RIGHTS

Willow: A Tool for Interactive Programming Visualization to
Help in the Data Structures and Algorithms Teaching-Learning
Process

Pedro Moraes
phsm@cin.ufpe.br
Federal University of Pernambuco
Recife, Pernambuco

ABSTRACT

Data Structures and Algorithms (DSA) are one of the main pillars
of software development; however, abstractions around them are
hard to teach and to be understood by students. The most common
approaches adopted by instructors to demonstrate the behavior of
DSAs are the use of resources like slides and whiteboard sketches
to create program illustrations. This task may be slow and tedious
because these illustrations need to be continuously updated to rep-
resent new algorithm inputs and modifications. In this paper, we
propose Willow , a tool for Program Visualization Simulation (PVS),
which supports user interactions to manipulate the generated visu-
alizations. With these manipulations in the visualization, we expect
the user to be able to create better examples, resembling Algo-
rithm Visualization Simulation tools (AVS), which are specialized
in providing visualizations for specific DSAs. We evaluated our tool
through a preliminary qualitative study with teaching assistants
from an introductory Computer Science course who all give review
lessons to the students. Our preliminary results show that the tool
was well accepted by the participants, but we still need more stud-
ies to validate the use of the tool in classrooms. With the use of
our tool features in the teaching-learning process, we expect that
instructors may be able to interactively and more clearly explain
DSAs to their students, without the hassle of hours creating slides
or drawing by hand messy examples of algorithms.

KEYWORDS

data structures and algorithms, program visualization, algorithm
visualization, programming learning

ACM Reference Format:

Pedro Moraes and Leopoldo Teixeira. 2019. Willow: A Tool for Interactive
Programming Visualization to Help in the Data Structures and Algorithms
Teaching-Learning Process. In XXXIII Brazilian Symposium on Software
Engineering (SBES 2019), September 23-27, 2019, Salvador, Brazil. ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/3350768.3351303

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SBES 2019, September 23-27, 2019, Salvador, Brazil

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7651-8/19/09...$15.00
https://doi.org/10.1145/3350768.3351303

i,

553

Leopoldo Teixeira
Imt@cin.ufpe.br
Federal University of Pernambuco
Recife, Pernambuco

1 INTRODUCTION

Data Structures and Algorithms (DSA) classes in Computer Sci-
ence and related courses are very challenging for both instructors
and students. Students have to understand how a program source
code represents abstract ideas related to algorithms. In trying to
overcome the difficulty of their students, instructors usually recur
to lecture slides or sketching diagrams on whiteboards to show
algorithms illustrations [10].

Both slides and sketching have disadvantages. The former re-
quires a great deal of planning and preparation from the instructors
to create good quality examples, the latter takes time to draw dur-
ing the class and the diagrams can get quite messy [17], possibly
making referred DSAs even harder to understand. Moreover, none
of them are really capable of showing dynamic algorithm visualiza-
tions, which is the capability of accepting new inputs or changes
and consequently draw new visualizations.

Another approach for showing how DSAs work is through the
use of graphical tools, that might be categorized as Program Visu-
alization Simulation (PVS) and Algorithm Visualization Simulation
(AVS) tools. Most of these tools are dynamic and allow the instruc-
tor and the students to navigate through the program and explore
it step by step [3, 26].

Despite the rich history of research works in the program visu-
alization field, graphical tools still have limitations that make them
less effective for teaching DSAs. They are either too broad, being
capable of generating visualization to many programs, but these
are not detailed enough to explain DSAs, or too narrow, providing
good visualizations only for a small set of algorithms [8, 10, 22].

To overcome these limitations, we propose a tool called Willow.
The innovation aspects that our tool brings is the combination of
the best aspects of both PVS and AVS tools. Therefore, our tool is
capable of creating visualizations for any provided program. These
visualizations can then be customized to create a representation
of the data structure or algorithm in the program which favors its
understanding.

