we classify the set of
disabled preconditions as overly strong. Otherwise, we
evaluate the next rejected transformation.

We evaluate our technique using 10 refactoring implemen-
tations of Eclipse JDT 4.5 and 10 refactoring implementations
of the latest JRRT version [6]. JDOLLY generates 154,040 pro-
grams as test inputs and the DP technique detects 30 overly
strong preconditions in the refactoring implementations
(15 in JRRT and 15 in Eclipse). So far, Eclipse developers
confirmed 47 percent of them. The technique takes 0.89 and

35.72 h to detect all overly strong preconditions of JRRT and
Eclipse, respectively. Moreover, the technique takes on aver-
age a few seconds to find the first overly strong precondition
in JRRT and 17.41min in Eclipse.

DP and DT techniques are complementary in terms of bug
detection. The DP technique finds 11 bugs not detected by
DT, and the DT technique finds 5 bugs not detected by DP
(false-negatives). In addition, the DP technique does not
require using another refactoring engine with the same refac-
torings to compare the results. So whenever possible, devel-
opers can run the DP technique and after fixing the detected
bugs, they run the DT technique to search formore bugs.

We also perform another study, where we use programs
from Eclipse and JRRT refactoring test suites as input for DP
andDT techniques instead of the JDOLLY generated programs.
These programs are used in test cases that expect the refactor-
ing engine to prevent refactoring application. We assess the
same refactoring implementations evaluated before using
both techniques. We detect 23 overly strong preconditions
(17 of them are new) previously undetected by the develop-
ers. In addition to these bugs, we find some false-positives
due to the equivalence notion of SAFEREFACTOR. The develop-
ers did not find these overly strong preconditions because
they may not have a systematic strategy to detect them, even
with useful input programs in their test suite. Additionally,
they may not have an automated oracle to check behavior
preservation, such as SAFEREFACTOR.

In summary, the main contributions of this article are the
following:

� a new technique to detect overly strong precondi-
tions in refactoring implementations (Section 4);

� an evaluation of the DP technique with respect to
detection of overly strong preconditions and the
time to find them (Section 5);

� a comparative study of the DP and DT techniques
with respect to detection of overly strong precondi-
tions (Section 5).

We organize this article as follows. We present a motivat-
ing example in Section 2, and provide some background on
JDOLLY and SAFEREFACTOR in Section 3. Section 4 describes our
technique to detect overly strong preconditions in refactoring
implementations. Next, Section 5 presents the evaluation of
our technique and its comparison with the DT technique.
Finally, we relate DP technique to others (Section 6), and
present concluding remarks (Section 7).

2 MOTIVATING EXAMPLE

In this section, we present a transformation rejected by
Eclipse due to an overly strong precondition. Consider List-
ing 1, illustrating part of a program that handles queries to
a database. It provides support for two database versions.
Each version is implemented in a class: QueryV1 (database
version 1) and QueryV2 (database version 2). They enable
client code to swap in support for one version, or another.
Those classes extend a common abstract class Query, which
declares an abstract method createQuery. This method is
implemented in each subclass in a different way. A query
created by the createQuery method is executed by the
doQuery method. Notice that this method is duplicated in
both subclasses: QueryV1 and QueryV2.

430 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 44, NO. 5, MAY 2018

Listing 1. It is not possible to pull up doQuery method
from QueryV1 and QueryV2 classes to Query class using
Eclipse JDT 2.1 due to overly strong preconditions.

public abstract class Query {
protected abstract SDQuery createQuery();

}
public class QueryV1 extends Query {

public void doQuery() {
SDQuery sd = createQuery();
//execute query

}
protected SDQuery createQuery() {
//create query for the database version 1
}

}
public class QueryV2 extends Query {

public void doQuery() {
SDQuery sd = createQuery();
//execute query

}
protected SDQuery createQuery() {
//create query for the database version 2
}

}

Listing 2. Correct resulting program.

public abstract class Query {
protected abstract SDQuery createQuery();
public void doQuery() {

SDQuery sd = createQuery();
//execute query

}
}
public class QueryV1 extends Query {

protected SDQuery createQuery() {
//create query for the database version 1

}
}
public class QueryV2 extends Query {

protected SDQuery createQuery() {
//create query for the database version 2

}
}

We can pull up the doQuery method to remove duplica-
tion. Using Eclipse JDT 2.1 to apply this refactoring, it warns
that the doQuerymethod does not have access to createQuery.
This precondition checks whether after the transformation,
the pulled up method still has access to all of its called meth-
ods. However, createQuery already exists as an abstract
method in the Query class, which indicates that this precon-
dition is overly strong. This bug was reported in Eclipse’s
bug tracker.1 Kerievsky reported it when he was working
out mechanics for a refactoring to introduce the Factory
Method pattern [22]. He argued that “there should be no warn-
ings as the transformation is harmless and correct.” The Eclipse
developers fixed this bug. Listing 2 illustrates a correct
resulting program applied by Eclipse JDT 4.5. We found

more than 40 bugs related to overly strong preconditions
in the bug tracker of Eclipse. As of this writing, the Eclipse
developers have already fixed more than 50 percent of them.

We also investigated the test suite of 10 refactorings from
Eclipse JDT 4.5 and JRRT: Rename Method, Rename Field,
Rename Type, Add Parameter, Encapsulate Field, Move
Method, Pull Up Method, Pull Up Field, Push Down
Method, and Push Down Field. We classified a total of 2,559
assertions and find that 32 percent of them are concerned to
overly strong preconditions. We consider the following
kind of assertion as concerned to overly strong precondi-
tions in the Eclipse test suite. It checks if Eclipse applies the
transformation.

assertTrue(“precondition was supposed to pass”,
!result.hasError())

In the JRRT test suite we identified one kind of assertion
related to overly strong preconditions as presented next.
A test failure indicates that the refactoring implementation
may have overly strong preconditions.

fail(“Refactoring was supposed to succeed;

failed with ” + rfe)

This way, we observe that Eclipse and JRRT developers
are indeed concerned with identifying overly strong pre-
conditions in their refactoring implementations. Moreover,
they may not seem to have a systematic way to create test
cases to assess the refactoring implementations with respect
to overly strong preconditions.

3 BACKGROUND

In this section, we present an overview of JDOLLY [12]
(Section 3.1) and SAFEREFACTOR [20], [21] (Section 3.2).

3.1 JDOLLY

JDOLLY is an automated and bounded-exhaustive Java pro-
gram generator [12], [13] based on Alloy, a formal specifica-
tion language [23]. JDOLLY receives as input an Alloy
specification with the scope, which is the maximum number
of elements (classes, methods, fields, and packages) that
the generated programs may declare, and additional con-
straints for guiding the program generation. It uses the
Alloy Analyzer tool [24], which takes an Alloy specification
and finds a finite set of all possible instances that satisfy the
constraints within a given scope. JDOLLY translates each
instance found by the Alloy Analyzer to a Java program.
It reuses the syntax tree available in Eclipse JDT for generat-
ing programs from those instances. Listing 3 illustrates an
example of a program generated by JDOLLY.

An Alloy specification is a sequence of signatures and con-
straints paragraphs declarations. A signature introduces a
type and can declare a set of relations. Alloy relations specify
multiplicity using qualifiers, such as one (exactly one), lone
(zero or one), and set (zero or more). In Alloy, a signature can
extend another, establishing that the extended signature is a
subset of the parent signature. For example, the following
Alloy fragment specifies part of the Java metamodel of
JDOLLY encoded in Alloy. A Java class is a type, and may
extend another class. Additionally, it may declare fields and
methods.1. https://bugs.eclipse.org/bugs/show_bug.cgi?id=39896

MONGIOVI ETAL.: DETECTING OVERLY STRONG PRECONDITIONS IN REFACTORING ENGINES 431

https://bugs.eclipse.org/bugs/show_bug.cgi?id=39896

sig Type {}
sig Class extends Type {

extend: lone Class,
methods: setMethod,
fields: set Field

}
sigMethod {}
sig Field {}

A number of well-formed constraints can be specified for
Java. For instance, a class cannot extend itself. In Alloy, we
can declare facts, which encapsulate formulas that always
hold. The ClassCannotExtendItself fact specifies this con-
straint. The all, some, and no keywords denote the universal,
existential, and non-existential quantifiers respectively. The
^ and ! operators represent the transitive closure and nega-
tion operators respectively. The dot operator (.) is a general-
ized definition of the relational join operator.

fact ClassCannotExtendItself {
all c: Class | c ! in c.^extend

The Alloy model is used to generate Java programs using
the run command, which is applied to a predicate, specify-
ing a scope for all declared signatures in the context of a
specific Alloy model. Predicates (pred) are used to encapsu-
late reusable formulas and specify operations. For example,
the following Alloy fragment specifies that we should run
the generate predicate using a scope of 3. The user can also
specify different scopes for each signature.

pred generate[]{. . .}
run generate for 3

The user can guide JDOLLY to generate more specific pro-
grams. For example, to generate programs to test the Pull
Up Method refactoring, JDOLLY uses the following addi-
tional constraints. It specifies that a program must have at
least one class (C2) extending another class (C1), and that
C2 declares at least a method (M1). The program in Listing 3
satisfies all constraints of this specification.

one sig C1, C2 extends Class {}
one sigM1 extendsMethod {}
pred generate[]{
C1 in C2.extend
M1 in C2.methods

}

Furthermore, developers can specify a skip number to
jump some of the Alloy instances. For a skip of size n such
that n > 1, JDOLLY generates one program from an Alloy
instance, and jumps the following n�1 Alloy instances. Con-
secutive programs generated by JDOLLY tend to be very simi-
lar, potentially detecting the same kind of bug [14], [23]. Thus,
developers can set a parameter to skip some of the generated
programs to reduce the time needed to test the refactoring
implementations. It avoids generating an impracticable num-
ber of Alloy instances by theAlloyAnalyzer.

3.2 SAFEREFACTOR

SAFEREFACTOR [20], [21] evaluates whether a transformation
preserves program behavior by automatically generating test
cases for the methods impacted by the change with matching

signature (methods with exactly the same modifier, return
type, qualified name, parameter types and exceptions
thrown) before and after the transformation. First, it decom-
poses a coarse-grained transformation into smaller transfor-
mations. For each small-grained transformation, it identifies
the set of impacted methods. We formalized the impact of
each small-grained transformation [21]. Moreover, it also
identifies the methods that call an impacted method directly
or indirectly. SAFEREFACTOR generates a test suite for the public
common impacted methods using Randoop [25], an auto-
mated test suite generator. Randoop generates tests within a
time limit specified by the user. Finally, it executes the same
test suite before and after the transformation. If the results are
different, the tool reports a behavioral change, and yields
the test cases that reveal it. Otherwise, we improve confidence
that the transformation preserves the programbehavior.

For example, we can use SAFEREFACTOR to analyze whether
the Pull Up Method transformation applied to Listing 3 pre-
serves the program behavior. The refactored program is illus-
trated in Listing 4. The original program contains class A and
its subclass B. A declares method k and B declares methods
k, m, and test. Method B.test calls method B.m, which calls
method B.k yielding 2. The transformation pulls up method
B.m to A. To analyze this transformation, SAFEREFACTOR

receives both programs as input. First, it identifies the public
and common impacted methods. In this example, we have
two small-grained transformations: remove the B.m method
and add theA.mmethod. Since there is no othermmethod in
the hierarchy, the small-grained transformations only impact
these methods. Next, it identifies the methods that directly or
indirectly call the impacted methods. In this example, B.test
calls B.m (original program) and A.m (refactored program).
Therefore, B.m, A.m, and B.test are impacted by the transfor-
mation. Only these methods may have changed their behav-
ior after the transformation. SAFEREFACTOR only generates
tests for the impacted methods, which are common to both
programs (B.m and B.test) using a time limit of 0.5 s. Finally, it
runs the test suite on the original and refactored programs.
Since all methods yield the same value before and after the
transformation, the test cases pass in both programs. There-
fore, SAFEREFACTOR reports that the transformation preserves
the program behavior.

Listing 3. Original program.

public class A {
protected long k(long a){

return 1;
}

}
public class B extends A {

public longm(){
return new B().k(2);

}
public long k(int a){

return 2;
}
public long test(){

returnm();
}

}

432 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 44, NO. 5, MAY 2018

Listing 4. Refactored program after pulling up method
B.m to class A.

public class A {
protected long k(long a){
return 1;
}
public longm() {
return new B().k(2);
}
}
public class B extends A {
public long k(int a){
return 2;
}
public long test(){
returnm();
}
}

SAFEREFACTOR states that two program versions have the
same behavior when the public methods with unchanged
signatures, which are impacted by the change also have the
same behavior. It only generates tests for these methods.
Methods impacted by the change with changed signatures
may be called by the unchanged methods, which exercise a
potential behavioral change. SAFEREFACTOR does not consider
methods with changed signatures that are not called by any
method in the system.

In previous studies [20], [21], [26], SAFEREFACTOR detected
behavioral changes in transformations applied to programs
with up to 100 KLOC. Moreover, SAFEREFACTOR detected
behavioral changes in transformations applied to real systems
that even a manual process [27] conducted by experts did
not detect [21]. Additionally, our previous techniques used
SAFEREFACTOR as the oracle to detect overly weak and overly
strong preconditions in refactoring engines [12], [13], [14].
By using SAFEREFACTOR, we detected more than 200 bugs in
refactoring implementations of Eclipse, JRRT, and NetBeans.
Some of them were already fixed. In those studies, we used
the JDOLLY generated programs as the input for our technique.
The programs have at least one public method, which
SAFEREFACTOR can generate tests to evaluate the transforma-
tion using a time limit of 0.5 s.

