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ABSTRACT

Evolving software product lines is often error-prone. Previous

works have proposed classifying product line evolution into safe or

partially safe, depending on the number of products that have their

behavior preserved after evolution. Based on these notions, it is

possible to derive transformation templates that abstract common

evolution scenarios, such as adding an optional feature. However,

existing works are focused on evaluating either safe or partially

safe templates. Hence, in this work we aim to characterize product

line evolution as a whole, measuring to what extent the evolution

history is safe compared to partially safe, to better understand

how product lines evolve. We measure how often existing tem-

plates happen using 2,300 commits from an open-source product

line. According to our study, 91.7% of the commits represent par-

tially safe evolution scenarios. Our results also show that 1,800

of these commits can automatically be classified as instances of

existing templates. Among these, commits that do not modify other

variability-aware models, are the most frequent, accounting for

72.3% out of the total of commits. For the remaining 500 commits,

we identify that 24.4% are related to changes in the configuration

knowledge, that is, the file responsible for the mapping between

features and code.
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1 INTRODUCTION

Software Product Line (SPL) engineering allows developers to gen-

erate customized products according to customers needs in a sys-

tematic way through reuse [20]. As with regular software systems,

SPLs evolve over time. Adding new features, improving the quality

of existing products, or fixing bugs are common changes to SPLs.

Nonetheless, in this context, evolution presents different challenges.

For instance, changing a single feature might affect a range of valid

products. Due to these error-prone changes, research studies fo-

cus on understanding SPL evolution aiming to help developers

minimize the impact yielded by changes [5, 14, 16, 18, 22].

To support developers on SPL evolution, a refinement theory [5]

was proposed, formalizing the Safe Evolution notion, which con-

cerns evolution scenarios where the behavior of all existing prod-

ucts should be preserved. Changes that are considered safe by this

notion include adding a new optional feature or refactoring some ex-

isting asset. Nonetheless, it is often the case that developers indeed

desire to change the behavior of existing products. Feature removals,

bug fixing, or functional changes, are examples of changes that may

affect the behavior of existing products, and thus would be con-

sidered unsafe. To consider such changes, Sampaio et al. proposed

Partially Safe Evolution [22], also based on the refinement theory.

This notion concerns evolution scenarios where the behavior of

only a subset of the existing products should be preserved.

The theories that establish safe and partially safe evolution no-

tions allow the derivation of transformation templates [3, 5, 17, 22],

that abstract a common evolution task, such as adding an optional

feature. These templates also establish the necessary conditions for

ensuring that the change is considered safe, or in the case of par-

tially safe changes, the set of products whose behavior is unaffected

by the change. Existing studies only consider either safe [3, 17]

or partially safe evolution [22] scenarios, and do not examine the

https://doi.org/10.1145/3302333.3302346
https://doi.org/10.1145/3302333.3302346
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interplay between those two notions. This work aims to character-

ize product line evolution as a whole, measuring to which extent

the evolution history is safe compared to partially safe. Thus, our

goal is better understanding of SPL evolution, that might result in

developing tools to assist developers on performing their changes.

This study then tackles two questions. First, how are changes
distributed in terms of safe and partially safe evolution during the SPL
evolution history? This might lead to patterns, such as performing

safe changes more often during the project initial phases, and later

mostly performing partially safe changes. Second, how often do
existing templates in the literature cover these evolution scenarios?
This question might serve as an assessment of previously proposed

templates, and can also lead to deriving new templates.

In order to answer these questions, we performed an empirical

study that analyzed 2,300 commits from the Soletta Project
1
, an

open-source framework for Internet of Things applications. We

automatically classify commits (evolution scenarios) into templates,

which can be done successfully for 78.3% of the commits. As ex-

pected, not all commits are automatically mapped to existing tem-

plates. Among the 500 remaining commits, 24.4% only modify the

mapping between features and code, without changes to the fea-

ture model or code. Furthermore, we also classify changes over the

remaining commits as safe or partially safe, while also categorizing

them using tags, in a way that might help revealing novel tem-

plates. Our results show that 91.3% of all 2,300 commits in Soletta

are categorized as partially safe evolution scenarios.

In summary, this paper provides the following contributions:

• an empirical study to better characterize SPL evolution, mea-

suring to which extent evolution is safe compared to partially

safe;

• a methodology for manually analyzing changes that might

reveal novel templates for expressing evolution scenarios.