It is already known that graphical tools are being adopted by
some introductory computer science courses (CS1) in prestigious
universities [10] and can bring benefits to instructors and students
[8]. Introductory computer science and introductory programming
are two common terms to reference the initial programming courses
in many works. We decided to use the term introductory computer
science in this work. Given this scenario, our tool raises some
questions that must be answered to validate its use in programming
and DSAs learning. We want to investigate what benefits our tool
can bring not only to CS1 classes, like other tools did [10, 13], but

RIGHTS LI N

SBES 2019, September 23-27, 2019, Salvador, Brazil

‘ Language | python # >

1- class Node: <module>

2~ def __init_ (self, v): No... LList
3 self.v = v

4 self.prev = None

5 self.next = None (1)

6

7- class LList:

8- def __init_ (self)
9 self.head = None
10 self.tail = None
1 self.size = 0
12
13- def append(self, v)
14 temp = Node(v)
15 = if not self.head:
16 self.head = temp
17 self.tail = temp
18~ else:
19 self.tail.next = temp
20 temp.prev = self.tail
21 self.tail = self.tail.next
22 self.size += 1
23 Node
24
25 11 - LList() 1
26 1l.append(input())
27 1l.append(input())
28 1l.append(input())
29 1l1.append(input())
30 1l.append(input())
31 print('done') RETURN
1
2 (2)
3
4
5
done

(3)

_ini...

(4)

(5)

Pedro Moraes and Leopoldo Teixeira

append append append append append
_ini... _ini... _ini... _ini... _ini...
LList
head
tail 3
size 5
Node Node Node \Node

Figure 1: Willow is a web-based tool for Program Visualization Simulation where the user can modify the generated visualiza-

tions.

also DSA classes. We also intend to verify if our tool can help
instructors in lessons preparations.

In the following sections, we discuss the background of our
research (Section 2). We then describe our proposed tool (Section 3).
We report a summary of our preliminary results with teaching
assistants (Section 4). Finally, we discuss related works (Section 5)
and conclude the paper (Section 6).

2 BACKGROUND

The main purpose of program visualization is to improve the under-
standing of how software works [15, 26]. It is done by representing
abstract concepts of a program through its inspection. However, it
is very challenging to find an effective way to map several aspects
of a program and its programming language in visual elements in
a way that they accurately represent the program operations [6].

Program visualization tools can be divided into two groups, Pro-
gram Visualization Simulation (PVS) and Algorithm Visualization
Simulation (AVS). PVS tools are focused on creating representations
of the program state and its underlying structures (e.g., stack scopes
and variables, objects in the heap, references, etc) [26] regardless
the program source code and inputs. Although these tools show
variable values and heap objects, they do not detect data structures
in the program. Hence, they are not capable to create better abstrac-
tions to the notion of DSAs, leaving to the student to reason about
it on a non-intuitive representation of the program memory.

554

AVS tools, on the other hand, try to cover abstract concepts
of the DSAs through the inspection of the algorithm logic. This
might help students to construct mental models and generalize their
problem-solving patterns [26]. AVS tools are much less dynamic
than PVS tools as they are specialized in providing visualizations
to a small predefined set of DSAs, not allowing any modifications
to the program source code.

There are already several tools for program visualization, and
even more are created every year, as they continue receiving atten-
tion from educators and researchers. Most of these tools are tied to
particular domains such as advanced debugging and profiling tools
[4-6, 14, 21]. A survey with older tools focused on education can
be found in [22] and [8]. Although some of these tools had good
results among instructors and students, they are now outdated and
not maintained anymore, making it hard to effectively use them.

One of the best known tools is Python Tutor! [10], this tool has
a very large user base and it is the base for other tools such as
OPT+Graph [6] and Omnicode [13]. These tools are categorized
as PVS tools, as they were built to work with any simple program
input, but they do not provide specialized visualization for specific
algorithms, nor allow modifications to the generated visualization
itself.

http://www.pythontutor.com/

RIGHTS LI

Willow: A Tool for Interactive Programming Visualization

<module>
msort
msort msort join
ms... msort join ms.. msort join
ms... jo... ms... join
<module>
gsort
gsort gsort
qsort gs... gs... gsort
gsort
gsort

Figure 2: Stack story of recursive mergesort and quicksort
algorithms respectively. Every element in the stack is click-
able, by doing this, Willow will draw the beginning selected
scope.