4 DETECTING OVERLY STRONG PRECONDITIONS

In this section, we explain our proposed technique to detect
overly strong preconditions in refactoring implementations.
Section 4.1 presents an overview of our technique. Section 4.2
describes it by using an example. Next, we explain in more
details some of the steps involved: identification of different
kinds of messages reported by the refactoring implementa-
tion (Section 4.3), and the process of applying transformations
to allow disabling the execution of the identified precon-
ditions (Section 4.4).

4.1 Overview

Our technique receives as input a refactoring implementation,
theDP changes used to allowdisabling the preconditions, and
some parameters to configure JDOLLY, such as skip, scope, and
additional constraints. Each precondition checks whether the

transformation may introduce a specific problem in the pro-
gram, which can result in compilation errors or behavioral
changes. The technique returns the modified refactoring
implementation, and all transformations that yield a set of
overly strong preconditions in the original refactoring imple-
mentation. Fig. 1 illustrates themain steps of our technique.

First, JDOLLY automatically generates programs as test
inputs (Step 1). Next, the refactoring implementation under
test attempts to apply the transformations to each generated
program. If the refactoring implementation rejects a transfor-
mation, we collect the messages reported to the user (Step 2).
For each kind of message, we inspect the refactoring imple-
mentation code and manually identify the code fragments
related to the precondition that raises it. We assume, for each
refactoring implementation, that there is one precondition
related to each kind ofmessage. Then, wemodify the refactor-
ing implementation code by adding If statements to allow dis-
abling the execution of the identified precondition using the
DP changes (Step 3). The goal is to apply the transformation
instead of reporting themessage again.

Once the technique changes the refactoring implemen-
tation code to allow automatically disabling the precondi-
tions, we evaluate them. For each transformation rejected
by the refactoring implementation, it automatically tries
to apply the same transformation again with a disabled
precondition (Step 4). If the refactoring implementation
rejects the transformation and reports another message, it
repeats the process by disabling more preconditions until
the refactoring implementation applies a transformation.
If the modified refactoring implementation applies the
transformation and the resulting program preserves the
program behavior according to SAFEREFACTOR [21], then
the technique classifies the set of disabled preconditions
as overly strong (Step 5). Otherwise, it analyzes the next
rejected transformation. Once we classify a precondition
as overly strong, we do not evaluate it again with other
inputs generated by JDOLLY that yield the same message.
Algorithm 1 summarizes the main steps.

4.2 Example

Suppose we would like to test the Pull Up Method refactor-
ing implementation from Eclipse JDT 4.5. First we have to
specify JDOLLY parameters (skip, scope, additional con-
straints). Then JDOLLY generates a number of programs
(Step 1), such as the one presented in Listing 3. In Step 2, we
apply the refactoring implementation to all generated pro-
grams. The refactoring implementation applies a transfor-
mation to some of them, and it may reject applying a
refactoring to some generated programs. For instance, if we
try to apply the Pull Up Method refactoring to the program
in Listing 3 to move B.m to class A using Eclipse JDT 4.5, it
reports the following message: Method “B.k(. . .)” referenced
in one of the moved elements is not accessible from type “A.”.

For each rejected transformation, we collect the reported
messages and inspect the refactoring implementation code
to identify the refactoring preconditions that raise them
(Step 3). In each refactoring engine, we have to investigate
how a message is represented (Step 3.2.1). In Eclipse,
the refactoring.properties file defines variables representing
reported messages. In this example, we find the following
declaration:

MONGIOVI ETAL.: DETECTING OVERLY STRONG PRECONDITIONS IN REFACTORING ENGINES 433

PullUpRefactoring_method_not_accessible =
Method {0} referenced in one of the moved
elements is not accessible from type {1}

The PullUpRefactoring_method_not_accessible field from
the RefactoringCoreMessages class represents the message
yielded by Eclipse when we try to apply the Pull Up
Method refactoring in Listing 3.

Listing 5. Original code fragment of Eclipse JDT.

1 . . .
2 public class PullUpRefactoringImplementation {
3 . . .
4 private RefactoringStatus checkAccessedMethods(. . .)

throws JavaModelException {
5 final RefactoringStatus st = new

RefactoringStatus();
6 . . .
7 if (!isAccessible) {
8 final String m = Msgs.format(RefactoringCore

Messages.PullUpRefactoring_method_not_
accessible,. . .);

9 st.addError(m, JavaStatusContext.create(method));
10 }
11 . . .
12 }
13 }

In each refactoring engine, we investigate how to avoid
reporting a message (Step 3.3). In Eclipse, we find code
fragments (inside a method) that add a warning or error
message in a RefactoringStatus object (status). Before apply-
ing the transformation, Eclipse checks if the status variable

contains some warning or error message and if positive,
reports the message to users. If status does not have errors
or warning messages, Eclipse applies the transformation.

Listing 6. Code fragment after disabling a Pull Up
Method refactoring precondition using DP Change 2.

1 . . .
2 public class PullUpRefactoringImplementation{
3 . . .
4 private RefactoringStatus checkAccessed

Methods(. . .) throws JavaModelException {
5 final RefactoringStatus st = new

RefactoringStatus();
6 . . .
7 if (!isAccessible) {
8 final String m =Msgs.format(Refactoring

CoreMessages.PullUpRefactoring_method_
not_accessible,. . .);

9 if (ConditionsPullUpMethod.cond1) {
10 st.addError(m, JavaStatusContext.create

(method));
11 }
12 }
13 . . .
14 }
15 }

In our example, checkAccessedMethods method in Eclipse
is the only method that adds PullUpRefactoring_method_
not_accessible message to a RefactoringStatus object. Listing 5
illustrates part of this method. It contains code fragments
of a precondition, which checks if each method called from
the moved method is accessible from the destination class.

Fig. 1. A technique to detect overly strong preconditions. First, we generate the programs using JDOLLY (Step 1). For each generated program, we try
to apply the transformation (Step 2). Next, for each kind of message reported by the refactoring implementation, we manually perform transforma-
tions in the refactoring implementation code to allow disabling the execution of a precondition by preventing to report the message to the user. (Step
3). Then, for each rejected transformation we try to apply the transformation again using the refactoring implementation with the preconditions that
raise the reported messages disabled (Step 4). If the transformation preserves the program behavior according to SAFEREFACTOR, we classify the dis-
abled preconditions as overly strong (Step 5).

434 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 44, NO. 5, MAY 2018

If this precondition is not satisfied, Eclipse creates the
appropriate message (Line 8) and adds an error message
(Line 9).

To disable a precondition, we have to add an If statement
before each place that enables reporting a message related
to the precondition (Step 3.4.2). Each If statement contains a
boolean field associated to a message. Our goal is to bypass
checking the precondition, and we do so by avoiding
reporting messages to the user. In Eclipse, we must prevent
adding a warning or error message in a RefactoringStatus
object. Listing 6 illustrates the code to allow disabling the
precondition of our example. It includes an If statement
(Line 9). We create a class ConditionsPullUpMethod (Step 3.1)
that only declares boolean variables (Step 3.2.2). In our
example, ConditionsPullUpMethod.cond1 is related to PullU-
pRefactoring_method_not_accessiblemessage.

In Step 4, we enable all conditions (Step 4.1), set Conditions-
PullUpMethod.cond1 to false (Step 4.2), and try to apply the
transformation again in the program presented in Listing 3 by
using the modified refactoring implementation (Step 4.3). By
disabling Line 9, the modified refactoring implementation
does not report the message and continues its execution.

In our example, it yields a program presented in Listing 4.
Step 5 analyzes whether the output program (Listing 4) com-
piles and preserves behavior according to SAFEREFACTOR

(Section 3.2). Since SAFEREFACTOR classifies this transformation
as a refactoring, our technique classifies this precondition
as overly strong. Eclipse developers confirmed this bug.2

The technique returns the modified refactoring implementa-
tion, and all transformations that yield a set of overly strong
preconditions in the original refactoring implementation.
Developers need to reason about adjusting the precondition
to avoid preventing correct transformations, such as this
transformation.

4.3 Identifying Messages

This section explains how to identify the different kinds of
messages reported by the refactoring implementation when
it rejects transformations. For each JDOLLY generated pro-
gram (Step 1), we attempt to apply the transformation using
the refactoring implementation under test (Step 2). It may
apply some transformations and reject others. We collect all

Algorithm 1. A Technique to Detect Overly Strong Preconditions
Input: refactoring implementation R, skip, scope, constraints, timeLimit, DPChanges
Step 1. progs = JDOLLY.generate(skip, scope, constraints);
progs’ = ;; " A set of pairs of programs and messages
msgs = ;; " A set of all messages reported by R
Step 2. foreach prog 2 progs do

msg = R.canApplyRefactoring(prog); " canApplyRefactoring yields one message, for simplicity, if R cannot apply it
if msg 6¼ ; then

progs’.add(hprog, msgi);
msgs.add(msg); " For simplicity, it does not show that it removes some names and keywords from msg

map = ;; " A set of all mappings of messages to preconditions
Step 3.1. Create a class: public class ConditionsR { public static void enableConditions() {} };
Step 3.2. foreach msg 2 msgs do

Step 3.2.1. Identify how msg is represented in R; " Specific for each refactoring engine

Step 3.2.2. Create a fresh public static boolean field (cond) in ConditionsR. Add cond = true in enableConditions;
Step 3.2.3. map.add(hmsg, condi); " It relates each message to a condition

Step 3.3. Identify how to prevent reporting messages to user in R; " Specific for each refactoring engine
R’ = R; " R’will contain the modified refactoring implementation
Step 3.4. foreach msg 2 msgs do

Step 3.4.1. places = Identify all places in R that can prevent reporting msg to user;
Step 3.4.2. foreach place 2 places do

R’ = applyDPChange(DPChanges, R’, place, msg, map); " Add if (ConditionsR.cond) {place}. Specific for each ref. engine
transformations = ;; " A set containing all transformations applied by R’
Step 4. foreach hprog, msgi 2 progs’ do

Step 4.1. ConditionsR.enableConditions(); " It enables all preconditions
Step 4.2. ConditionsR.(map.getCondition(msg)) = false; " It disables a condition related to msg
Step 4.3. msg = R’.canApplyRefactoring(prog);
if msg 2 msgs then

go to Step 4.2;
else if msg = ; then

transformations.add(hprog, R’.applyRefactoring(prog)i); " It saves a transformation that does not yield a message
else

continue; " For simplicity, it does not focus on disabling preconditions related to messages not reported in Step 2
result = ;;
Step 5. foreach t 2 transformations do

if SAFEREFACTOR(t.input, t.output, timeLimit).hasSameBehavior() then
result.add(t); " It saves a behavior preserving transformation applied by R’

Output: hR’, resulti; " It returns R’, and all transformations that yield a set of overly strong preconditions in R

2. https://bugs.eclipse.org/bugs/show_bug.cgi?id=399788

MONGIOVI ETAL.: DETECTING OVERLY STRONG PRECONDITIONS IN REFACTORING ENGINES 435

https://bugs.eclipse.org/bugs/show_bug.cgi?id=399788

messages reported by the refactoring implementation when
it rejects transformations.

Next, we classify the different kinds of messages, among
the set of reported messages. We ignore the parts of the mes-
sage that contain keywords, and names of packages, classes,
methods, and fields. For example, the considered message in
Step 2 reported by Eclipse in Listing 3 is: Method referenced in
one of the moved elements is not accessible from type. To automate
this process, we implement a message classifier using an
approach similar to the one proposed by Jagannath et al. [28].
In each refactoring engine, we have to investigate how a mes-
sage is represented (Step 3.2.1). In Eclipse, the refactoring.prop-
erties file defines variables representing reported messages.
JRRT createsmessages inRefactoringException objects.

4.4 Disabling Refactoring Preconditions

In this step, we change the refactoring implementation code
to allow disabling the execution of refactoring preconditions
that prevent the engine from applying the refactorings. We
use the identified messages in Step 3.2.1. For each refactor-
ing engine, we identify how to avoid reporting messages to
the user (Step 3.3), and all places (Step 3.4.1) that can pre-
vent reporting a message (msg). In Eclipse, we have to avoid
adding errors or warnings in RefactoringStatus objects
containing msg. In JRRT, we have to avoid throwing a Refac-
toringException containing msg. The goal is to change
the refactoring implementation to avoid reporting messages
by including If statements (Step 3.4.2). We formalize these
transformations with DP Changes.

4.4.1 DP Changes

A DP change specifies a Java program template before and
after the codemodification. The left-hand side template speci-
fies the method body in a Java program. When the code frag-
ment that we want to disable the precondition matches the
left-hand side template, we change the refactoring implemen-
tation code by following the right-hand side template. Each
DP change adds an If statement in the refactoring implemen-
tation code and is appliedwithin amethod body.

DP changes contain Java constructs and meta-variables.
The DP changes of JRRT and Eclipse have the following com-
mon meta-variables: C specifies a class (it extends a D class);
ds specifies a set of class and interface declarations of the
refactoring implementation code;m specifies amethod name;
T specifies a type name; Stmts specifies a sequence of state-
ments; msg specifies a message reported to the user by the
refactoring implementation when it rejects a transformation;

and cs specifies a set of class structures, such as methods,
attributes, inner classes, and static blocks. C contains cs and
declares m, which contains Stmts and calls a method by
passing msg as a parameter. Meta-variables equal on both
sides of a DP change means that the transformation does not
modify them.

We specified one DP change for JRRT and two for Eclipse
in our evaluation presented in Section 5. The left-hand side
template of a DP change specifies a C class in the refactoring
implementation code, which can extend a D class, and other
classes and interfaces declarations of the refactoring imple-
mentation code (ds). C may contain a set of class structures,
such as methods, attributes, inner classes, and static blocks
(cs). It also declares the m method, which has a return type
T and a sequence of statements (Stmts).