The remainder of the paper is organized as follows: In Section 2

we explain basic concepts about SPL and its structure, aiming to

support the understanding about our study. Section 3 presents

our empirical study of Soletta, and Section 4 shows our results. In

Sections 6 and 7 we present threats to validity and related work,

respectively. Finally, we conclude our study in Section 8.

2 BACKGROUND

In this section, we present an overview of the essential concepts

used throughout this work. An SPL is usually organized into three

high-level spaces, which we refer to as Feature Model (FM), Config-
uration Knowledge (CK), and Asset Mapping [5, 19] (AM).

Features are used to specify and communicate the commonalities

and differences of the products [2]. They are usually organized into

Feature Models establishing common and variable features. Such

models establish which products can be derived through hierarchy,

dependencies, and constraints. Kconfig is a language used to man-

age variability in the Linux kernel
2
and other SPLs. Listing 1 shows

a Kconfig snippe from the Soletta project.

The config keyword defines a new named feature. This feature

is defined as boolean, so it might be optionally selected in a prod-

uct. The string that follows bool is the user-friendly name that

1
https://github.com/solettaproject

2
https://www.kernel. org/doc/Documentation/kbuild/kconfig-language.txt

might appear in a UI for configuring such models. A depends on

clause expresses the features dependencies that must be satisfied,

while select forces the selection of another feature. Finally, default

establishes the default value for the feature.

Listing 1: Feature declaration in Kconfig

config ECHO_SERVER_SAMPLE

bool " Echo s e r v e r "

depends on NETWORK_SAMPLE && NETWORK

s e l e c t HTTP

defaul t y

Assets make these features concrete and can be of various forms,

such as source code, documentation, and images. Listing 2 shows

the contents of the echo-server.c file. The Asset Mapping consists
of a mapping of names to the actual assets that might be used.

Listing 2: echo-server.c asset

# include " so l −v e c t o r . h "

# include " so l − u t i l . h "

s t ruc t queue_i tem {

s t ruc t s o l _ b u f f e r buf ;

s t ruc t s o l _n e two rk_ l i nk_ add r addr ;

} ;

We then need to associate features to assets (Configuration Knowl-
edge). In Kconfig-based systems, we do so throughmakefiles, config-
uration files written using the make language.

3
Listing 3 shows the

mapping of the ECHO_SERVER_SAMPLE feature to the echo-server.c
asset name, which in turn, refers to the actual asset.

Listing 3: Mapping feature to asset in Makefile

sample−$ ( ECHO_SERVER_SAMPLE ) += echo− s e r v e r

sample−echo−s e r v e r −$ ( ECHO_SERVER_SAMPLE ) : =

echo− s e r v e r . c

2.1 Safe Evolution

SPLs evolve over time. Since features might be spread throughout

many products, it is reasonable to affirm that modifications in SPLs

could be error-prone, since a simple change might impact several

products. Thus, research effort has focused on understanding SPL

evolution aiming to help developers minimize the impact yielded

during changes [12, 14, 18]. The concept of Safe Evolution [5, 17]

aims to support developers on performing behavior-preserving

changes. That is, all existing products should maintain their observ-

able behavior after the change. Examples of such changes include

code refactorings and adding optional features without changing

existing code. A refinement theory formalizes this concept [5], al-

lowing the derivation of transformation templates [3, 17, 23].

These templates abstract common changes, capturing properties

of the initial and evolved SPLs so developers only need to reason

over templates, instead of the formal definitions for safe evolution.

For instance, Figure 1 shows the Add new Optional Feature

template, which depicts adding an optional feature to an SPL. A

template has a left-hand side (LHS) pattern and a right-hand side

3
http://www.gnu.org/software/make/manual/make.html
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(RHS) pattern, establishing syntactic and semantic conditions for

applying a transformation. We use meta-variables to represent

SPL elements. If the same meta-variable appears in both sides,

the element is unchanged. Therefore, we see that we add a new

optional feature O, together with its corresponding asset (a’) and a

new mapping from an arbitrary formula e’ to the new asset.