Other modern tools such as VisuAlgo?, Algoviz® and OpenDSA*
are also well known. These tools belong to the AVS category, they
have well made visualizations, but for a limited number of DSAs.
They also do not allow any modifications to the source code, making
it impossible to modify the existing visualizations or create new
ones.

3 WILLOW

We propose Willow, a web-based tool for generating interactive
examples of DSAs. Willow is a PVS tool that allows the manipula-
tion of its visual elements, allowing the creation of more expressive
AVS-like visualizations. Because of that, Willow’s primary targets
are the instructors, as they use the tool to create visualizations
for any program they want during class. Nevertheless, students
can also benefit from directly using Willow, as well as potentially
benefiting from the usage during class by the instructor.

3.1 Design

Figure 1 is a screenshot of Willow. The tool is divided into two
main groups of components. The components on the left side are,
respectively, (1) the code editor in which programs are written; (2)
the input editor that is used to send any input data the program
might need; and (3) the output editor that shows the data printed
to the standard output and occasional error information. The right
side contains the components with the role of showing program
data visualization. The component on top (4) shows the history of
a program’s stack. Below (5), the current state of the program is
displayed as a graph. The tool is meant to work under the following
assumptions:
e The tool expects that all contents of a program must be in
a single file and written in one of the supported languages.

Zhttps://visualgo.net/
Shttp://www.algoviz.net/
“https://opendsa-server.cs.vt.edu/

Ay

555

SBES 2019, September 23-27, 2019, Salvador, Brazil

dict
bool False
int 123
float 122
str string
ref
list T~
0 1 2 3 4 ‘ \\'st
False | 123]1.23 | string | 1% - empty
tuple /
1:23

Figure 3: Willow visualization nodes. The node at the top isa
map type, the nodes at the center are array type and the node
at the bottom is a field node. Empty nodes may be objects or
collections without elements or fields.

Since our main goal is to support introductory program-
ming classes, we believe that requiring everything to be in
a single file is reasonable. Language support is discussed in
Section 3.3;

Programs have limited size and restricted access to some li-
braries and features of the selected language, e. g., file system,
threading support and network access. These restrictions
were created to avoid any kind of abuse towards the tool
usage;

Program state is drawn as a graph of nodes and directed
links, which represent objects and its references respectively.
The way a node is drawn depends on the type of object and
some user parameters that we discuss in Subsection 3.2

Program visualization tools can have an automatic or manual pro-
gram navigation system. Tools that use automatic navigation will
slowly pass through the program steps nonstop until the running
algorithm reaches the end, whereas tools with manual navigation
depend on the user input to take some action. The latter tools have
different ways to implement user interactions to navigate through
the program steps, such as clicking in buttons, using range sliders
or moving the cursor to some point of the code.

We choose to implement a manual navigation strategy, combin-
ing two ways to interact with the program. It allows the user to go
to an specific scope of the program just by clicking on any of the
drawn scopes in the stack component showed in the Figures 2 and 1.
By doing this, the first step on that scope is picked and drawn. The
user can also click on the scope flaps as it allows fast navigation
to intermediary or final points of the scope. The second way to
navigate is using the keyboard arrows and modifier keys. This is
used to advance and go back a single step at a time. By using the
modifier keys, it can skip steps in function calls.

Algorithm implementations usually require some input data to
be tested, Although this data might be provided by the program
code itself, sending test data through an input stream is common,
as the user does not need to change the program. Willow’s input

RIGHTS LI

SBES 2019, September 23-27, 2019, Salvador, Brazil

list

W

Figure 4: Numeric arrays shown as Bars nodes with different
visualization parameters.

support is particularly useful because the program input can be
used to generate different examples for the same algorithm.