For each refactoring implementation, we create a class
(Conditions) that declares public static boolean fields (cond1,
cond2, . . ., condN). For each message (msgi) that a refactoring
implementation yields in Step 2, we create a boolean vari-
able condi associated to it (Step 3.2.2). condi will be used
in all If statements added for a specific msgi. Conditions
declares a public static void method enableConditions that
sets all boolean variables declared in the class to true.

DP changes help developers to systematically modify the
refactoring implementation to disable refactoring precondi-
tions. If there is no DP change to match, developers analyze
the minimum changes necessary to allow disabling the code
fragments that prevent the refactoring precondition to pro-
pose a new kind of DP change. If this new kind of DP
change cannot be reused to allow disabling other precondi-
tions, we leave it as a specific case.

DP Changes in JRRT. JRRT always throws a Refactoring-
Exception (RefExc) that contains amsg to terminate the execu-
tion and report the error message to the user. To avoid
reporting msg, we propose DP Change 1. We include an If
statement immediately before throwing a RefactoringExcep-
tion that receives as a parameter the message related to the
precondition that we wish to disable.

DPChanges in Eclipse. Eclipse implements a class (Refactor-
ingStatus) that stores the outcome of the preconditions
checking operation. It contains methods, such as addError,
addEntry, addWarning, createStatus, createFatalErrorStatus,
createErrorStatus, and createWarningStatus. Those methods
receive a message and other arguments, describing a specific
problem detected during the precondition checking. The
methods started with create return a RefactoringStatus object.
The messages are stored in the refactoring.properties file.

DP Change 1. hAvoid throwing an exception in JRRTi

436 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 44, NO. 5, MAY 2018

A field from the RefactoringCoreMessages class represents
them. They can be directly accessed by a field call or through
a variable, parameter of the method, or the return of a
method call. The refactoring implementations of Eclipse
check the status of a transformation, in a RefactoringStatus
object, after evaluating the preconditions. If it contains some
warning or errormessages, Eclipse rejects the transformation
and reports the messages to the user. We propose the Eclipse
DP changes by analyzing the smallest code fragment, which
we need to disable for avoiding the engine to add a new error
or warning status in aRefactoringStatus object.

DP Change 2 prevents Eclipse from reporting error mes-
sages. It has the following specific meta-variables: status
specifies an object of RefactoringStatus type, and s is one of
the methods of RefactoringStatus described in the beginning
of this section. We include an If statement immediately
before a call to a method from the RefactoringStatus class
that receives as a parameter the message related to the pre-
condition that we want to disable.

4.4.2 Applying DP Changes

The proposed DP changes are general specifications that can
be used as guidelines to modify the refactoring implementa-
tion to allow disabling a precondition. To apply a DP change,
the refactoring implementationmust match the left-hand side
template of it. We find all places in the refactoring implemen-
tation code that matches the left-hand side template of a DP
change, by searching for the message (msgi) related to the
refactoring precondition that we want to disable (Step 3.4.1).
The code structure must match all Java constructs and meta-
variables specified in the left-hand side template.

For example, we use DP Change 2 to disable the precon-
dition illustrated in Listing 5. T matches RefactoringStatus, m
matches checkAccessedMethods, Stmts matches the sequence
of statements from the beginning of the method until Line 6;
status matches the st variable of type RefactoringStatus; s
matches the addError method; msg matches m; and Stmts’
matches the sequence of statements from Line 8 until
the end of the method. We use the right-hand side of this
same DP change to modify the code to allow disabling the
precondition (Step 3.4.2). Listing 6 illustrates the modified
program. In our example, checkAccessedMethods method
in Eclipse is the only method that adds PullUpRefactoring_
method_not_accessible message to a RefactoringStatus object.
So, we do not need to apply more DP changes. We automate
the DP changes proposed for Eclipse and JRRT using
aspect-oriented programming [29] (see Appendix).

5 EVALUATION

We evaluate our technique using 10 refactoring implemen-
tations of Eclipse and 10 refactoring implementations of
JRRT.3 First, we present the research questions (Section 5.1)
and planning (Section 5.2). Next, Sections 5.3 and 5.4 pres-
ent and discuss the results, respectively. Finally, Section 5.5
describes some threats to validity, and Section 5.6 summa-
rizes the main findings.

5.1 Research Questions

Our experiment has two goals. The first goal is to evaluate
the DP technique to detect overly strong preconditions with
respect to its ability to detect overly strong preconditions
and its performance from the point of view of refactoring
engine developers in the context of refactoring implementa-
tions from Eclipse and JRRT. For this goal, we address the
following research questions:

� Q1 Can the DP technique detect bugs related to
overly strong preconditions in the refactoring imple-
mentations?
We measure the number of bugs related to
overly strong preconditions for each refactoring
implementation.

� Q2 What is the average time to find the first failure
using the DP technique?
We measure the time to find the first failure in all
refactoring implementations.

� Q3 What is the rate of overly strong preconditions
detected by the DP technique among the set of
assessed preconditions?
We measure the rate of preconditions that are overly
strong in each refactoring implementation.

The second goal is to evaluate two techniques (DP and
DT [13]) to detect overly strong preconditions in refactoring
implementations for the purpose of comparing them with
respect to detecting overly strong preconditions from the
point of view of refactoring engine developers in the context
of refactoring implementations of Eclipse and JRRT. We
address the following research question for this goal:

� Q4 Do DP and DT techniques detect the same bugs?
We measure the bugs detected by both techniques:
DP and DT techniques.

DP Change 2. hAvoid adding a refactoring status in Eclipsei

3. All tools and experimental data are available online at: http://
www.dsc.ufcg.edu.br/�spg/DPtechnique.html

MONGIOVI ETAL.: DETECTING OVERLY STRONG PRECONDITIONS IN REFACTORING ENGINES 437

http://www.dsc.ufcg.edu.br/~spg/DPtechnique.html
http://www.dsc.ufcg.edu.br/~spg/DPtechnique.html
http://www.dsc.ufcg.edu.br/~spg/DPtechnique.html

5.2 Planning

In this section, we describe the subjects used in our study
and the experiment setup.

5.2.1 Subject Selection

We tested 10 refactoring implementations of Eclipse JDT 4.5
and 10 of JRRT (02/03/2013) [6]. Eclipse is a widely used
engine and JRRT was proposed to improve the correctness
and applicability of refactorings by using formal techni-
ques [6]. Among the evaluated refactorings (Column Refac-
toring of Table 1), we evaluated popular refactorings, such
as the Rename Method [27], [30] and refactorings that
are predominantly performed with automated tool support,
such as Encapsulate Field and Rename Class [31].

5.2.2 Setup

We ran the experiment on two computers with 3.0 GHz
Core i5 with 8 GB RAM running Ubuntu 12.04. We used
SAFEREFACTOR [21] 2.0 with a time limit of 0.5 second to

generate tests. This time limit is enough to test transforma-
tions applied to small programs [21]. We used EclEmma
2.3.3 to measure the code coverage. We executed the experi-
ment using JDOLLY 1.0 with Alloy Analyzer 4 and SAT4J
solver 2.0.5 to generate the programs with no skip and skips
of 10 and 25. To allow disabling the preconditions in our
experiment, we manually modified the Eclipse and JRRT
code. We used the proposed DP changes to systematically
modify most of refactoring preconditions (58 places).

We used the same Alloy specifications defined before
[12], [14] as input parameters of JDOLLY to generate the pro-
grams. JDOLLY generates programs with at most two pack-
ages, three classes, two fields and three methods to test the
refactoring implementations of Eclipse and JRRT. The speci-
fication defines some main constraints for guiding JDOLLY to
generate programs with certain characteristics needed to
apply the refactoring. To test the Rename Class, Method,
and Field refactorings, we specified some additional con-
straints: the programs must declare at least one Class,
Method, and Field, respectively. To test the Push Down

TABLE 1
Summary of the DP Technique Evaluation in the JRRTand Eclipse Refactoring Implementations; Refactoring = Kind of Refactoring;
Skip = Skip value Used by JDOLLY to Reduce the Number of Generated Programs; GP = Number of Generated Programs by JDOLLY;
CP = Rate of Compilable Programs (%); LOC cov. = Rate of Lines of Code Coverage for the Set of Generated Programs (%); N. ass.
prec. = Number of Assessed Refactoring Preconditions in Our Study; OSC = Number of Detected Overly Strong Preconditions in the
Refactoring Implementations; Time (h) = Total Time to Evaluate the Refactoring Implementations in Hours; TTFF (min) = Time to

Find the First Failure in Minutes; ”na” = not assessed

Refactoring Skip GP CP (%) LOC Cov. (%) N. ass. prec. OSC Time (h) TTFF (min)

JRRT Eclip. JRRT Eclip. JRRT Eclip. JRRT Eclip. JRRT Eclip.

Move Method no 22,905 69 17.7 9.4 6 3 6 3 0.01 4.50 0.30 10.2
10 2,290 6 3 6 3 0.01 0.40 0.08 0.60
25 916 4 3 4 3 0.02 0.19 0.06 1.21

Pull Up Method no 8,937 72 12.9 7.1 4 2 2 2 0.12 0.75 0.16 4.92
10 893 4 2 2 2 0.04 0.10 0.46 5.61
25 357 4 2 2 2 0.01 0.03 0.18 0.90

Push Down Field no 11,936 79.1 11.9 8.4 3 2 1 0 0.10 3.11 0.18 na
10 1,193 3 2 1 0 0.01 0.30 0.11 na
25 477 3 2 0 0 0.01 0.12 na na

Rename Method no 11,264 79.5 11.9 8.0 3 3 1 3 0.12 0.06 0.06 0.05
10 1,126 3 3 1 3 0.01 0.01 0.08 0.06
25 450 3 3 1 3 0.01 0.06 0.08 0.20

Push DownMethod no 20,544 78.5 14.4 8.7 3 3 3 1 0.15 7.15 2.53 49.43
10 2,054 3 3 3 1 0.16 1.09 0.46 4.75
25 821 3 3 3 1 0.01 0.39 0.20 1.91

Pull Up Field no 10,928 79.7 12.3 8.1 1 1 0 1 0.08 0.01 na 0.11
10 1,092 1 1 0 1 0.01 0.01 na 0.11
25 437 1 1 0 1 0.01 0.01 na 0.08

Add Parameter no 30,186 63 12.4 15.5 4 3 2 2 0.31 11.48 0.36 91.26
10 3,018 4 3 2 1 0.04 1.61 0.08 9.48
25 1,207 4 3 2 1 0.02 0.65 0.08 3.66

Encapsulate Field no 2,000 92.8 11.8 3.4 0 1 na 1 na 0.01 na 0.33
10 200 0 1 na 1 na 0.01 na 0.28
25 80 0 1 na 1 na 0.01 na 0.53

Rename Field no 19,424 79.2 12.0 3.8 0 3 na 0 na 5.98 na na
10 1,942 0 3 na 0 na 0.44 na na
25 776 0 3 na 0 na 0.18 na na

Rename Type no 15,916 65.5 11.3 4.5 0 4 na 2 na 2.67 na 0.11
10 1,591 0 4 na 2 na 0.26 na 0.05
25 636 0 4 na 2 na 0.11 na 0.08

Total/Average no 154,040 72.8 12.8 7.6 24 25 15 15 0.89 35.72 0.58 17.41
10 15,399 24 25 15 14 0.28 4.22 0.21 2.35
25 6,157 22 25 12 14 0.09 1.75 0.12 1.01

438 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 44, NO. 5, MAY 2018

Method/Field refactorings, the programs must declare a
method/field in a superclass. To test the Pull Up Method/
Field refactorings, the programs must declare a method/
field in a subclass. To test Encapsulate Field and Add
Parameter refactorings, the programs must declare at least
one public field and method, respectively. Finally, to test
the Move Method refactoring, the programs must declare at
least two classes. One of the classes must declare a method
and a field of the same type of the other class.

The Alloy specification used by JDOLLY also defines some
constraints to reduce the number of generated programs,
such as some overloading or overriding methods and some
primitive fields. Furthermore, we specified that the programs
must have at least one public method for enabling SAFEREFAC-

TOR to generate tests for evaluating the transformations. We
automated the refactoring applications of Eclipse and JRRT
by investigating their refactoring test suites to learn how to
apply the refactorings using their source code. We imple-
mented in the same way, replacing the input programs with
the JDOLLY generated programs. We used the same setup for
both evaluated techniques (DP andDT).

5.3 Summary of the Results

Concerning the JRRT evaluation, we identified 24 refactor-
ing preconditions and found 15 (62 percent) overly strong
preconditions in its refactoring implementations. The DP
technique did not detect 3 bugs using a skip of 25 in the
Move Method and Push Down Field refactorings of JRRT.
It took 0.89 h to evaluate all JRRT refactoring implementa-
tions without skip to generate programs. Using skips of 10
and 25, the technique took 0.28 and 0.09 h, respectively. In
average, the technique needed a minute to find the first
failure.

Concerning the Eclipse evaluation, we identified 25 refac-
toring preconditions and found 15 (60 percent) different kinds
of bugs in its refactoring implementations. The DP technique
did not detect 1 bug using skips of 10 and 25 in the Add
Parameter refactoring of Eclipse. It took 35.72 h to evaluate all
Eclipse refactoring implementations without skip to generate
programs. Using skips of 10 and 25, the technique took 4.22
and 1.75 h, respectively. It took on average 17.41 min to find
the first failure using no skip. Using skips of 10 and 25, the
technique took on average 2.35 and 1.01 min to find the first
failure, respectively. SAFEREFACTOR generated an average of 45
test cases (ranging from 1 to 179) to evaluate transformations
applied by JRRT and 59 (ranging from 1 to 268) to evaluate
transformations applied by Eclipse.