Besides syntactic conditions, we also need to fulfill semantic

conditions expressed in the lower part. For this template, we can

use any arbitrary expression e’, provided that it is true when O
is selected in a product. Both the O feature and the asset name n’
must be new elements. Finally, the new products resulting from

adding O must be well-formed. The ⊑ symbol represents the refine-
ment notation, and according to the template, after adding the new

feature, all existing products are refined, since we only introduce

new products, and do not change the existing ones.

Figure 1: Add New Optional Feature template.

2.2 Partially Safe Evolution

During the SPL evolution history, some changes are not consistent

with the safe evolution notion. Many useful changes do intend to

change the behavior of at least some of the existing products, such as

bug fixes, or removing features. To provide support for developers

on these types of evolution scenarios, the concept of Partially Safe
Evolution was proposed [22], formalized through an extension of

the SPL refinement theory. The intuition for this notion is that even

though a change might not preserve the behavior of all products,

it might preserve the behavior of a subset of the existing products.

In the extreme scenario, a change might affect the behavior of all

products, and thus there is no support provided by the theories.

We can also derive transformation templates to abstract partially

safe evolution scenarios. For instance, Figure 2 represents the Re-

move Feature template. By following the established syntactic and

semantic rules, refinement holds for a specified subset of products

S . We observe that we remove theO feature from the initial FM (F ),
resulting in F ′. We also remove mappings referencing O from the

CK. We also remove assets associated with O from the AM.

There are also semantic conditions, such as ensuring that the

expressions in the mapping are related to O (e ′ ⇒ O), and that no

other mappings refer to O in the CK. The template also defines the

set of products (S) that have the behavior preserved after the change.
We use the ↾ operator to establish that any valid configuration from

F that does not include O has its behavior preserved. Finally, we

also need a well-formedness condition. Since we assume that assets

are removed, we cannot guarantee that existing products remain

well-formed, except those in S .

Figure 2: Remove Feature template.

3 EMPIRICAL STUDY

Existing works only focus on evaluating occurrences of either safe

or partially safe templates, but not both. Therefore, we believe it is

important to collect empirical evidence over how such scenarios

happen, so we can better understand how to support developers.

Thus, our goal is to characterize SPL evolution as a whole, mea-

suring to what extent the evolution history is safe compared to

partially safe. Our study aims to answer the following questions:

• RQ1: How are changes distributed in terms of safe and par-

tially safe during the history of a software product line?

• RQ2: How often templates cover these real scenarios?

To answer RQ1, we mined 2,300 commits from an existing SPL

(each commit is considered as an evolution scenario), classifying

them into safe or partially safe, observing the distribution of evo-

lution type over time. To answer RQ2, we automatically measure

the occurrence of nine templates from the existing template cata-

logue [11]. For the remaining commits, first we automatically divide

changes according to the modified spaces (FM, AM, and CK), and

then we manually characterize them using tags, whose frequency
might reveal potential novel templates. We present details over the

analyzed SPL in Section 3.1, the automated data extraction process

in Section 3.2, and the manual classification in Section 3.3.

3.1 Sample

As our object of study, we used Soletta, a development framework

with the goal of easing software development for IoT devices. Its

GitHub repository currently contains 3,086 commits. We choose

this project since it is structured as Linux, using Kconfig to manage

variability, C as the main programming language, and Makefiles to

map features to code. It is also smaller than Linux, which makes it

amenable to manual analysis. We analyze 2,300 commits, ranging

from the beginning of the project (June/2015) into the first release

(April/2016), to understand the evolution during this lifecycle.

3.2 Methodology

Figure 3 presents the methodology used in our study. In the LHS

we illustrate how we extracted information from the repository,

while in the RHS we show how we analyzed such data. We used
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three tools (see Steps 1.2, 1.3, and 2.5) in our evaluation: Feature

EVolution ExtractoR (FEVER) [8], Neo4j,
4
and Repodriller.

5

Figure 3: Overview of the methodology for the study.

FEVER (Step 1.2) is a tool for mining Git repositories in a feature-

oriented way. The tool extracts detailed information about changes

in three spaces: variability model, mapping, and implementation.