3.2 Visualization

Willow’s visualizations are generated from the program states and
some parameters managed by the user. Each object of a program
is by default associated to some kind of node. Nodes are the way
Willow represents the objects in the graph. Willow has four types
of nodes that are currently implemented, but new nodes can be
added, allowing more algorithms to be better expressed. The nodes
are shown in Figures 3 and 4 and they are:

e array: The array node shows fields of the underlying object
as a horizontal list of its values. Array is the default node
for most of the numerically indexable types, such as default
implementations of arrays and lists. It is also the default for
unordered but iterable types such as sets.

o map: This node displays object fields as a pair of columns

of keys and values. This is the default for instances of user

classes and map-like objects.

field: Field is a node that can be used to show a single prop-

erty of an array or object. It is mainly useful for representing

user-created data structures, where objects may have many
properties, making it potentially cleaner and easier for un-
derstanding.

e bars: This node shows numeric arrays as groups of bars.
Each bar size is a proportion of the numeric value in the
array index related to the biggest and smallest numbers in
the same array. This node is further detailed in what follows.

Ay

556

Pedro Moraes and Leopoldo Teixeira

list

list

list

2 gl list
\7

list

4

st

1

Figure 5: Graph made of python lists with references among
them. These lists contain a number as one of their indices
and are modified in the visualization to be shown as Field
nodes.

Sorting algorithms are usually hard to be represented by tools
specialized in data structures visualization. Since these tools tend
to focus on user created objects and their composition in struc-
tures like linked lists or trees, they do not bother very much about
drawing arrays used by such kinds of programs.

Willow has special support for default implementations of nu-
meric arrays and lists, as these are data structures commonly used
in sorting algorithms. These algorithms usually have many steps
and if array objects are shown as a sequence of numbers, it may
be tricky to perceive any differences at each step of the sorting.
The implemented visualization is based in very common patterns
found in many examples of sorting algorithms, where numbers of
the array to be sorted are represented as vertical bars aligned side
by side as shown in Figure 4. This arrangement helps the user to
see what parts of the array are being sorted and how.

Willow allows object node types to be interchangeable if neces-
sary, changing the way they are displayed. This allows map-like
objects to be drawn as fields or array-like ones as maps, but not the
opposite. Because of this and the ability to freely change nodes po-
sitions, generated program visualizations can be modified beyond a
basic representation to express more accurately their abstract ideas.

Besides being able to switch among different kinds of nodes,
each node has a set of parameters that change their properties and
behaviours, influencing the way they are drawn. Figure 4 presents
two arrays using different sets of properties, the array at bottom has
its indices and values hidden and a smaller size per element. These
parameters modifications can cause big modifications. Another
example is shown in Figure 5. It is made only of list objects, which
would be impossible to visualize in other PVS tools.

Another feature is that it detects groups of objects of common
data structures like lists or trees. The collected group information
is used to create automatic layouts for these structures and make
them easier to understand. However, there are some conditions that
need to be satisfied for a group of objects to be correctly detected
as a data structure, and they are:

RIGHTS LI

Willow: A Tool for Interactive Programming Visualization

o The data structure must be made of objects of a single type.

There are no restrictions about using only user defined

classes, so language objects like arrays or dictionaries can

be used to compose these structures;

Objects of a data structure can contain references to other

objects which store values, these values shall have a different

type from the data structure objects type, otherwise they

will be detected as part of the structure;

e For a data structure to be detected, it must be directly refer-
enced by one of the variables in the program stack, or by an
object that is referenced by a variable in the stack.

Automatic layouts of data structures are manually triggered by
the user by double-clicking any node that belongs to a data structure,
it applies the layout to the inner elements that compose the data
structure but not the container. Figure 1 shows a doubly-linked list
auto layout being applied.

3.3 Language Back-ends

Python has been chosen as the introductory programming language
for CS1 courses across many universities. MIT and UC Berkley,
some of the largest departments of Computer Science and many
online courses such as Udacity > and Coursera ° use this language
[1, 10, 11]. Despite Python’s growing popularity, many CS1 courses
still use Java or even C/C++ as their introductory programming
language.