JDOLLY generated 154,040 programs to evaluate all refac-
torings without skip. Considering all generated programs,
the rate of compilable programs was 72.8 percent. For future
work, we intend to specify more well-formedness rules to
reduce the rate of uncompilable programs and the cost of
analysis. Still, the uncompilable programs do not affect our
results concerning bug detection.

Given the set of generated input programs for each refac-
toring implementation, we measured LOC coverage for both
JRRT (AST package) and Eclipse (org.eclipse.jdt.internal.corext.
refactoring) implementations. LOC coverage for Eclipse is 7.6
percent, while for JRRT is 12.8 percent. The coverage rates are
low because the Eclipse org.eclipse.jdt.internal.corext.refactoring
and JRRTAST packages contain all refactorings implemented

in these engines. Table 1 summarizes the evaluation results of
JRRT and Eclipse refactoring implementations.

We also compared the proposed technique with the DT
technique. The DP technique found nine new bugs that the
DT technique could find in the refactoring implementations
of JRRT, and two new bugs in the refactoring implementa-
tions of Eclipse. It did not detect five bugs that the DT tech-
nique detected in the refactoring implementations of Eclipse.
Concerning the use of skips, the DP technique did not detect
four bugs using a skip of 25 and one bug using a skip of 10.
The DT techniquemissed no bug using skips of 10 and 25.We
calculated the number ofmissed bugs using skips by compar-
ing with the number of detected bugs using no skip. We need
to execute the same technique without skip to find the missed
bugs. Table 2 summarizes the evaluation results of the com-
parison betweenDP andDT techniques.

TABLE 2
Summary of the Comparison Between DP and DT Techniques
Using Input Programs Generated by JDOLLY; Refactoring = Kind
of Refactoring; Skip = Skip Value Used by JDOLLY to Reduce the
Number of Generated Programs; DP = DP Technique; DT = DT
Technique; Overly Strong Preconditions = Number of Detected

Overly Strong Preconditions in the Refactoring
Implementations; ”na” = not Assessed

Refactoring Overly Strong Preconditions

Skip Eclipse JRRT

DP DT DP DT

Move Method no 3 3 6 1
10 3 3 6 1
25 3 3 4 1

Pull Up Method no 2 2 2 2
10 2 2 2 2
25 2 2 2 2

Push Down Field no 0 0 1 0
10 0 0 1 0
25 0 0 0 0

Rename Method no 3 3 1 0
10 3 3 1 0
25 3 3 1 0

Push Down Method no 1 3 3 1
10 1 3 3 1
25 1 3 3 1

Pull Up Field no 1 0 0 0
10 1 0 0 0
25 1 0 0 0

Add Parameter no 2 1 2 2
10 1 1 2 2
25 1 1 2 2

Encapsulate Field no 1 1 na na
10 1 1 na na
25 1 1 na na

Rename Field no 0 3 na na
10 0 3 na na
25 0 3 na na

Rename Type no 2 2 na na
10 2 2 na na
25 2 2 na na

Total no 15 18 15 6
10 14 18 15 6
25 14 18 12 6

MONGIOVI ETAL.: DETECTING OVERLY STRONG PRECONDITIONS IN REFACTORING ENGINES 439

5.4 Discussion

In this section, we discuss the results of our evaluation.

5.4.1 Assessed Preconditions

We identified 24 preconditions from JRRT and 25 precondi-
tions from Eclipse, based on reported messages when they
reject transformations. We relate each reported message to
one precondition for each refactoring implementation. Table 3
illustrates some of the Eclipse and JRRT assessed precondi-
tions considered in our evaluation. For each one, we explain
what the precondition checks (fourth column), the message
reported by the refactoring engine when the precondition is
unsatisfied (fifth column), and if our technique classified it as
overly strong in this study (sixth column).

For example, Precondition 1 prevents JRRT from moving
a method when it overrides (or is overwritten by) different
methods before and after the transformation. Without this
precondition, the transformation may change the program
behavior. However, our technique classified this precondi-
tion as overly strong because it also prevents moving an
overwritten method when there is no other method in the
program calling it. Precondition 4 avoids the same problem
in the Add Parameter refactoring of JRRT, since changing a
method signature may change method overriding. Our
technique also classified it as overly strong for this refactor-
ing. Preconditions 2 and 3 prevent JRRT to push down or
pull up a field to a class that already contains a field with
the same name, respectively. Both preconditions avoid
introducing compilation errors in the resulting program,
since a class cannot declare two fields with the same name.
According to this evaluation, they are not overly strong.

Precondition 7 prevents Eclipse from moving a method
to a class that already declares a method with the same
name. It avoids introducing compilation errors and behav-
ioral changes in the resulting program. However, our tech-
nique found that this precondition is overly strong because
the methods can have different types of parameters. Precon-
ditions 8 and 9 prevent Eclipse from renaming a method
when there is another method in the same package or type
in the renamed method hierarchy, with the same name
but different parameter types and with the same signature,
respectively. They also avoid introducing compilation
errors and behavioral changes in the resulting program. For
example, it can introduce compilation errors related to the
reduction of inherited method visibility or can introduce
behavioral changes when the renamed method changes the
binding of a method call. Our technique classified both pre-
conditions as overly strong because in some cases the
renamed method is not public and there is no other method
in the program calling it.

Precondition 10 prevents Eclipse to push down a field
when there is a method referencing it. It avoids introducing
compilation errors when the field does not hide other field,
and behavioral changes, otherwise. Precondition 12 pre-
vents Eclipse from adding a parameter in a method when
there is another method in the same class with the same sig-
nature. It avoids introducing compilation errors in the
resulting program, since a class cannot declare two methods
with the same signature. Both preconditions (10 and 12) are
not overly strong in this evaluation.

This set of assessed preconditions is a subset of the existing
preconditions. The evaluated refactoring implementations

may have more overly strong preconditions. Developers
may consider programs with different program constructs to
detect them. In some cases, preconditions of different refactor-
ing implementations, such as Preconditions 1 and 4, and
Preconditions 2 and 3, are implemented by the same code
fragments. The refactoring engine reports the same message
when the preconditions are unsatisfied. Even so, we consider
them as different preconditions because we analyze each
refactoring implementation separately. To test all precondi-
tions of a refactoring implementation, we need to select a set
of input programs that leads the refactoring implementation
to report all messageswhen it rejects transformations.

5.4.2 Disabling the Assessed Preconditions

We identified some patterns followed by the developers to
reject a transformation due to an unsatisfied precondition.
In these cases, we propose DP changes, and we can use
them to disable preconditions by preventing to report mes-
sages to the user. However, in some specific cases, we did
not find a pattern for the right-hand side template to disable
a precondition. So, we could not propose DP changes to
modify the refactoring implementation to disable a precon-
dition. We need to reason about the refactoring implementa-
tion code to identify the specific changes necessary to
disable the precondition. We call those kinds of changes as
specific cases. We applied 58 DP changes (22 in JRRT and 36
in Eclipse) and 25 specific cases to allow disabling the exe-
cution of the Eclipse and JRRT assessed preconditions in
this study. In some places of the code we may apply more
than one transformation, since some preconditions of differ-
ent refactoring implementations report the same message.
Developers can restructure the refactoring engine code to
enable using the DP changes to disable the code fragments
of preconditions that we classified as specific cases.

For each precondition, we may apply more than one DP
change or the same DP change more than once because each
message may appear in a number of places in the code. The
number of messages may impact the performance of Steps 3
and 4 of our technique because we need, for each message,
to identify the precondition that raises it and change the
refactoring engine code to allow disabling the precondition.

JRRT throws an exception with the message in all cases
and aborts its execution. Eclipse opens a dialog to report the
message describing the problem to the user. The user can
cancel the refactoring application or continue in some cases.
In our study, 36, 46, and 14 percent of the changes we made
in the Eclipse code prevent warning, error, and fatal error
problems, respectively. In only one change (6 percent) we
cannot assert by static analysis whether it prevents a warn-
ing or error message.

Listings 7 and 8 illustrate the original and modified JRRT
code to allow disabling the execution of a Move Method
refactoring precondition (Precondition 1 of Table 3),
respectively. We can use the DP Change 1 to disable this pre-
condition. The transformation was applied to the unlockO-
verriding method from the AST.MethodDecl class. This
precondition evaluates if a set of overridden methods in the
original program (old_overridden.equals) is equal to the set
of overridden methods in the program after the transforma-
tion (overriddenMethods). JRRT rejects the transformation
by throwing a RefactoringException when the precondition

440 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 44, NO. 5, MAY 2018

is not satisfied. Our technique classified this precondition as
overly strong. We reported this overly strong precondition
to the JRRT developers and they classified it as bug due to
imprecise analysis. The bug has not been fixed yet.

Listing 7. Original code fragment of the Move Method
refactoring implementation of JRRT.

public void unlockOverriding() {
. . .
if(!old_overridden.equals(overriddenMethods()))

throw new RefactoringException
(’’overriding has changed’’);

. . .
}

Listing 8. Code fragment after we change the JRRT code
by using the DP Change 1.

public void unlockOverriding() {
. . .
if(!old_overridden.equals(overriddenMethods()))

if (ConditionsMoveMethod.cond1) {
throw new RefactoringException
(’’overriding has changed’’);

}
. . .

}

Among the 25 specific cases, there are six different kinds
of transformations. For example, in some cases we included
in the then clause of the If statement, introduced to disable

TABLE 3
Subset of Eclipse and JRRTAssessed Preconditions

Id Eng. Refactoring Precondition Message OS (DP)

1 JRRT Move Method It checks whether the method after the
transformation still overrides precisely the same
methods as before the transformation

overriding has changed yes

2 JRRT Push Down Field It checks whether the subclass, where the field
will be pushed down, already declares a field
with the same name

field of the same name exists no

3 JRRT Pull Up Field It checks whether the target class already declares
a field with the same name of the moved field

field of the same name exists no

4 JRRT Add Parameter It checks whether the method after the
transformation still overrides precisely the same
methods as before the transformation

overriding has changed yes

5 JRRT Pull Up Method It checks whether the transformation violates a
type constraint

type constraint violated yes

6 JRRT Push DownMethod It checks whether the transformation can
preserve method name bindings. It is
unsatisfied when a method name cannot be
accessed even with qualifiers

cannot access method yes

7 Eclipse Move Method It checks whether the class, where the method
will be moved, already declares a method with
the same name

a method with name
<method> already exists in
the target type

yes

8 Eclipse Rename Method It checks whether there is other method, in the
same package or type in the renamed method
hierarchy, with the same name and number of
parameters but different parameter type names
of the new method’s signature

<package> or a type in its
hierarchy defines a method,
<method>with the same
number of parameters, but
different, parameter type
names

yes

9 Eclipse Rename Method It checks whether there is other method, in the
same package or type in the renamed method
hierarchy, with the same new method’s
signature

<package> or a type in its
hierarchy defines a method,
<method>with the same
number of parameters and
the same, parameter type
names

yes

10 Eclipse Push Down Field It checks whether some method refers the pushed
down field

pushed down member
<method> is referenced by
<method>

no

11 Eclipse Pull Up Method It checks whether the methods called by the
pulled up method are accessible from the class
where the method will be pulled up

method <method>
referenced in one of the
moved elements is not
accessible from type<type>

yes

12 Eclipse Add Parameter It checks whether the class, which contains the
method to be changed, already declares a method
with the same signature of the new method
signature

duplicate method in type
<type>

no

Eng. = Refactoring engine that contains the precondition; Refactoring = Kind of refactoring; Precondition = precondition checking; Message = reported message
when the precondition is unsatisfied; OS (DP) = yes if the DP technique found this precondition as overly strong in this experiment, otherwise no.

MONGIOVI ETAL.: DETECTING OVERLY STRONG PRECONDITIONS IN REFACTORING ENGINES 441

the precondition, some statements to avoid crashing the
refactoring engine. We also had to add in some cases a
return null command after the If statement, which disables
the precondition, to avoid compilation errors in the refactor-
ing implementation code.

In some cases, when we disabled a precondition, the
refactoring implementation reported another message and
we needed to disable another precondition that raises
another reported message, and so on. For seven refactoring
implementations, we disabled a number of refactoring pre-
conditions at the same time: Move Method, Push Down
Method, and Add Parameter of JRRT and Move Method,
Pull Up Method, Rename Method, and Rename Type of
Eclipse. In the Move Method refactoring of JRRT we needed
to disable up to four preconditions at the same time to find
a bug (among the set of six assessed preconditions). In the
other refactoring implementations, we disabled up to two
preconditions.

Regarding Step 3, the first author took around one day of
work to understand how Eclipse and JRRT check their refac-
toring preconditions, raise messages, and reject transforma-
tions. After that, she took some minutes to manually change
the refactoring engine code to allow the disabling of each
refactoring precondition using the proposed templates. She
also took some minutes where specific cases are concerned.

5.4.3 Bugs Detected by DP Technique

Among the 49 assessed preconditions, we identified 30 overly
strong preconditions (61 percent) in the Eclipse and JRRT
refactoring implementations using the DP technique. For
example, Listing 3 illustrates a Pull Up Method refactoring
rejected by Eclipse due to overly strong precondition (Precon-
dition 11 of Table 3). Wemanually analyzed all bugs detected
in our evaluation, and did not find the sameprogram yielding
an overly strong precondition in two different refactoring
implementations. Most of the Eclipse and JRRT overly strong
preconditions found by our technique are related to method
accessibilities and name conflicts. Others are related to
changes in overriding methods, type constraints violations,
shadow declarations, unimplemented features, transforma-
tion issues, and changes inmethod invocations.

JRRT applied transformations to all of the programs gen-
erated by JDOLLY in three refactoring implementations:
Encapsulate Field, Rename Field, and Rename Type. We
did not detect overly strong preconditions in those refactor-
ing implementations. Different from JRRT, Eclipse rejected
some transformations in these refactoring implementations
and we found some overly strong preconditions. In both
refactoring engines we identified 15 overly strong precondi-
tions using the DP technique.