FEVER output is stored in a Neo4j dataset (Step 1.3). This graph-

based dataset contains nodes (entities), edges (relations), and prop-

erties (attributes) for each extracted commit. The three SPL spaces

are represented as FeatureEdit (FM), MappingEdit (CK), and

SourceEdit (AM) entities, respectively. Alternatively, the spaces

can also be expressed as ArtefactEdit entity with an attribute

type ranging among vm, build or source.
The data is stored on a Neo4j database. Previous works suggested

templates to avoid errors during SPL development (Step 2.1 in Fig-

ure 3). Aiming to investigate how often these templates occur in

practical scenarios, we use the Cypher query language to encode

nine existing templates (Step 2.2). Four of those are safe evolution

templates: Add New Optional Feature, Add Any Feature with-

out Changing CK and AM, Remove Unused Assets, and Add

Unused Assets. The remaining five are partially safe: Remove As-

sets and CK Mapping, Add Assets and CK mapping, Change

Asset, Change CK Lines, and Remove Feature.

To illustrate encoding templates into queries, consider the Add

New Optional Feature template from Figure 1. This template

expresses an evolution scenario in which a new optional feature

is added. We create queries based on the changes described by

the template, and the information stored by FEVER in the graph

database. Figure 4 shows an example of a query developed in our

study to capture evolution scenarios described by the Add New

Optional Feature template. This query yields all commits that

include a FeatureEdit where a feature is added (line 2) as an

optional feature (line 3). This commit also includes a MappingEdit
entity stating that the makefile includes a new mapping associating

the new feature name with some asset (line 4). Finally, the query

specifies that source files cannot be modified or removed, only

additions are allowed, to comply with what the template specifies.

We reuse existing queries for the partially safe templates [22].

To check that templates were precisely encoded, we manually

checked the results for all queries, to assess their precision. Further-

more, aiming to mitigate the bias of only the first author developing

4
https://neo4j.com

5
https://github.com/mauricioaniche/repodriller

Figure 4: Query related to Add New Optional Feature

template.

and confirming the accuracy of the queries, the third author also

blindly reviewed the results of each query, checking if the commits

were correctly classified by the query. After both authors reviewed

all of the classified commits, the classifications were merged and re-

vised. In cases of doubt or disagreement, the second author acted to

reach consensus. The protocol for manually reviewing the commits

classified by the queries is available in our online appendix [10].

3.3 Classifying the Remaining Commits

Some commits are not matched by any query. So, we perform a semi-

automated analysis over such remaining commits. We developed

scripts in Repodriller (Step 2.5) to automatically extract certain

information from commits, such as what kind of files were changed,

from which SPL space, besides general information such as lines

added and removed, among others (Step 2.6).

Moreover, we also manually analyzed (Step 2.7 in Figure 3) such

commits, categorizing the changes using tags. The rationale is that
using such strategy, we might reveal opportunities for deriving new

templates, if we have sets of tags that frequently appear. We define

two dimensions for classifying the changes over these commits:

change type and tags. The change type varies among:

• New: used when there is a new instance of some tag change;
• Add: if there is, at least, one instance of some tag change
and a new is added;

• Remove: if there is some removal tag change instance;
• Change: if there is some change in an existent tag change;
• Move: used when there is some instance removed in a spe-

cific local to be placed in another one;

• Rename: rename of some artefact (file name, variable, path).

Further, we define tags to categorize changes according to the

characteristics of each space (Step 2.7). We use the following tags:

• AM: include (changes on include directives); ifdef
(changes on ifdef directives); changeAsset (changes that
modify an asset); addAsset (changes that add an asset);

removeAsset (changes that remove some asset).

• CK: ifdef (changes on ifdef, ifneq, or ifeq directives);

mapping (changes on mappings from features to assets);

build (rules specifying how assets must be built).

• FM: depends (changes to depends on clause); select
(changes on select expression); feature (changes on

config expression); default (changes on default expres-
sion); menu (changes on menu expression).

https://neo4j.com
https://github.com/mauricioaniche/repodriller
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Figure 5: Example of evolution scenario.

We classified each of the remaining commits with these tags and

change types, besides categorizing them as safe or partially safe. As

an example of applying such tags, suppose the evolution scenario

of a Kconfig file illustrated in Figure 5. Before the change (LHS),

there was no instance of depends on clause, and existing select
and default expressions. We should then classify this commit as

follows: new as change type and depends as FM tag; change as

change type and default as FM tag; add as change type and select
as FM tag. Regarding the evolution type, we adopt a conservative

stance, and anytime we cannot fully guarantee that the behavior

for all SPL products is preserved, we mark the commit as partially
safe. Similar to the manual query analysis, the manual analysis over

the remaining commits was also performed by two authors, aiming

to ensure consistency over the results and avoid bias. However, in

this phase there were no disagreement scenarios.