Based on that, we implemented Willow’s language support as plu-
gable back-ends, allowing the use of Willow with many languages.
Willow’s multi-language support works through an intermediary
program representation, which contains output, error messages,
scopes, variables and objects in the heap of a program. Language
back-ends are small programs that run and inspect received pro-
gram inputs and source code written in a chosen language, gener-
ating the intermediary program representation and sending it back
to Willow. We implemented back-ends for both Python and Java,
as they are the most popular languages in CS1 courses.

4 EVALUATION

As mentioned before, we conducted a preliminary evaluation of
the tool to validate its usability in CS1 classes. In our preliminary
evaluation, we ran a small qualitative study. The 7 participants of
our study were teaching assistants of CS1. The group of teaching
assistants was composed of undergraduate students in different
stages of the course, ranging from the first year to near the course
conclusion. CS1 teaching assistants, besides being students that
recently took such course, also usually give review lectures to the
students. Therefore, they are a good target to start experimenting.
The purpose of our study was to collect participants’ perceptions
about Willow and to identify future improvements. This study was
performed with a previous version of our tool that only supported
Python.

In the study, each participant received an introduction of how the
tool works and videos showing the tool’s features. The participants
were free to try out the tool. Most of them tried simple operations
with variables, functions, arrays and simple objects. Only two of the

Shttps://www.udacity.com/
Shttps://www.coursera.org/

Ay

557

SBES 2019, September 23-27, 2019, Salvador, Brazil

participants implemented linked lists. At the end of the study, the
participants answered a questionnaire and a short non-structured
debriefing interview session was conducted to collect impressions
and opinions about the tool features.

From the participants’ feedbacks’, we can highlight some of
them:

I enjoyed the tool and would use it in monitoring, mainly to
explain objects and references, which many students do not
understand references.

The tool is good, but not working with Java is a problem.
For students, seeing code in another language can confuse
and disrupt understanding.

Tjust didn’t like it because I can’t go back in the visualization,
Ialways have to run the program again and I have to navigate
the whole program again to get to the point I was before.

In an overview of our preliminary results, we found that all partic-
ipants had positive feelings about Willow. They all agreed in many
statements such as the capabilities of the tool to demonstrate data
structures and the ease of manipulating created visualizations. The
study is, of course, very preliminary. However, it already provided
useful feedback, such as implementing multi-language support and
backwards navigation.

5 RELATED WORK

Willow is in the intersection between PVS and AVS tools. Some
related PVS tools are UUhistle [25] and Jype [12], but these tools
are old and it does not seem that they are active anymore. Nev-
ertheless, Python Tutor and tools based on it, like Omnicode [13]
and OPT+Graph [6], are more modern and more closely-related to
Willow. Another tool that served as inspiration to Willow is Kanon
[16]. Despite this tool not being focused on computer learning, it is
very similar to Python Tutor and Willow.

Python Tutor and its derived tools are the main influences on
Willow. They have common features such as similar objects visu-
alizations, step-by-step navigation, input/output streams support
and multiple language backends. However, Python Tutor falls be-
hind Willow in the case of DSAs representation, as Python Tutor
is a basic PVS tool. It does not show good visualizations for any-
thing besides linked lists [10]. Moreover, it has an unmodifiable
layout of nodes, so the user can not rearrange the nodes to help its
understanding, which is bad for many DSAs visualizations.

Among PVS tools, Kanon is the only that allows moving nodes
freely and has an automatic layout system, but it has too many
constraints to work well. The generated representations are very
fragmented and it creates arrows with references even for primitive
types. This makes elements harder to understand, specially arrays,
because they look like any other object. Willow implements a layout
system which is inspired on Kanon but with fewer restrictions,
making it easier to use.

On the AVS tools side, Algoviz and OpenDSA only provide vi-
sualizations for a very small amount of DSAs. VisuAlgo has more
supported DSAs, with good visualizations for all examples. How-
ever, it does not allow modifications to the source code, and even
simple examples like linked list reversing or many algorithms on
graphs are missing.