We reported all detected bugs to the Eclipse developers.
So far, they confirmed 47 percent of them (seven bugs), and
did not answer for 27 percent (four bugs). The remaining
four bugs were considered duplicates (13 percent) or invalid
(13 percent). We investigated the duplicated bugs (IDs
434881 and 399183) and reopened them because we think
they are not duplicated, since the reported messages are dif-
ferent. We also reopened a bug marked as invalid by the
developers (ID 399181). Developers argued that the refactor-
ing implementation does not show a message in this case.
However, we tested the same bug in Eclipse JDT 4.6 and it

still reports the message. So far, they have not responded.
The other invalid bug was in the Pull Up Field refactoring
(ID 462994). Developers marked it as invalid because the
transformation changes the value of a field not called by
any method in the original program. The equivalence notion
adopted by SAFEREFACTOR does not consider that this kind of
change modifies the program behavior. SAFEREFACTOR only
evaluates the behavior of the common public impacted
methods. Developers did not fix all confirmed bugs because
they have very limited resources working on the refactoring
module. We reported the new JRRT bugs to its developers.
These bugs were not detected by our previous technique.
JRRT developers believe that most of these bugs are due to
imprecise analysis or unimplemented features. So far, they
have not answered for two of them.

The goal of our technique is to propose a systematic way
to evaluate the implemented preconditions. We do not sug-
gest removing the overly strong preconditions found by our
technique. By removing them, the refactoring implementa-
tion may apply incorrect transformations. Developers need
to reason about the preconditions and choose the best strat-
egy to slightly weaken them without making them overly
weak. They can use the DP and DT techniques and our pre-
vious technique to detect overly weak preconditions [12] to
reason about their preconditions.

5.4.4 Time

We computed the time for the automated steps of the DP
technique. The time to evaluate the JRRT refactoring imple-
mentations was smaller than the time to evaluate Eclipse
ones in all cases but two: Rename Method and Pull Up
Field refactorings. In those refactoring implementations, all
assessed preconditions of Eclipse are overly strong while
this is not true for JRRT. The execution of the technique fin-
ishes when we find that all preconditions being tested are
overly strong. The execution to evaluate Eclipse finished
earlier than the JRRT ones in the Rename Method and Pull
Up Field refactorings. However, the total time to evaluate
all of JRRT and Eclipse refactoring implementations was
0.89 and 35.72 h, respectively.

Our previous study [14] showed that by using skips
could substantially reduce the time to test refactoring
implementations while missing a few bugs related to
overly weak and overly strong preconditions with the DT
technique. In this study, we evaluated the influence of
skip in the time reduction and bug detection of the DP
technique. Using skips of 10 and 25, the total time to eval-
uate all refactoring implementations was reduced by 87
and 94 percent, while missing 3 and 13 percent of the
bugs, respectively. The total time to evaluate the Move
Method refactoring of JRRT and Rename Method refactor-
ing of Eclipse using a skip of 25 was higher than using a
skip of 10. In those cases, the technique found that all pre-
conditions under test are overly strong using a skip of 10
earlier than using a skip of 25.

Eclipse took 11.48 and 7.15 h to evaluate the Add Param-
eter and Push Down Method refactorings, respectively.
These times were higher than the time to evaluate the other
refactoring implementations. JDOLLY generated more pro-
grams to evaluate these refactoring implementations (30,186
for Add Parameter and 20,544 for Push Down Method) and

442 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 44, NO. 5, MAY 2018

only some of their assessed preconditions were classified as
overly strong.

The average time to find the first failure in the JRRT
refactoring implementations (few seconds) was also smaller
than in Eclipse (17.41 min). The average time to find the first
failure in Eclipse was affected by two refactorings that took
much longer than the average time to find the first failure,
namely the Push Down Method and Add Parameter refac-
torings. Our technique found the first failure in JRRT and
Eclipse after generating 255 and 2,898 programs, respec-
tively. In the Add Parameter refactoring, our technique
found the first failure in JRRT and Eclipse after generating
328 and 8,258 programs, respectively. The average time to
first failure in the Eclipse refactoring implementations with-
out considering these two higher values is 2.62 min. Using
skips of 10 and 25, the average time to find the first failure
in all refactoring implementations reduced by 85 and 93
percent, respectively.

Using skips, developers can run the technique and find a
bug in a few seconds or minutes, fix the bug, run the tech-
nique again to find another bug, and so on. Developers can
also run the technique to find a number of bugs in a few
minutes or hours. Before a release, they may run the tech-
nique without skipping instances to find some missed
bugs and improve confidence that the implementations are
correct.

In our previous work [21], we analyzed the influence of
the time limit passed to SAFEREFACTOR to generate tests. We
used different time limits, such as 0.2, 0.5, and 20 s, to evalu-
ate transformations applied to different kinds of programs
in SAFEREFACTOR. To evaluate transformations applied to
small programs, with at most four classes, methods, and
fields, similar to those used in our evaluation, we used a
time limit of 0.2 s, which was enough to generate tests for
this context.

5.4.5 Comparison of DP and DT Techniques Using

Input Programs Generated by JDOLLY

The techniques are complementary in terms of bug detec-
tion. The DP technique detected 11 new bugs (37 percent
of the bugs) that the DT technique cannot detect in the
Pull Up Field and Add Parameter refactorings of Eclipse
and in the Move Method, Rename Method, Push Down
Method, and Push Down Field refactorings of JRRT. The
DT technique cannot detect some bugs when the other
refactoring engine used in the differential testing has
overly weak preconditions or also has overly strong pre-
conditions. In the former case, the other refactoring engine
applies a transformation that does not preserve the pro-
gram behavior or the resulting program does not compile.
In the latter case, the other refactoring engine also rejects
to apply the transformation.

For example, Listing 9 presents a JDOLLY generated pro-
gram. It contains the A class and its subclasses B and C.
Both A and B classes contain the f field and the B class
declares the test method that calls the B.f field, yielding 1. If
we attempt to use JRRT to apply the Push Down Field refac-
toring from moving A.f to class C, it rejects this transforma-
tion due to an overly strong precondition. By disabling the
precondition that prevents the refactoring application, we
can apply the transformation without changing the program

behavior. Listing 10 illustrates the resulting program. The B.
test method yields 1 before and after the refactoring. We
only detected this overly strong precondition using the DP
technique. The DT technique cannot detect it because
Eclipse also rejects this transformation. We reported this
bug to JRRT developers and they agreed that this transfor-
mation should be applied.

The DT technique detected five bugs that the DP tech-
nique cannot detect in the Eclipse Push Down Method and
Rename Field refactorings. The DP technique cannot detect
those bugs because when we disable the code fragments of
a precondition, Eclipse applies a non-behavior preserving
transformation. JRRT applies a transformation that includes
a cast (two bugs in the Rename Field) or a super modifier
(one bug in the Rename Field) in a field call to preserve the
program behavior.

For example, Listing 11 presents another JDOLLY gener-
ated program. It contains the B class, and its subclass C. The
B class contains the f1 field. The C class contains the f0 field
and declares the testmethod that calls f1 yielding 0. By using
Eclipse to rename fieldC.f0 to f1, it rejects this transformation
due to an overly strong precondition. JRRT applies this trans-
formation without changing the program behavior. List-
ing 12 illustrates a resulting program applied by JRRT.
Method C.test yields 0 before and after the refactoring. We
only detected this overly strong precondition using the DT
technique. The DP technique cannot detect it because when
we disable the precondition, Eclipse applies a non-behavior
preserving transformation. It does not include a cast of the B
class in the field call inside the testmethod.Without this cast,
test callsC.f1 instead of B.f1 yielding 1.

Listing 9. Pushing down field A.f to class C is rejected by
JRRT due to overly strong preconditions. Bug detected
by DP technique and not detected by DT technique.

public class A {
private int f = 0;

}
public class B extends A {

protected int f = 1;
public long test(){

return f;
}

}
public class C extends A {}

Listing 10. A possible correct resulting program applied
by JRRT.

public class A {}
public class B extends A {

protected int f = 1;
public long test(){

return f;
}

}
public class C extends A {

private int f = 0;
}

MONGIOVI ETAL.: DETECTING OVERLY STRONG PRECONDITIONS IN REFACTORING ENGINES 443

Listing 11. Renaming C.f0 to f1 is rejected by Eclipse JDT
4.5 due to overly strong preconditions. Bug detected by
DT technique and not detected by DP technique.

public class B {
protected int f1 = 0;

}
public class C extends B {

private int f0 = 1;
public long test() {

return this.f1;
}

}

Listing 12. A possible correct resulting program applied
by JRRT.

public class B {
protected int f1 = 0;

}
public class C extends B {

private int f1 = 1;
public long test() {

return ((B) this).f1;
}

}

An advantage of the DP technique is that it does not need
another refactoring engine. Although in DP we need to
manually identify the preconditions from the set of reported
messages, we propose a systematic strategy to perform this
activity (see Algorithm 1). Table 4 summarizes the number
of added lines of code and number of modified methods
in all refactoring implementations of JRRT and Eclipse in
Step 3.4.2.

An advantage of the DT technique is that it can show
useful transformations performed by another refactoring
engine (see example in Listing 12), which can help develop-
ers to identify and fix the overly strong preconditions. How-
ever, it needs at least two refactoring engines. When
possible, we suggest that developers can run the DP tech-
nique and after fixing the detected bugs, then they run the
DT technique to find more bugs.

The DT technique took on average 17 and 66.2 h to test
the refactoring implementations of JRRT and Eclipse,
respectively. The DP technique took on average 0.89 and
35.7 h to test the same refactoring implementations of JRRT
and Eclipse. DT technique takes longer to apply and analyze
the transformations since it uses two refactoring engines.

5.4.6 Comparison of DP and DT Techniques Using

Input Programs of Eclipse and JRRT Refactoring

Test Suites

We evaluated the DP technique by replacing the JDOLLY gen-
erated programs with input programs used by developers in
the Eclipse and JRRT test suites. The goal was to analyze if
our technique can find overly strong preconditions using
other input programs in Eclipse and JRRT refactoring imple-
mentations already evaluated in the previous study (see Sec-
tion 5.2.1). We only selected input programs used in the test
caseswhere the refactoring engine rejects the transformation.

We identified 272 input programs to evaluate the refactoring
implementations. The engines reported a total of 71 mes-
sages when we attempted to apply the transformations in
the evaluated Eclipse and JRRT refactoring implementations.
We related themessages to 71 refactoring preconditions.

The DP technique detected 18 overly strong precondi-
tions not detected by the Eclipse and JRRT developers. The
DP technique detected at least one overly strong precondi-
tion in 70 and 20 percent of the evaluated Eclipse and JRRT
refactoring implementations, respectively. We also evalu-
ated the same refactoring implementations using the DT
technique and the same input programs. The DT technique
detected 15 overly strong preconditions not detected by the
Eclipse and JRRT developers. The DT technique detected at
least one overly strong precondition in 60 and 10 percent of
the evaluated Eclipse and JRRT refactoring implementa-
tions, respectively.

The DP technique detected eight overly strong precondi-
tions not detected by DT technique in the Pull Up Method,
Pull Up Field, Add Parameter, Rename Method, and Encap-
sulate Field refactorings of Eclipse, and also in the Push
Down Method and Pull Up Method refactorings from JRRT.
The DT technique detected five overly strong preconditions
not detected by DP technique in the Move Method, Pull Up
Method, Push Down Method, Rename Field, and Rename
Method refactorings of Eclipse. In total, we assessed 71 pre-
conditions and detected 23 overly strong preconditions not
detected by the developers.

Our technique cannot detect 17 of the bugs using the cur-
rent JDOLLY version. We need to add more Java constructs in
JDOLLY to detect them. Besides the 23 detected bugs, we
found 12 false-positives in this study. In these bugs, the
input programs do not have public methods. SAFEREFACTOR

did not identify any public method to generate tests and
classified the transformations as behavior preserving. We
did not have this problem with the JDOLLY generated input
programs, as they have at least one public method. We
reported all new bugs to the Eclipse developers but they
have not answered yet. Table 5 illustrates the main results
of this evaluation.

The developers did not find those overly strong precon-
ditions because they do not seem to have enough support
to reason about their preconditions and a systematic strat-
egy to evaluate whether a precondition is overly strong.

TABLE 4
Summary of Lines of Code Added and Number of Modified
Methods in Step 3.4.2 in Eclipse and JRRT Refactoring

Implementations

Refactoring Added LOC Modified Methods

JRRT Eclipse JRRT Eclipse

Move Method 11 12 6 10
Pull Up Method 13 11 6 9
Push Down Field 6 2 4 2
Rename Method 8 3 3 2
Push DownMethod 8 12 3 10
Pull Up Field 1 1 1 1
Add Parameter 9 5 4 4
Encapsulate Field - 2 - 2
Rename Field - 3 - 3
Rename Type - 5 - 4

444 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 44, NO. 5, MAY 2018

Furthermore, as they expect the refactoring engine to reject
those transformations, they believe that the transformations
may change the program’s behavior. In fact, developers
may not have an automated oracle to check behavior preser-
vation, such as SAFEREFACTOR.

5.4.7 Testing Other Refactoring Implementations

To test different refactoring implementations, we have to
adapt at most two steps of our technique (Steps 1 and 3.4.2
in Algorithm 1). We have to analyze whether JDOLLY gener-
ates programs that can be refactored. Moreover, we may
need to propose more DP changes to disable preconditions.
In Step 1, approximately 46 percent of the Eclipse and JRRT
refactoring implementations not evaluated in this experi-
ment could be evaluated by our technique using the current
version of JDOLLY. We just have to set up the additional con-
straints parameter to generate programs that exercise a spe-
cific kind of refactoring. For example, we can setup our
technique to test the Move Field refactoring by reusing our
Java meta-model and well-formedness rules. We need to
generate programs with at least two classes (C1 and C2) and
one field (F1) in one of the classes. The following Alloy frag-
ment specifies it.

one sig C1, C2 extends Class {}
one sig F1 extends Field {}
pred generate[]{

F1 in C1.fields
}

We did not evaluate more refactoring implementations due
to time constraints.