4 RESULTS

We then present the results of our study described in Section 3.

4.1 Commits classified as templates

After encoding some of the existing templates into queries to auto-

matically classify commits, we obtained the following results. From

the 2,300 commits which we analyzed, 1,810 of those were auto-

matically classified by the queries. After our manual analysis, there

were doubts over 23 of the commits classified. The second author

analyzed those cases, and we ended up discarding 10 commits out

of these 1,810, since they did not exactly match the templates: six

from Add New Optional Feature, three from Remove Feature,

and one from Add Any Feature without Changing CK and

AM. For example, there are two instances of commits consisting of

feature renaming. FEVER captures those as instances of the Remove

Feature template, since the feature being renamed shows up in

the commit diff as being removed and a supposedly new feature is

added. We ended up with 1,800 commits automatically classified

into templates, representing 78.3% of the entire sample. Table 1

shows the amount of commits yielded for each of the templates,

after performing the manual analysis of the query precision.

The numbers in Table 1 show that the Change Asset template is

the most frequent template throughout the history of Soletta. This

template consists of arbitrary changes to assets, without modifying

the FM and CK. In contrast, the queries for the partially safe tem-

plates Add Assets and Remove Assets did not yield any commits.

Although the template names might give the intuition that these

templates represent solely adding (or removing) an asset, the tem-

plates also require that the mapping in CK is also added or removed

together with the asset, with no changes to the FM. Therefore, we

believe this is due because it is more frequent that when assets are

added together with changes to the Makefile, it is usually in the

Evolution Template Commits

partially

Remove Assets 0 (0%)

Add Assets 0 (0%)

Change Asset 1,662 (72.26%)

Change CK lines 35 (1.52%)

Remove Feature 2 (0.09%)

safe

Add new Optional Feature 56 (2.44%)

Add feature without change CK and AM 5 (0.21%)

Remove unused assets 6 (0.26%)

Add unused assets 34 (1.48%)

Table 1: Amount of commits returned by queries.

context of adding a new feature, which changes the FM. Moreover,

changes occur in assets already mapped in the Makefile rather than

adding or excluding both mapping and asset files together.

There are only two instances of the Remove Feature template.

The query actually yields five commits, but there were three false-

positives related to renaming, which we manually excluded, as

previously mentioned. The Add Unused Assets template had 34

occurrences. Adding an asset without associating it with a feature

preserves behavior. These assets might be mapped to some feature

later in the evolution history. It might be the case that this later

change does not preserve the behavior for some of the products.

Figure 6 represents a timeline of the number of commits per

month for each template used in our work, except for Change

Asset, which due to its high occurrence, would difficult the vi-

sualization of the other commits. So, according to the plot, we

can observe that although Add New Optional Feature is spread

throughout the period considered in this evaluation, there are more

instances of the template in the beginning of the project. There

are few instances of the Remove unused Assets template, and

surprisingly, most of them occur on the beginning of the project.

4.2 Remaining Commits

This section presents our analysis of the remaining commits, that

is, all commits that are not automatically categorized as templates.

We first divide the commits into groups according to the SPL space

changed and their combination: [AM], [CK], [FM], [FM, CK], [FM,

AM], [CK, AM], [FM, CK, AM]. Figure 7 illustrates how each space

(and their combination) changes for the remaining commits. We

observe that the most frequent group is is that of modifying the

CK and AM together [CK, AM], resulting in 137 commits from an

amount of 500, representing 27.4% of the remaining commits. The

second one is [CK], consisting of 24.4% of the commits. The group

with the fewest number of commits is [FM, AM], representing 3%.

We then classify each commit according to the change type and
tags specified in Section 3.3. Recall that each modified space (AM,

CK, or FM) in the commit could be classified with more than one

change type and tags, as wementioned before according the Figure 5.

In what follows, we present some results.

AM changes (5.5% safe vs 94.5% partially safe). Among the

changes performed only in assets, 83% modify and add assets in the

same commit. From all commits, only 5.5% present ifdef directives.
On the other hand, the include tag is present in 35.6% of the

commits. To precisely determine if a change in an asset affects
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Figure 6: Timeline Templates - without change asset.