"participants’ feedbacks translated to English

RIGHTS LI

SBES 2019, September 23-27, 2019, Salvador, Brazil

Pedro Moraes and Leopoldo Teixeira

PVS AVS
Willow Python Tutor+ Kanon | Vizualgo Algoviz
detailed algorithm visualizations | yes (after customization) no no yes yes
any program as input yes yes yes no no
multi-language support yes yes no no no
input/output support yes yes no no no
automatic layout yes (manually triggered) no yes yes yes

Table 1: Tools’ features

6 CONCLUSION

This work proposes Willow, a tool to support Data Structure and
Algorithms classes through the creation of interactive program
visualizations that can be used by instructors and students in the
teaching-learning process. Notable features are the ability to change
visualization elements, allowing it to act more like Algorithm Visu-
alization Simulation tools for any program the user inputs. Special-
ized nodes to show array data or select specific fields of an object
allow the user to better control which and how objects are shown in
order to make Data Structures and Algorithms easier to understand.

We ran an initial qualitative user study, showing that participants
had positive impressions about Willow. However, as the tool is still
in its early stages of development, it needs improvements to make
the tool more flexible to visualize more programs.

Future work includes developing new ways to visualize objects;
better automatic layout support for complex data structures like
graphs; and general visualization improvements. We also intend
to make an experiment with professors of Data Structures and
Algorithms and, Introduction to Computer Science to collect better
feedback, recommendations and make new findings about our tool.

ACKNOWLEDGEMENTS

We acknowledge support from FACEPE (IBPG-0751-1.03/18 and
APQ-0570-1.03/14), and CNPq (409335/2016-9). This research was
partially funded by INES 2.0, FACEPE grants PRONEX APQ-0388-
1.03/14 and APQ-0399-1.03/17, and CNPq grant 465614/2014-0.

REFERENCES

[1] Muhammad Ateeq, Hina Habib, Adnan Umer, and Muzammil Ul Rehman. 2014.
C++ or Python? Which One to Begin with: A Learner’s Perspective. In 2014
International Conference on Teaching and Learning in Computing and Engineering.
IEEE, 64-69.

David Bau, Jeff Gray, Caitlin Kelleher, Josh Sheldon, and Franklyn Turbak. 2017.
Learnable programming: blocks and beyond. arXiv preprint arXiv:1705.09413
(2017).

Katrin Becker and Melissa Beacham. 2000. A tool for teaching advanced data
structures to computer science students: an overview of the BDP system. In
Journal of Computing Sciences in Colleges, Vol. 16. Consortium for Computing
Sciences in Colleges, 65-71.

Alexandre Bergel, Felipe Banados, Romain Robbes, and David Réthlisberger.
2012. Spy: A flexible code profiling framework. Computer Languages, Systems &
Structures 38, 1 (2012), 16-28.

ANM Imroz Choudhury and Paul Rosen. 2011. Abstract visualization of runtime
memory behavior. In 2011 6th International Workshop on Visualizing Software for
Understanding and Analysis (VISSOFT). IEEE, 1-8.

Habibie Ed Dien and Yudistira Dwi Wardhana Asnar. 2018. OPT+ Graph: Detec-
tion of Graph Data Structure on Program Visualization Tool to Support Learning.
In 2018 5th International Conference on Data and Software Engineering (ICoDSE).
IEEE, 1-6.

Stephen H Edwards, Daniel S Tilden, and Anthony Allevato. 2014. Pythy: im-
proving the introductory python programming experience. In Proceedings of the
45th ACM technical symposium on Computer science education. ACM, 641-646.