To evaluate the remaining refactoring implementations
(54 percent), we need to extend JDOLLY to generate programs
considering richer method bodies and different kinds of
Java constructs (interfaces, inner classes, and so on). Cur-
rently, JDOLLY generates methods with a simple body (return
statement). So, we cannot test refactoring implementations
applied within a method body, such as Extract Method.
In our previous work [14], we specified method bodies in
CDOLLY (C program generator) using a similar approach,

tested some Eclipse CDT refactoring implementations (such
as Extract Function) and found some bugs. Richer method
bodies in Java can be specified similarly in JDOLLY.

We may also need to propose new DP Changes
(Step 3.4.2). We analyzed the code of some Eclipse refactor-
ing implementations that we did not evaluate in this study,
such as Extract Method, Inline Method, and Move Inner to
Top. We randomly selected five messages from each ana-
lyzed refactoring implementation, which are reported by
Eclipse when it rejects a transformation due to an unsatis-
fied precondition. For all of them, we can use the current set
of DP changes for Eclipse to allow disabling the refactoring
precondition related to each message. We can also reuse the
DP changes of JRRT to allow disabling the refactoring pre-
conditions of other refactoring implementations not evalu-
ated in this study.

5.4.8 Testing Other Refactoring Engines

To test different refactoring engines such as NetBeans, we
may have to adapt Steps 1, 3.2.1, 3.3 and 3.4.2 of our tech-
nique. In Step 1, we follow the same guidelines presented in
Section 5.4.7. In Step 3.2.1, we have to identify how a
reported message is represented in the refactoring imple-
mentation. In NetBeans, the Bundle.properties file defines
variables that represent reported messages. In Step 3.3, we
have to identify how to prevent reporting messages to the
user. NetBeans refactoring implementations create an object
of type Problem, which receives as parameter a message
describing the problem when a precondition is unsatisfied.
We have to prevent creating this kind of object. Finally, in
Step 3.4.2, we have to propose DP Changes. Before apply-
ing a transformation, the NetBeans refactoring imple-
mentations check whether there are problems with the
transformation, and report the messages to the user, when
applicable. We can propose DP changes to avoid creating
an object of type Problem by adding an If statement before
its creation. For instance, DP Change 3 prevents creating a
problem in NetBeans. We do not need to change the other
steps of our technique to test the NetBeans refactoring
implementations.

TABLE 5
Summary of the Comparison Between DP and DT Techniques Using Input Programs of Eclipse and JRRT Refactoring Test Suite;
Refactoring = Kind of Refactoring; Input Programs = Number of Selected Input Programs of the JRRTand Eclipse Refactoring Test
Suite; N. of Assessed Preconditions = Number of Assessed Refactoring Preconditions in Our Study; Overly Strong Preconditions =
Number of Detected Overly Strong Preconditions in the Refactoring Implementations; DP = DP Technique; DT = DT Technique

Refactoring
Input Programs

N. of assessed
preconditions Overly Strong Preconditions

JRRT Eclipse JRRT Eclipse JRRT Eclipse

DP DT DP DT

Move Method 12 27 10 8 0 0 3 4
Pull Up Method 30 25 8 9 1 0 1 1
Push Down Field 0 3 0 3 0 0 0 0
Rename Method 10 92 4 6 0 0 4 3
Push Down Method 12 5 5 3 3 2 0 1
Pull Up Field 0 3 0 2 0 0 1 0
Add Parameter 0 5 0 2 0 0 1 0
Encapsulate Field 0 2 0 2 0 0 1 0
Rename Field 2 26 1 4 0 0 2 3
Rename Type 18 0 4 0 0 0 0 0

Total 84 188 32 39 4 2 14 13

MONGIOVI ETAL.: DETECTING OVERLY STRONG PRECONDITIONS IN REFACTORING ENGINES 445

As a feasibility study, we evaluate some refactoring imple-
mentations of NetBeans 8.2. Table 6 indicates the number of
generated programs by JDOLLY, number of assessed refactor-
ing preconditions, number of detected overly strong precon-
ditions in the refactoring implementations, and number of
lines of code added and modified methods in Step 3.4.2. We
found a bug by using the DP technique. NetBeans 8.2 cannot
pull up C.f to B.f in the program presented in Listing 13. It
reports the following message:Member “f” already exists in the
target type. By disabling this precondition, we can apply a
behavior preserving transformation.

Listing 13. Pulling up field C.f to class B is rejected by
NetBeans 8.2 due to an overly strong precondition.

package p1;
public class A {

protected int f = 0;
}
package p1;
public class B extends A {}
package p0;
import p1. * ;
public class C extends B {
protected int f = 1;
public longm() {
return this.f;

}
}

5.5 Threats to Validity

In this section, we discuss some threats to the validity of our
evaluation.

Construct Validity. Construct validity refers to whether the
overly strong preconditions that we have detected are indeed
overly strong. Eclipse developers considered two bugs
reported by us as invalid. Some preconditions that we found
may not be overly strong with respect to the equivalence
notion adopted by the developers. Our equivalence notion is
related to the behavior of the publicmethods with unchanged
signatures. These methods can exercise methods with
changed signatures. Otherwise, the methods with changed
signatures may not affect the overall system behavior. So far,
they have confirmed 47 percent of the reported bugs.

We have no prior knowledge over the refactoring engines’
code, since we are not developers of these engines. We may
not identify all code fragments related to the preconditions
being tested. Developers may identify a different set of pre-
conditions and may have better results when using our tech-
nique. Additionally, changing the refactoring implementation
code may introduce problems in the refactoring implementa-
tion. It may result in applying incorrect transformations that
do not follow the refactoring definition. We minimize this
threat by systematizing the process of disabling precondi-
tions. We propose DP changes where each one alters one line
of code. Even the specific cases change a few lines of code.

A false-positive result of SAFEREFACTOR indicates that it
did not detect a behavioral change. In our technique, a
false-positive may incorrectly classify a precondition as
overly strong. However, in this study, we manually ana-
lyzed each overly strong precondition before reporting it.
We only found some false-positives in the experiment using
the input programs of the refactoring engines’ test suites.
The false-positives were related to changes in the standard
output or changes in non-public methods that cannot be
detected by SAFEREFACTOR 2.0.

Finally, we specify in Table 3 some preconditions based
on the available source code and documentation of JRRT
and Eclipse [6], [7], [9], [11], [32], [33], [34], [35]. Still, some
definitions may be incomplete or incorrect as we are not
developers of the refactoring engines.

Internal Validity. Additional constraints in JDOLLY may
hide possibly detectable overly strong preconditions. These
constraints can be too restrictive with respect to the pro-
grams that can be generated by JDOLLY, which shows that
one must be cautious when specifying constraints for
JDOLLY. Our current setup for testing Eclipse has memory
leaks. This may have an impact on the time to test its refac-
toring implementations. Another threat is related to the
bugs detected only by the DP technique. The DT technique
did not identify some bugs because the other engine (JRRT
or Eclipse) used to perform differential testing also has
overly strong preconditions or overly weak preconditions
that allow incorrect transformations. Using another refactor-
ing engine to perform differential testing may identify some
of those bugs.

External Validity. We can use our technique to test other
refactoring implementations and other refactoring engines,
as explained in Sections 5.4.7 and 5.4.8, respectively.

5.6 Answers to the Research Questions

Next, we answer our research questions.

� Q1 Can the DP technique detect bugs related to
overly strong preconditions in the refactoring imple-
mentations?
We found a total of 30 bugs (11 new bugs) related to
overly strong preconditions in 14 (70 percent) refactor-
ing implementations. We did not find bugs in the
Push Down Field and Rename Field refactorings of
Eclipse, and Pull Up Field, Encapsulate Field, Rename
Field, and Rename Type refactorings of JRRT.

� Q2 What is the average time to find the first failure
using the DP technique?
The technique can find the first bug in each JRRT

TABLE 6
Summary of the DP Technique Evaluation in the NetBeans

Refactoring Implementations; Refactoring = Kind of Refactoring;
GP = Number of Generated Programs by JDOLLY; N. ass.
prec. = Number of Assessed Refactoring Preconditions
in Our Study; LOC = Number of Lines of Code Added in
Step 3.4.2; Meth. = Number of Modified Methods in

Step 3.4.2; OSC = Number of Detected Overly Strong
Preconditions in the Refactoring Implementations

Refactoring GP LOC Meth. N. ass. prec. OSC

Pull Up Field 100 6 2 1 1
Push Down Field 100 2 1 1 0
Add Parameter 100 6 1 1 0
Rename Field 100 2 1 1 0
Pull Up Method 100 6 2 1 0
Rename Method 100 4 1 1 0

446 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 44, NO. 5, MAY 2018

refactoring implementation in 0.59 min on average.
Finding the first bug in the Eclipse evaluation took
an average of 17 min. The average time to find the
first failure in Eclipse was affected by some values,
such as the time to first failure in the Push Down
Method and Add Parameter refactorings.

� Q3 What is the rate of overly strong preconditions
detected by the DP technique among the set of
assessed preconditions?
In the Eclipse and JRRT refactoring implementations,
60 and 62 percent of the evaluated preconditions in
this study are overly strong, respectively.

� Q4 Do DP and DT techniques detect the same bugs?
The techniques detect 19 bugs in common. The DT
technique cannot detect 11 bugs that the DP technique
detected in the Add Parameter and Pull Up Field
refactorings of Eclipse, and in the MoveMethod, Push
Down Field, Rename Method, and Push Down
Method refactorings of JRRT. When both refactoring
engines under test have overly strong preconditions,
the DT technique fails to detect bugs. The DT tech-
nique detected 5 bugs in Eclipse that the DP technique
cannot detect in the Push Down Method and Rename
Field refactorings of Eclipse.

6 RELATED WORK

Opdyke [1] proposed a set of refactoring preconditions to
ensure that the transformations preserve the program behav-
ior. Later, Roberts [36] automated the basic refactorings pro-
posed by Opdyke. However, Opdyke did not prove
correctness and completeness of the proposed preconditions.
Indeed, Tokuda and Batory [37] demonstrated that the pre-
conditions proposed by Opdyke are not sufficient to guaran-
tee behavior preservation after applying transformations.
Moreover, proving refactorings with respect to a formal
semantics considering all language constructs constitutes a
challenge [10]. In this work, we propose a technique to test
refactoring implementations with respect to overly strong
preconditions by disabling some preconditions.

Soares et al. [12] presented an automated approach to
detect overly weak preconditions in refactoring implemen-
tations. They use JDOLLY to generate Java programs and
SAFEREFACTOR [20] to evaluate whether a transformation
preserves the program behavior. They found 106 bugs
related to compilation errors and behavioral changes in
39 refactoring implementations. We also use JDOLLY to

generate programs, and SAFEREFACTOR with the change
impact analysis parameter activated to evaluate behavior
preservation. Our work complements their work in the
sense that we can detect overly strong preconditions and
they can detect overly weak preconditions. Developers can
combine both techniques to produce more accurate refactor-
ing implementations regarding the defined preconditions.

Daniel et al. [38] proposed an approach for automated
testing of refactoring engines with respect to overly weak
preconditions. The technique is based on ASTGEN, a Java
program generator, and a set of programmatic oracles. The
user implements in Java how the program elements will be
combined together. We use JDOLLY to automatically gener-
ate the test inputs, which employs the Alloy specification
language [23] as the formal infrastructure for program gen-
eration. To evaluate correctness, they implemented six
oracles that evaluate the output of each transformation.
For instance, the oracles check for compilation errors and
warning messages. They found a number of bugs in the
refactoring implementations of Eclipse JDT and NetBeans.
However, different from our work, they do not have oracles
to detect bugs related to overly strong preconditions.

Later, Gligoric et al. [39] proposed UDITA, a Java-like lan-
guage that extendsASTGEN, allowing users to describe prop-
erties using any desiredmix of filtering and generating style,
as opposed to ASTGEN, which uses a purely generating style.
UDITA evolved ASTGEN to be more expressive and easier to
use, usually resulting in faster program generation. They
found four bugs related to compilation errors in Eclipse in a
few minutes. Our technique found a number of bugs related
to overly strong preconditions. Besides using different tech-
nologies for searching for solutions, JDOLLY andUDITA spec-
ify constraints in different styles. In UDITA the constraints
are specified in a Java-like language while in JDOLLY they are
specified in Alloy, a declarative language. Moreover, some
kinds of constraints are simpler to be specified in Alloy
instead of implemented in Java, such as the transitive closure
operator of Alloy that can emulate recursive functions.

Gligoric et al. [40] used real systems to reduce the effort
for writing program generators using the same oracles of
their previous work [39]. They found 141 bugs related to
compilation errors in refactoring implementations for Java
and C. Applying refactorings in large systems and minimiz-
ing the failure into a small program to categorize the bugs
may be costly. Moreover, evaluating transformations on
large real programsmay be error prone and time consuming.
Our focus is to detect overly strong preconditions. We can

DP Change 3. hAvoid creating a problem in NetBeansi

MONGIOVI ETAL.: DETECTING OVERLY STRONG PRECONDITIONS IN REFACTORING ENGINES 447

adapt our technique to use real systems as test inputs such as
them. In this case, we may need to increase SAFEREFACTOR’s
time limit to generate tests as we did in our previous work to
analyze large real programs [21], [26].