Figure 7: Modified Spaces in Remaining Commits.

the behavior of an existing product, we would have to run tests or

use some verification technique. Therefore, similar to the Change

Asset template, we conservatively establish that arbitrary changes

to assets are partially safe. Therefore, there could be more instances

of safe evolution scenarios than those we have classified.

CK changes (19.7% safe vs 80.3% partially safe). In scenarios

that only modify the Makefile, several commits present changes

related to build rules (about 65%). Fewer are related to mapping
features and assets (around 12.3%). Moreover, only 4.9% commits

were classified with the ifeq tag.We argue that the high occurrence

of build compared to the low number of mapping and ifeq tags
are due to changes in CK being followed by changes in other spaces.

FM changes (8.2% safe vs 91.8% partially safe). Most of the

changes which modify the Kconfig only are related to the depends
on clause (60.41%). From all of those instances, 32% insert the first

dependency related to a feature (new change type). The default
and select tags are present in 14.6% of the commits. Only three com-

mits modify features, where two move features and one removes a

feature (classified according to each respective change type).
AM and CK changes (21.2% safe vs 78.8% partially safe).

Considering this subset of commits, only 24.8% of code changes

(AM) relate to ifdef directives, and 40.8% present include tags. On
the other hand, around 16% of CK changes present ifdef directives.
Considering only the AM, changes add assets in 43% of the commits,

while if we consider only the CK, changes modify the mapping in

57% of the commits. Otherwise, 36.5% of the commits perform both

changes at the same time: changing the mapping and adding a new

asset. As mentioned before, there are moremapping instances in the
AM and CK group than commits which only modify the CK.We also

tagged 41.6% commits as changes involving build rules. Moreover,

we found three safe evolution scenarios that are consistent with

the Split Asset safe evolution template [5].

CK and FM changes (38.5% safe vs 61.5% partially safe).

Considering the changes to the FM, we observe that 42.3% commits

change feature dependencies. Most of those changes increase the

number of dependencies (add change type). Analyzing changes

to the CK, we observe that 65.4% of commits were classified with

the mapping tag. In contrast to the CK group, only 19.3% from all

commits present changes related to build rules. Moreover, 23% of all

commits from this group involve an addition of depends on clause

in the Kconfig together with changes to mapping in the Makefile.

AM and FM changes (33.3% safe vs 66.7% partially safe).

Among the AM changes, there are no additions nor removals, only

changed assets. In the FM, few commits add features (around 26%),

but in contrast, 40% modify the depends on clause. Evaluating

the AM space separately, 26.6% and 13.3% from all commits were

classified, respectively, with the include and ifdef tags.

AM, CK and FM changes (23% safe vs 77% partially safe)

Around 13% of the scenarios which simultaneously modify the three

SPL spaces contain an instance of the Add NewOptional Feature

template together with some other type of change in the commit,

such as changes to ifdef directives. Among those instances there

are three commits which only contain Add new Optional Fea-

ture template (three false-negatives), which were not captured by

FEVER. We believe that this is due to the fact that certain kinds of

assets from Soletta were not properly captured by the FEVER tool,

such as .json or .fbp sources, and documentation files. Observing

each space individually, FM presents 19.2% of depends on changes,
less than evolution scenarios which only modify the FM. In con-

trast, modifications over the config expression account for 64% of

changes. Regarding the CK, 79.5% of changes are categorized with

the mapping tag, and only 11% change build rules. Around 36% of

the changes to the AM are associated to the ifdef tags, while 37%

are related to include tags. Moreover, 52% of commits present an

added asset, but in contrast, only 2 commits remove assets.

5 DISCUSSION

In this section, we discuss our results according to the research

questions. For the 1,800 commits classified as templates, the evolu-

tion type only depends on the template specification. For instance,

commits classified as Add new Optional Feature are safe, while
commits classified as Remove Feature are partially safe. For the
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remaining ones we classified according to our manual analysis.

Finally, we report our results to our research questions:

RQ1: How are changes distributed in terms of safe and

partially safe during the history of a software product line?

Figure 8 illustrates a timeline from our sample of 2,300 commits

according to the evolution type, safe or partially safe. As a result,

partially safe changes are more expressive during the entire Soletta

history which we evaluated, representing 91.3% of the commits,

while safe changes account for 8.7% only. These partially safe sce-

narios are mostly occurrences of the Change Asset template. Since

we consider all instances of this template as partially safe, there
might be instances where assets are changed in a safe way, which
would be consistent with the Refine Asset safe evolution template.