Ay

558

[8] Eric Fouh, Monika Akbar, and Clifford A Shaffer. 2012. The role of visualization
in computer science education. Computers in the Schools 29, 1-2 (2012), 95-117.
Denis Gracanin, Kre§imir Matkovi¢, and Mohamed Eltoweissy. 2005. Software
visualization. Innovations in Systems and Software Engineering 1, 2 (2005), 221
230.
Philip J Guo. 2013. Online python tutor: embeddable web-based program visual-
ization for cs education. In Proceeding of the 44th ACM technical symposium on
Computer science education. ACM, 579-584.
[11] John Guttag. 2011. 6.00SC Introduction to Computer Science and Programming.
https://ocw.mit.edu/
[12] JuhaHelminen and Lauri Malmi. 2010. Jype-a program visualization and program-
ming exercise tool for Python. In Proceedings of the 5th international symposium
on Software visualization. ACM, 153-162.
Hyeonsu Kang and Philip J Guo. 2017. Omnicode: A novice-oriented live program-
ming environment with always-on run-time value visualizations. In Proceedings
of the 30th Annual ACM Symposium on User Interface Software and Technology.
ACM, 737-745.
Ravi Khatwal and Manoj Kumar Jain. 2016. An Efficient Application Specific Mem-
ory Storage and ASIP Behavior Optimization in Embedded System. INTERNA-
TIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS
7,7 (2016), 179-190.
Linxiao Ma, John Ferguson, Marc Roper, and Murray Wood. 2011. Investigating
and improving the models of programming concepts held by novice programmers.
Computer Science Education 21, 1 (2011), 57-80.
Akio Oka, Hidehiko Masuhara, and Tomoyuki Aotani. 2018. Live, synchronized,
and mental map preserving visualization for data structure programming. In
Proceedings of the 2018 ACM SIGPLAN International Symposium on New Ideas,
New Paradigms, and Reflections on Programming and Software. ACM, 72-87.
Michael C Orsega, Bradley T Vander Zanden, and Christopher H Skinner. 2012.
Experiments with algorithm visualization tool development. In Proceedings of the
43rd ACM technical symposium on Computer Science Education. ACM, 559-564.
[18] Jibin Ou, Martin Vechev, and Otmar Hilliges. 2015. An interactive system for
data structure development. In Proceedings of the 33rd Annual ACM Conference
on Human Factors in Computing Systems. ACM, 3053-3062.
Yizhou Qian, Susanne Hambrusch, Aman Yadav, Sarah Gretter, and Yue Li. 2019.
TeachersaAZ Perceptions of Student Misconceptions in Introductory Program-
ming. Journal of Educational Computing Research (2019), 0735633119845413.
Yizhou Qian and James Lehman. 2017. StudentsaAZ misconceptions and other
difficulties in introductory programming: A literature review. ACM Transactions
on Computing Education (TOCE) 18, 1 (2017), 1.
Katarzyna Romanowska, Gurpreet Singh, M Ali Akber Dewan, and Fuhua Lin.
2018. Towards Developing an Effective Algorithm Visualization Tool for On-
line Learning. In 2018 IEEE SmartWorld, Ubiquitous Intelligence & Computing,
Advanced & Trusted Computing, Scalable Computing & Communications, Cloud
& Big Data Computing, Internet of People and Smart City Innovation (Smart-
World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). IEEE, 2011-2016.
[22] Juha Sorva et al. 2012. Visual program simulation in introductory programming
education. Aalto University.
[23] Juha Sorva, Ville Karavirta, and Lauri Malmi. 2013. A review of generic pro-
gram visualization systems for introductory programming education. ACM
Transactions on Computing Education (TOCE) 13, 4 (2013), 15.
Juha Sorva, Jan Lonnberg, and Lauri Malmi. 2013. StudentsaAZ ways of expe-
riencing visual program simulation. Computer Science Education 23, 3 (2013),
207-238.
[25] Juha Sorva and Teemu Sirkia. 2010. UUhistle: a software tool for visual program
simulation. In Proceedings of the 10th Koli Calling International Conference on
Computing Education Research. ACM, 49-54.
Euripides Vrachnos and Athanassios Jimoyiannis. 2014. Design and evaluation of
a web-based dynamic algorithm visualization environment for novices. Procedia
Computer Science 27 (2014), 229-239.
Daniel Zingaro, Yuliya Cherenkova, Olessia Karpova, and Andrew Petersen. 2013.
Facilitating code-writing in PI classes. In Proceeding of the 44th ACM technical
symposium on Computer science education. ACM, 585-590.

(9]

(10

[13]

[14]

[15]

[16]

[17]

[19]

[20]

[21]

[24]

[26]

[27]