Vakilian and Johnson [15] presented a technique to detect
usability problems in refactoring engines. It is based on
refactoring alternate paths. They adapted the Critical Inci-
dent Technique (CIT) [41] in the context of refactorings. CIT
aims to discover usability problems by analyzing the interac-
tions of users that had problems with tools in general. They
manually inferred usability problems from the detected crit-
ical incidents. Our technique yields to the developer the set
of overly strong preconditions. They used real programs
while we use JDOLLY to automatically generate programs as
test inputs. Moreover, their technique found two usability
problems related to overly strong preconditions in real pro-
grams while our technique found 30 bugs related to overly
strong preconditions in the refactoring implementations of
Eclipse and JRRT.

Sch€afer et al. [6] presented a number of Java refactoring
implementations. They translated a Java program to an
enriched language that’s easier to specify and check precon-
ditions, and apply the transformation. They aim to improve
correctness and applicability of the Eclipse refactoring
implementations. Although we found the same number of
overly strong preconditions in JRRT and Eclipse using the
DP technique, we found more overly strong preconditions
in Eclipse than in JRRT using the DT technique (6 in JRRT
and 18 in Eclipse).

Rachatasumrit and Kim [42] studied the impact of refac-
toring transformations on regression tests by using the ver-
sion history of Java open source projects. They found that
refactoring changes are not well tested: regression test cases
cover only 22 percent of impacted entities. Moreover, they
found that 38 percent of affected test cases are relevant for
testing the refactorings. In our previous work, we extend
SAFEREFACTOR to generate tests only for the methods
impacted by the change [21]. Using the change impact anal-
ysis, SAFEREFACTOR reduced the time to test the refactoring
implementations and generated more relevant tests to eval-
uate the refactoring changes. To evaluate transformations
applied to small programs similar to those used in our eval-
uation, we used a time limit of 0.2 s, which was enough to
generate tests for them. In this experiment, we decided to
be more conservative and chose a time limit of 0.5 s.

Steimann and Thies [43] proposed a constraint-based
approach to specify Java accessibility, which favors check-
ing refactoring preconditions and computing the changes
of access modifiers needed to preserve the program behav-
ior. The proposed approach improves the applicability of
the refactoring implementations of Eclipse. The DP tech-
nique can be used to evaluate whether their refactoring
implementations have overly strong preconditions.

Garrido and Johnson [44], [45] proposed CRefactory, a
refactoring engine for C. They specified a set of refactoring
preconditions that support programs in the presence of condi-
tional compilation directives and implemented the refactor-
ings. We can use our technique to test their refactoring
implementationswith respect to overly strong preconditions.

Tip et al. [46] presented an approach that uses type con-
straints to verify preconditions of those refactorings,

determining which part of the code they may modify. Using
type constraints, they also proposed the refactoring Infer
Generic Type Arguments [32], which adapts a program to
use the Generics feature of Java 5, and a refactoring to
migration of legacy library classes [47]. Eclipse imple-
mented these refactorings. Their technique allows sound
refactorings with respect to type constraints. However, a
refactoring may have preconditions related to other con-
structs. Moreover, they did not verify whether the precondi-
tions are overly strong. Our technique may be helpful in
these situations.

Li and Thompson [48] introduced a technique to test
refactorings with respect to overly weak preconditions
using a tool, called Quvid QuickCheck, for Erlang. They
evaluated a number of implementations of the Wrangler
refactoring engine. For each refactoring, they stated a num-
ber of properties that it must satisfy. If a refactoring applies
a transformation, but does not satisfy a property, they
indicate a bug in the implementation. They established a
number of basic properties that check for engine crashes
and compilation errors. These properties should hold for all
refactorings. Additionally, they wrote specific properties for
a number of refactoring types concerning structural changes
of the program. Their approach applies refactorings to a
number of real case studies and toy examples. In contrast,
we apply refactorings to a number of programs generated
by JDOLLY.

Borba et al. [17] proposed a set of refactoring laws for a
subset of sequential Java with copy semantics. They for-
mally specified all preconditions and proved that each
transformation is sound with respect to a formal semantics.
Silva et al. [18] formally specified and proved a set of refac-
toring transformation laws for a sequential object-oriented
language with reference semantics that guarantee behavior
preservation. Some of these laws can be used in the Java
context. However, they have not considered all Java con-
structs, such as overloading and field hiding. Moreover,
they did not prove the minimality property of refactoring
preconditions. Our technique can evaluate whether a refac-
toring implementation has overly strong preconditions in
the absence of formal proofs.

Overbey and Johnson [49] proposed a technique to check
for behavior preservation in transformations performed by
refactoring engines. They implemented it in a library con-
taining preconditions for the most common refactorings.
Refactoring engines for different languages can use their
library to check preconditions. The preservation-checking
algorithm is based on exploiting an isomorphism between
graph nodes and textual intervals. They evaluated their
technique for 18 refactorings in engines for Fortran 95, PHP
5 and BC. We can use our technique to test the refactoring
implementations.

7 CONCLUSION

In this work, we propose a novel technique to detect overly
strong preconditions in refactoring engines. We automati-
cally generate a number of programs using JDOLLY and
attempt to refactor them. If the refactoring engine rejects
the transformation, we disable the execution of the refactor-
ing preconditions that prevent the transformation. If the

448 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 44, NO. 5, MAY 2018

refactoring engine with the preconditions disabled for exe-
cution applies a behavior preserving transformation accord-
ing to SAFEREFACTOR, we consider the disabled preconditions
as overly strong. Refactoring engine developers can reason
about their proposed preconditions to refine and slightly
weaken them. As a result, they can improve the applicabil-
ity of their refactoring implementations.

We generated 154,040 test inputs to test 10 refactoring
implementations of Eclipse and 10 of JRRT [6] and detected
30 overly strong preconditions. So far, the Eclipse develop-
ers confirmed 47 percent of them. The technique took on
average a few seconds or minutes to find the first failure.

We also compared the proposed technique (DP tech-
nique) with our previous technique based on differential
testing (DT technique) [13]. The techniques are complemen-
tary in terms of bug detection. The DP technique found 11
bugs not detected by the DT technique, and the DT tech-
nique found 5 bugs not detected by the DP technique. Addi-
tionally, the DP technique does not need another refactoring
engine to evaluate the refactoring implementations.

We also used the proposed technique with input pro-
grams from the Eclipse and JRRT refactoring test suites,
instead of the JDOLLY generated programs. The goal was to
analyze if it can find overly strong preconditions using
other input programs. We detected 18 overly strong precon-
ditions not detected by the developers. We cannot detect 17
of them using the specification used in JDOLLY 1.0. Develop-
ers did not find these overly strong preconditions because
they do not seem to have a systematic strategy to detect
them. Additionally, they do not have an automated oracle
to check behavior preservation, such as SAFEREFACTOR.

Developers can improve their testing process by using
our proposed techniques. Whenever possible, they can run
the DP technique and after fixing the detected bugs, they
run the DT technique to find more bugs. The DT technique
can show some additional changes that a refactoring imple-
mentation can perform to enable applying a safe transfor-
mation, such as replacing super with this (or this with super),
or adding a cast in a field or method call. They can also run
our techniques using their input programs instead of JDOLLY

generated programs, as we did in part of our evaluation.
As future work, we aim at testing different types of refac-

toring implementations. We can extend JDOLLY to add new
Java constructs (interfaces, inner classes) and richer method
bodies following a similar approach used for generating C
programs [14]. Moreover, we intend to test refactoring imple-
mentations fromother tools, such asNetBeans andVisual Stu-
dio. For refactoring implementations already tested, we can
reuse JDOLLY’s specification and just have to propose a set of
DPChanges to disable preconditions in Step 3.

Additionally, we will adapt our technique for other
domains. First we may need to change JDOLLY’s specification
to add more Java constructs (Step 1). To perform Step 3, we
have to understand: (i) how messages are represented in the
tool (Step 3.2.1), (ii) and how the tool prevents yielding a
message to the user (Step 3.3). We have to propose DP
Changes (Step 3.4.2) to disable preconditions. Finally, we
have to use an automated oracle in Step 5 to define when a
transformation is correct. For example, we can use our tech-
nique to detect overly strong preconditions in mutation test-
ing tools [50]. Each mutant operator implementation may

have some preconditions to avoid introducing compilation
errors or generating equivalent mutants. When the muta-
tion testing tool rejects to apply a mutant operator to gener-
ate a mutant due to an unsatisfied precondition, we collect
the message. We have to search in the code for places that
may yield this message to the user. Then, we modify the
mutant operator implementation and add If statements to
prevent yielding this message. It is important to formalize
repeated transformations in DP changes. So, we may follow
similar transformations for other messages or mutant opera-
tors. After that, we apply the mutant operator again by dis-
abling precondition and use SAFEREFACTOR to check whether
the transformation changes the program behavior. By using
this approach, we can identify mutants that are not gener-
ated by the tool due to overly strong preconditions. In gen-
eral, we can apply our technique to test tools that check
some preconditions and then apply transformations.

Furthermore,wewillmodify SAFEREFACTOR to use other test
suite generators, such as EvoSuite [51], instead of Randoop to
see whether this can improve the detection of other overly
strong preconditions. EvoSuite generates and optimizes
whole test suites towards satisfying a coverage criterion. We
intend to evaluate multiple types of refactorings simulta-
neously. For each refactoring implementation, we specify
additional constraints in Alloy to guide JDOLLY on generating
programs inwhich the refactoring engine can apply the trans-
formation. To handle multiple types of refactoring simulta-
neously, we have to specify constraints to generate programs
in which more than one refactoring implementation can be
applied. For example, to test the Pull UpMethod and Pull Up
Field refactoring implementations, we need to generate pro-
grams that contain at least a method and a field in a subclass.
For each program that JDOLLY generates, we apply two refac-
torings, and analyze them separately.

We also aim at conducting interviews with refactoring
engine developers about how they select program inputs,
reason about the proposed preconditions, and creating the
test cases. We intend to evaluate the test suites of other
refactoring implementations and use real programs to try to
detect more overly strong preconditions using the DP and
DT techniques. Finally, we will evaluate our technique by
using different time limits, and allowing the user to indicate
the maximum number of tests to consider.

APPENDIX

ASPECT-ORIENTED IMPLEMENTATION

Aspect-Oriented Programming aims to increase modularity
by allowing the separation of crosscutting concerns [52]. Dis-
abling refactoring preconditions can be seen as a crosscutting
concern of the refactoring engine. We implemented in
AspectJ [53] all DP changes. The abstract aspect DisablingPre-
conditions (Listing 14), declares an abstract pointcut meth-
odMsg to collect calls to methods with a String parameter
(msg). The pointcut refers to the left-hand side of a DP change.
It also declares an around advice to allow executing only the
methods collected inmethodMsg, which the listMessages.repor-
tedMsgs does not contain msg (executePrecond method). While
DP changes include an If statement in the right-hand side pro-
gram, the aspects use the around advice to achieve the same
goal, avoiding some method executions in the resulting

MONGIOVI ETAL.: DETECTING OVERLY STRONG PRECONDITIONS IN REFACTORING ENGINES 449

program.Messages.reportedMsgs stores themessages related to
the preconditions that we want to disable andmsg is the mes-
sage related to the evaluated precondition. We implement
specific aspects to disable the preconditions of Eclipse and
JRRT. They extend DisablingPreconditions. Developers can
extend the aspects if they need to create more DP changes.
They need to specify the pointcut to collect specific method
calls and implement the advice to allow disabling the
preconditions.

Listing 14. Abstract aspect to disable preconditions.

public abstract aspect DisablingPreconditions {
abstract pointcutmethodMsg(String msg);
void around(String msg): methodMsg(msg) {

if (executePrecond(msg)) {
proceed(msg);

}
}
public boolean executePrecond(String msg) {

return !Messages.reportedMsgs.contains(msg);

}
}

Listing 15. Aspect to disable refactoring preconditions of
Eclipse.

public aspect DisablingPreconditions
Eclipse extends DisablingPreconditions {

pointcutmethodMsg(String msg):
call (void RefactoringStatus.addError
(String,..)) && args(msg,..) ||
call (void RefactoringStatus.addWarning
(String,..)) && args(msg,..) ||
call (void RefactoringStatus.addEntry
(int,String,..)) && args(int,msg,..);

pointcutmethodMsgNonVoid(String msg):
call (RefactoringStatus RefactoringStatus.
createErrorStatus(String,..)) &&
args(msg,..) ||
call (RefactoringStatus RefactoringStatus.
createWarningStatus(String,..)) &&
args(msg,..) ||
call (RefactoringStatus RefactoringStatus.
createFatalErrorStatus(String,..)) &&
args(msg,..) ||
call (RefactoringStatus RefactoringStatus.
createStatus(int,String,..)) &&
args(int,msg,..);

RefactoringStatus around(String msg):
methodMsgNonVoid(msg) {

if (executePrecond(msg)) {
return proceed(msg);

} else {
return new RefactoringStatus();

}
}

}

The specific aspect to disable the preconditions of Eclipse
avoids adding a new warning or error status in a Refactor-
ingStatus object. The RefactoringStatus class declares some

void methods that add a new status in a RefactoringStatus
object (methods starting with add). It also declares methods
that create a new RefactoringStatus object, add the status,
and return this object (methods starting with create). We
specify a pointcut and implement an advice for both kinds
of methods. The methodMsg pointcut collects calls to the add-
Error, addWarning, and addEntry methods of RefactoringSta-
tus and the methodMsgNonVoid pointcut collects calls to the
createStatus, createErrorsStatus, createWarningStatus, and crea-
teFatalErrorStatus methods. We create this pointcut because
those methods return a RefactoringStatus object. The refac-
toring implementations of Eclipse do not add or create a
new status when setting the Messages.reportedMsgs list with
the messages related to the preconditions that we want to
disable. Listing 15 illustrates the aspect used to disable
Eclipse preconditions. Similarly, we implement the aspect
to disable JRRT preconditions.