Thus, it could be the case that there are safer evolution scenarios

in such commits. Nonetheless, we do not believe that this would

drastically change the numbers. Some scenarios are trivially safe,

even through manual analysis, such as rename cases, for example.

However, most of the changes are not easy to classify, so in such

cases, we classified the change as partially safe evolution.

In terms of patterns for the remaining commits, as aforemen-

tioned, commits with changes to both AM and CK present the

highest occurrence rate. After classifying the remaining commits in

terms of change type and tags, we observe some patterns according

to the modified spaces. For instance, in scenarios changing only

the CK, the most common change is related to build. In contrast,

evolution scenarios which modify both CK and AM present more

changes related to mapping than build changes. This indicates the

need for deriving templates to support these kinds of changes.

RQ2: How often templates cover these real scenarios?

As mentioned before, existing templates and their respective

queries cover 78% of commits from our sample. In fact, we did not

use all of the available templates to perform queries. Through our

manual analysis, we identify that some of the remaining commits

are also classified as an already existing template. For instance,

there were some evolution scenarios in the AM, CK, and FM changes
group which we classified using existing templates, which were

not feasible to express in queries, such as Split Asset and Merge

Assets. These templates include asset refinement as one of the

semantic conditions, which is an information that cannot be queried

against the database.

Despite most evolution scenarios being classified as templates, a

reasonable number were still unclassified. In fact, most of existing

templates in the catalog [11] focus on changes solely to the FM, or

co-evolution of FM and other spaces. However, when evaluating

the remaining commits, we observe that some recurrent scenarios

can be deeper analyzed to further derive new templates. Our results

show that there is a lack of templates considering changes to FM

and CK, such as adding feature dependencies in Kconfig, and simul-

taneously, changing the mapping in the Makefile. Also, there is a

reasonable number of evolution scenarios that change the mapping

in the Makefile and add some assets (AM).

6 THREATS TO VALIDITY

As any case study, our exploratory work also presents threats to

validity. This section discusses some of those threats inwhat follows,

according to guidelines from Runeson et al. [21].

Internal Threat: We define as a first internal threat the tools

used in our study. The FEVER tool was developed based on the

Linux structure, and Soletta is a project that follows a similar struc-

ture, which makes the tool to work as expected. To analyze that the

queries that we created based on this structure are not biased, we

manually checked each one of the commits yielded by the queries.

Nevertheless, a single-person analysis could also introduce bias in

the results. This way, we consider the manual analysis as a second

internal threat. Aiming to mitigate this threat, we had another au-

thor reviewing the results to increase the confidence of our analysis.

Thus, all results were checked and analyzed in pair. Although we

have tried to mitigate this threat, our manual analysis still might

have classified some evolution scenarios incorrectly. Moreover, to

solve doubts in the consensus phase, for some of the analyzed

commits, we discussed with a third researcher that supervised the

consensus phase. There was no strong disagreement. We also make

available in our online appendix [10] the study package, including

the commits covered by templates and also the dataset with the

remaining commits tagged by keywords and change types.

External Threat: Our study analyzed only one project, and

we consider this as an external threat. However, the Soletta struc-
ture is similar to other SPL projects which use Kconfig to manage

variability and the C language for implementation. We have con-

ducted a preliminary study with commits from the Linux kernel

and the automated classification reveals similar numbers. We also

make available our methodology, allowing future analysis in other

projects to confirm our results.

Reliability Threat: Runeson et al. [21] present the Reliability

concept that concerns to what extent the dependency of the work

results by the research authors. To mitigate the bias, we make

available our methodology to yield further analysis from other

researchers’ perspectives. Furthermore, the study materials are

avaliable in the online appendix, aiming to further reproducibility

and replicability of our work.

7 RELATEDWORK

The work reported here is based on existing studies over SPL refac-

toring and evolution [1, 3–5, 16, 22]. Alves et al. [1] extend refac-

toring concepts to the SPL context, proposing a catalogue of FM

refactorings. The notion of Safe Evolution discussed here first ap-

peared with a refactoring focus [4], illustrating different kinds of

refactoring transformation templates that can be useful for deriving

and evolving product lines. Borba et al. [5] mechanized and gener-

alized the initial proposal into a refinement theory, introducing and

proving soundness for a number of SPL transformation templates.