ACKNOWLEDGMENTS

We would like to thank Miryung Kim, Jonhnanthan
Oliveira, and the anonymous reviewers. This work was par-
tially supported by the National Institute of Science and
Technology for Software Engineering (INES), funded by
CNPq 307190/2015-3, 465614/2014-0, 306610/2013-2 and
460883/2014-3, CAPES 175956 and 117875, FACEPE APQ-
0570-1.03/14, FAPEAL PPGs 14/2016, and DEVASSES
PIRSES-GA-2013-612569.

REFERENCES

[1] W. Opdyke, “Refactoring object-oriented frameworks,” Ph.D.
dissertation, Univ. Illinois, Urbana-Champaign, Champaign, IL,
USA, 1992.

[2] M. Fowler, Refactoring: Improving the Design of Existing Code.
Boston, MA, USA: Addison-Wesley/Longman, 1999.

[3] T. Mens and T. Tourw�e, “A survey of software refactoring,” IEEE
Trans. Softw. Eng., vol. 30, no. 2, pp. 126–139, Feb. 2004.

[4] Eclipse.org, “Eclipse project,” 2017. [Online]. Available:
http://www.eclipse.org

[5] NetBeans.org, “NetBeans IDE,” 2017. [Online]. Available:
http://www.netbeans.org/

[6] M. Sch€afer and O. de Moor, “Specifying and implementing
refactorings,” in Proc. 25th ACM Int. Conf. Object-Oriented Program.
Syst. Languages Appl., 2010, pp. 286–301.

[7] M. Sch€afer, M. Verbaere, T. Ekman, and O. Moor, “Stepping
stones over the refactoring rubicon,” in Proc. 23rd Eur. Conf.
Object-Oriented Program., 2009, pp. 369–393.

[8] M. Sch€afer, J. Dolby, M. Sridharan, E. Torlak, and F. Tip, “Correct
refactoring of concurrent Java code,” in Proc. 24th Eur. Conf.
Object-Oriented Program., 2010, pp. 225–249.

[9] M. Sch€afer, M. Sridharan, J. Dolby, and F. Tip, “Refactoring Java
programs for flexible locking,” in Proc. 33rd Int. Conf. Softw. Eng.,
2011, pp. 71–80.

[10] M. Sch€afer, T. Ekman, and O. Moor, “Challenge proposal: Verifi-
cation of refactorings,” in Proc. 3rd Workshop Program. Languages
Meets Program Verification, 2008, pp. 67–72.

[11] R. Fuhrer, A. Kiezun, and M. Keller, “Refactoring in the Eclipse
JDT: Past, present, and future,” in Proc. Workshop Refactoring Tools
ECOOP, 2007, pp. 30–31.

[12] G. Soares, R. Gheyi, and T. Massoni, “Automated behavioral test-
ing of refactoring engines,” IEEE Trans. Softw. Eng., vol. 39, no. 2,
pp. 147–162, Feb. 2013.

[13] G. Soares, M. Mongiovi, and R. Gheyi, “Identifying overly strong
conditions in refactoring implementations,” in Proc. 27th IEEE Int.
Conf. Softw. Maintenance, 2011, pp. 173–182.

[14] M. Mongiovi, G. Mendes, R. Gheyi, G. Soares, and M. Ribeiro,
“Scaling testing of refactoring engines,” in Proc. 30th IEEE Int.
Conf. Softw. Maintenance Evol., 2014, pp. 371–380.

450 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 44, NO. 5, MAY 2018

http://www.eclipse.org
http://www.netbeans.org/

[15] M. Vakilian and R. Johnson, “Alternate refactoring paths reveal
usability problems,” in Proc. 36th Int. Conf. Softw. Eng., 2014,
pp. 1106–1116.

[16] F. Tip, A. Kie _zun, and D. B€aumer, “Refactoring for generalization
using type constraints,” in Proc. 18th ACM SIGPLAN Conf. Object-
Oriented Program. Syst. Languages Appl., 2003, pp. 13–26.

[17] P. Borba, A. Sampaio, A. Cavalcanti, and M. Corn�elio, “Algebraic
reasoning for object-oriented programming,” Sci. Comput.
Program., vol. 52, pp. 53–100, 2004.

[18] L. Silva, A. Sampaio, and Z. Liu, “Laws of object-orientation with
reference semantics,” in Proc. 6th IEEE Int. Conf. Softw. Eng. Formal
Methods, 2008, pp. 217–226.

[19] W. Mckeeman, “Differential testing for software,” Digit. Tech. J.,
vol. 10, no. 1, pp. 100–107, 1998.

[20] G. Soares, R. Gheyi, D. Serey, and T. Massoni, “Making program
refactoring safer,” IEEE Softw., vol. 27, no. 4, pp. 52–57, Jul./Aug.
2010.

[21] M. Mongiovi, R. Gheyi, G. Soares, L. Teixeira, and P. Borba,
“Making refactoring safer through impact analysis,” Sci. Comput.
Program., vol. 93, pp. 39–64, 2014.

[22] J. Kerievsky, Refactoring to Patterns. London, U.K.: Pearson Higher
Education, 2004.

[23] D. Jackson, Software Abstractions: Logic, Language, and Analysis, 2nd
ed. Cambridge, MA, USA: MIT Press, 2012.

[24] D. Jackson, I. Schechter, and H. Shlyahter, “Alcoa: The Alloy con-
straint analyzer,” inProc. 31st Int. Conf. Softw. Eng., 2000, pp. 730–733.

[25] C. Pacheco, S. Lahiri, M. Ernst, and T. Ball, “Feedback-directed
random test generation,” in Proc. 29th Int. Conf. Softw. Eng., 2007,
pp. 75–84.

[26] G. Soares, R. Gheyi, E. Murphy-Hill, and B. Johnson, “Comparing
approaches to analyze refactoring activity on software
repositories,” J. Syst. Softw., vol. 86, no. 4, pp. 1006–1022, 2013.

[27] E. Murphy-Hill, C. Parnin, and A. Black, “How we refactor, and
how we know it,” IEEE Trans. Softw. Eng., vol. 38, no. 1, pp. 5–18,
Jan./Feb. 2012.

[28] V. Jagannath, Y. Lee, B. Daniel, and D. Marinov, “Reducing the
costs of bounded-exhaustive testing,” in Proc. 12th Int. Conf.
Fundam. Approaches Softw. Eng.: Held Part Joint Eur. Conf. Theory
Practice Softw., 2009, pp. 171–185.

[29] G. Kiczales, et al., “Aspect-oriented programming,” in Proc. 11th
Eur. Conf. Object-Oriented Program., 1997, pp. 220–242.

[30] E. Murphy-Hill, C. Parnin, and A. P. Black, “How we refactor,
and how we know it,” in Proc. 31st Int. Conf. Softw. Eng., 2009,
pp. 287–296.

[31] S. Negara, N. Chen, M. Vakilian, R. Johnson, and D. Dig, “A com-
parative study of manual and automated refactorings,” in Proc.
27th Eur. Conf. Object-Oriented Program., 2013, pp. 552–576.

[32] R. Fuhrer, F. Tip, A. Kie _zun, J. Dolby, and M. Keller, “Efficiently
refactoring Java applications to use generic libraries,” in Proc. 19th
Eur. Conf. Object-Oriented Program., 2005, pp. 71–96.

[33] M. Sch€afer, A. Thies, F. Steimann, and F. Tip, “A comprehensive
approach to naming and accessibility in refactoring Java pro-
grams,” IEEE Trans. Softw. Eng., vol. 38, no. 6, pp. 1233–1257,
Nov./Dec. 2012.

[34] M. Sch€afer, T. Ekman, and O. Moor, “Sound and extensible
renaming for Java,” in Proc. 23th ACM SIGPLAN Conf. Object-
Oriented Program. Syst. Languages Appl., 2008, pp. 277–294.

[35] M. Sch€afer, “Specification, implementation and verification of
refactorings,” Ph.D. dissertation, Univ. Oxford, Oxford, U.K.,
2010.

[36] D. Roberts, “Practical analysis for refactoring,” Ph.D. dissertation,
Univ. Illinois, Urbana-Champaign, Champaign, IL, USA, 1999.

[37] L. Tokuda and D. Batory, “Evolving object-oriented designs with
refactorings,” Automated Softw. Eng., vol. 8, pp. 89–120, 2001.

[38] B. Daniel, D. Dig, K. Garcia, and D. Marinov, “Automated testing
of refactoring engines,” in Proc. 6th Joint Meeting Eur. Softw. Eng.
Conf. ACM SIGSOFT Symp. Found. Softw. Eng., 2007, pp. 185–194.

[39] M. Gligoric, T. Gvero, V. Jagannath, S. Khurshid, V. Kuncak, and
D. Marinov, “Test generation through programming in UDITA,”
in Proc. 32nd Int. Conf. Softw. Eng., 2010, pp. 225–234.

[40] M. Gligoric, F. Behrang, Y. Li, J. Overbey, M. Hafiz, and
D. Marinov, “Systematic testing of refactoring engines on
real software projects,” in Proc. 27th Eur. Conf. Object-Oriented
Program., 2013, pp. 629–653.

[41] L. Shattuck and D. Woods, “The critical incident technique:
40 years later,” in Proc. Human Factors Ergonom. Soc. 38th Annu.
Meet., 1994, pp. 1080–1084.

[42] N. Rachatasumrit and M. Kim, “An empirical investigation into
the impact of refactoring on regression testing,” in Proc. 28th IEEE
Int. Conf. Softw. Maintenance, 2012, pp. 357–366.

[43] F. Steimann and A. Thies, “From public to private to absent:
Refactoring Java programs under constrained accessibility,” in
Proc. 23rd Eur. Conf. Object-Oriented Program., 2009, pp. 419–443.

[44] A. Garrido and R. Johnson, “Refactoring C with conditional
compilation,” in Proc. 18th IEEE Int. Conf. Automated Softw. Eng.,
2003, pp. 323–326.

[45] A. Garrido and R. Johnson, “Analyzing multiple configurations of
a C program,” in Proc. 21st IEEE Int. Conf. Softw. Maintenance,
2005, pp. 379–388.

[46] F. Tip, A. Kie _zun, and D. B€aumer, “Refactoring for generalization
using type constraints,” in Proc. 18th ACM SIGPLAN Conf. Object-
Oriented Program. Syst. Languages Appl., 2003, pp. 13–26.

[47] I. Balaban, F. Tip, and R. Fuhrer, “Refactoring support for class
library migration,” in Proc. 20th ACM SIGPLAN Conf. Object-
Oriented Program. Syst. Languages Appl., 2005, pp. 265–279.

[48] H. Li and S. Thompson, “Testing Erlang refactorings with
QuickCheck,” in Proc. 19th Int. Symp. Implementation Appl.
Functional Languages, 2008, pp. 19–36.

[49] J. Overbey and R. Johnson, “Differential precondition checking: A
lightweight, reusable analysis for refactoring tools,” in Proc. 26th
IEEE/ACM Int. Conf. Automated Softw. Eng., 2011, pp. 303–312.

[50] Y. Jia and M. Harman, “An analysis and survey of the develop-
ment of mutation testing,” IEEE Trans. Softw. Eng., vol. 37, no. 5,
pp. 649–678, Sep./Oct. 2011.

[51] G. Fraser and A. Arcuri, “EvoSuite: Automatic test suite genera-
tion for object-oriented software,” in Proc. 19th Eur. Conf. Found.
Softw. Eng., 2011, pp. 416–419.

[52] G. Kiczales, et al., Aspect-Oriented Programming. Berlin, Germany:
Springer, 1997, pp. 220–242.

[53] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and
W. Griswold, “Getting started with AspectJ,” Commun. ACM,
vol. 44, no. 10, pp. 59–65, 2001.

Melina Mongiovi received the doctoral degree
in computer science from the Federal University
of Campina Grande. She is a professor in the
Department of Computer Science at Federal
University of Campina Grande. Her research
interests in software engineering include refactor-
ing, software testing, and program analysis.

Rohit Gheyi received the doctoral degree in
computer science from the Federal University of
Pernambuco. He is a professor in the Depart-
ment of Computer Science at Federal University
of Campina Grande. His research interests
include refactorings, formal methods, and soft-
ware product lines.

Gustavo Soares received the doctoral degree in
computer science from the Federal University of
Campina Grande. He is a professor in the Depart-
ment of Computer Science at Federal University
of Campina Grande. His research interests
include developing program synthesis techniques
and tools for data science, software developers,
and end-users.

MONGIOVI ETAL.: DETECTING OVERLY STRONG PRECONDITIONS IN REFACTORING ENGINES 451

M�arcio Ribeiro received the doctoral degree in
computer science from the Federal University of
Pernambuco, 2012. He is a professor in the Com-
puting Institute at Federal University of Alagoas.
He received the ACM SIGPLAN John Vlissides
Award (2010). His PhD thesis has been awarded
as the best in Computer Science of Brazil in
2012. In 2014, M�arcio was the General Chair of
the most important scientific event in Software of
Brazil, the Brazilian Conference on Software
(CBSoft). His research interests include configu-

rable systems, variability-aware analysis, refactoring, empirical software
engineering, and software testing.

Paulo Borba is professor of Software Develop-
ment in the Informatics Center at the Federal
University of Pernambuco, where he leads the
Software Productivity Group. His main research
interests are in the following topics and their inte-
gration: software modularity, software product
lines, and refactoring.

Leopoldo Teixeira received the doctoral degree
in computer science from the Federal University
of Pernambuco. He is a professor in the Informat-
ics Center, Federal University of Pernambuco.
His research interests include software product
lines, refactorings, and formal methods.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

452 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 44, NO. 5, MAY 2018

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