Based on this theory, with the goal of guiding developers in possi-

ble refinement scenarios, Neves et al. [16] and Benbassat et al. [3]

propose template catalogues to abstract Safe Evolution scenarios.

Finally, Sampaio et al. [22] extend the refinement theory with the

concept of partial refinement, establishing the concept of Partially
Safe Evolution. This concept allows supporting changes that pre-

serve the behavior for a subset of the existing products. This work

differs from these previous studies by focusing on both safe and

partially safe evolution templates, to understand the distribution of

such changes throughout the SPL evolution history.
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Figure 8: Timeline Safe vs Partially Safe Evolution from 2,300 Soletta commits.

Montalvillo et al. [15] perform a mapping study which classified

studies related to evolution in SPLs, and their results shows that few

studies focus on identifying changes in SPLs. Our work categorizes

changes performed during the SPL evolution history life-cycle,

measuring how often templates cover changes in real projects, and

also characterizing changes not mapped to existing templates using

change types and tags.

Dintzner et al. [7] present a tool named FMDiff to automatically

analyze differences in Linux Kconfig models. The change categories

are specific to structures found in Kconfig specifications, such as

feature dependency changes. This tool could be used to cross-check

our manual tag analysis of changes to the FM. Dintzner et al. [9]

also developed the FEVER tool, which we use in our evaluation, that

enables the commit analysis of Kconfig-based systems, extracting

feature-oriented changes from the commits. In our work, we go

beyond what FEVER is able to extract, since we also want to classify

commits as safe and partially safe.

Passos et al. [19] perform a study analyzing how evolution occurs

on the Linux kernel. Their study is focused on changes that involve

feature addition or removal. As a result, they also provide a pattern

catalogue, similar to the templates we discuss here. However, their

focus is not on categorizing such patterns as safe or partially safe.

In contrast, our study analyzed all of the commits, regardless of

specific changes to a particular SPL space such as the FM.

Bürdek et al. [6] propose an approach to document and classify

changes in feature diagrams using a logic-based formal framework.

They provide a catalogue describing structural changes in feature

models. Different from this study, our work analyze evolution sce-

narios and how those changes affect the three SPL spaces, not only

focusing in the FM. Moreover, our intention is also on classifying

scenarios into safe or partially safe, according to the kind of change.

Kröher et al. [13] perform a study to understand the intensity

of variability-related changes to the Linux kernel. They measure

how often changes occur in FM, AM, and CK, and how often do

those changes are related to variability information inside these

artifacts. Our work also investigate the intensity of changes for the

remaining commits, going into detail of what has been changed in

the tag classification. However, our focus is on classifying evolution

scenarios into safe or partially safe and to use the tags as a way to

derive new templates in the future. Nonetheless, their tool could

be a complementary tool to our analysis, and we could cross-check

our results to see if the same patterns that occur in Linux also hold

for Soletta.

8 CONCLUSIONS AND FUTUREWORK

In this work we evaluated 2,300 commits from the evolution history

of Soletta, aiming to characterize changes as being safe or partially
safe andmatching changes to existing SPL transformation templates.

As a result of our analysis, we obtain that 78.3% (1,800 occurrences)

of commits are covered by templates. We verify that in these cases,

most of the occurrences refer to the Change Asset template.

For the remaining commits, which amount to 500 occurrences

(21.7%), we conclude that commits which modify both the CK and

AM occur more frequently, explaining around 27.4% of the commits.

Commits that only change the CK are the second most common

occurrence instance (24.4%). In contrast, commits which present

changes in both FM and AM have the fewest instances (3%).

From the remaining commits, evolution scenarios which modify

the Kconfig present several changes related to depends on clauses.

Commits with changes only to the CK present most of the changes

related to build rules rather than the mapping between features

and assets.

As future work, we intend to perform a deeper analysis over the

1,662 occurrences of the Change Asset template. We also intend

to tackle the challenge of classifying evolution scenarios that are

spread inmore than one commit. Moreover, we intend to explore our

classification of change types, tags, and modified spaces to derive

new templates, for instance supporting co-evolution of FM and CK.

Finally, we intend to provide tool-support for SPL developers.
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