
Towards Efficient Analysis of Variation in Time and Space
Thomas Thüm
TU Braunschweig

Brunswick, Germany

Leopoldo Teixeira
Federal University of Pernambuco

Recife, Brazil

Klaus Schmid
University of Hildesheim
Hildesheim, Germany

Eric Walkingshaw
Oregon State University

Corvallis, USA

Mukelabai Mukelabai
Chalmers | University of Gothenburg

Gothenburg, Sweden

Mahsa Varshosaz
IT University of Copenhagen

Copenhagen, Denmark

Goetz Botterweck
Lero, University of Limerick

Limerick, Ireland

Ina Schaefer
TU Braunschweig

Brunswick, Germany

Timo Kehrer
Humboldt University of Berlin

Berlin, Germany

Figure 1: Variation in time: The Linuxmaster branch contains 61,261 revisions (i.e., commits) between July 2018 and June 2019.

ABSTRACT
Variation is central to today’s software development. There are two
fundamental dimensions to variation: Variation in time refers to
the fact that software exists in numerous revisions that typically
replace each other (i.e., a newer version supersedes an older one).
Variation in space refers to differences among variants that are
designed to coexist in parallel. There are numerous analyses to
cope with variation in space (i.e., product-line analyses) and others
that cope with variation in time (i.e., regression analyses). The goal
of this work is to discuss to which extent product-line analyses can
be applied to revisions and, conversely, where regression analyses
can be applied to variants. In addition, we discuss challenges related
to the combination of product-line and regression analyses. The
overall goal is to increase the efficiency of analyses by exploiting
the inherent commonality between variants and revisions.

CCS CONCEPTS
• Software and its engineering → Software product lines;
Software verification and validation; Software evolution.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SPLC ’19, September 9–13, 2019, Paris, France
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6668-7/19/09. . . $15.00
https://doi.org/10.1145/3307630.3342414

KEYWORDS
software configuration management, regression analysis, software
product lines, software evolution, software variation, variability
management, product-line analysis, variability-aware analysis

ACM Reference Format:
Thomas Thüm, Leopoldo Teixeira, Klaus Schmid, Eric Walkingshaw, Muke-
labaiMukelabai, Mahsa Varshosaz, Goetz Botterweck, Ina Schaefer, and Timo
Kehrer. 2019. Towards Efficient Analysis of Variation in Time and Space. In
23rd International Systems and Software Product Line Conference - Volume B
(SPLC ’19), September 9–13, 2019, Paris, France. ACM, New York, NY, USA,
8 pages. https://doi.org/10.1145/3307630.3342414

1 INTRODUCTION
Software development is challenged by two dimensions of vari-
ability. The continuous development and improvement of software
leads to numerous revisions of the software, which are supposed
to replace each other. We refer to revisions as variability in time.
Due to the high frequency of iterations it is often not feasible to
completely analyze each revision and it would involve redundant
effort as subsequent revisions are almost identical for large software
systems. For instance, the Linux kernel is developed by hundreds
of developers giving rise to 61,261 commits within the last year and
a peak of 1881 commits in a single week, whereas there are even
more revisions which did not make it into the master branch (cf.
Figure 1, data accessed on July 1st, 2019). In peak weeks, every five
minutes a new revision needs to be analyzed for the master branch
(i.e., compiled and tested during continuous integration).

https://doi.org/10.1145/3307630.3342414
https://doi.org/10.1145/3307630.3342414

SPLC ’19, September 9–13, 2019, Paris, France T. Thüm, L. Teixeira, K. Schmid, E. Walkingshaw, M. Mukelabai, M. Varshosaz, G. Botterweck, I. Schaefer, T. Kehrer

Besides variability in time, software is often developed in dif-
ferent variants that are designed to co-exist simultaneously. We
refer to those software variants as variability in space. There are
many reasons for the development of software variants, such as
alternative hardware, conflicting requirements, or the optimization
of non-functional properties. While for a low number of variants
clone-and-own may be used, many variants are developed with
dedicated implementation techniques in a product line [6, 14]. Prod-
uct lines enable to generate software variants (a.k.a. products) for a
selection of features. For instance, Linux has about 18,000 features
which are mapped to implementation artifacts by means of the C
preprocessor. While the exact number of features depends on the ar-
chitecture and revision, the number of variants grows exponentially
with the number of features [47]. To the best of our knowledge, the
exact number of variants is not even known for Linux. However, it
is consensus in the product-line community that it is not feasible
to analyze them all separately [1, 17, 21, 22, 25, 29, 41, 46].

Themassive variation imposed by revisions and variants requires
efficient analysis techniques [50]. We recognize that analyses for
revisions and variants have been proposed by largely different
communities. We refer to analyses that have been designed to ef-
ficiently analyze revisions as regression analyses. Examples for
regression analyses are regression testing [54], change impact anal-
ysis [9, 24], incremental program analysis [7, 13, 45], and regression
verification [19, 23]. In contrast, analyses devoted to the analysis
of variants are known as product-line analyses [47, 53]. Our goal
is to bridge the gap between those communities by systematically
discussing how regression analyses can be applied to variants and
product-line analyses to revisions. Furthermore, we discuss how
variation according to both dimensions, namely time and space, can
be efficiently analyzed. We refer to such analyses as product-line
regression analyses. Figure 2 gives an overview on the systematic
behind our discussions and illustrates the structure of this paper.
Overall, we make the following contributions:

• We provide a motivating example that illustrates the need
for efficient analysis of variants and revisions (Section 2).

• We discuss the application of techniques in both directions,
that is, the application of product-line analyses to revisions
(Section 3) and the application of regression analyses to
variants (Section 4).

• We discuss how product-line analyses and regression analy-
ses can be applied to both dimensions of variation (Section 5).

• Finally, we provide directions for future work that is needed
to overcome the identified challenges (Section 6).

2 MOTIVATING EXAMPLE
As a motivating example, we consider a single software product
with functionality to store multiple objects in a list. The product p1
is implemented by a single class called Store, as shown in Figure 3.
The initial version implements a read method that only returns
one object—the first object in the list. Later, this implementation is
extended by another method to read all objects in the list:

public Object[] readAll() { return values; } (1)

This change in the product’s implementation constitutes the
evolution of the product to a new revision p′1; we refer to this

V
ar

ia
b

ili
ty

 in
 S

pa
ce

 (
V

ar
ia

n
ts

)

Variability in Time (Revisions)

Regression
Analyses

Product-Line
Analyses

Product-Line
Regression
Analyses

Section 3.2

Section 5.1

Section 5.2

Section 5.3

Section 4.1

Section 4.2

Section 3.1

Figure 2: Efficient analyses for two dimensions of variability

evolution as variation in time, which is illustrated by the x-axis
in Figure 2. Revisions are typically managed by a version control
system [12], such as Git or Subversion. In this small example it
would be feasible to compile the new revision again from scratch,
but for large systems, such as Linux, this compilation can take hours.
In the example, we could avoid some checks for the unchanged
methods read and set by means of incremental compilation.

While product p′1 is supposed to replace product p1, there are
also cases where products are intended to co-exist in parallel. In
addition to the existing multi-storage functionality, we may need
support for single storage (which is less costly) and provide better
security to the storage system by introducing access control. We
refer to this kind of variation as variation in space, as illustrated by
the y-axis in Figure 2. To manage variation in space, version control
systems often do not scale considering that they are designed to
support revisions (variation in time) rather than variants (variation
in space). Although branches can be used to handle variation in
space to a limited extent [6], the number of required branches
can grow exponentially with the number of features due to the
combinatorial explosion of possible feature combinations.

With software product-line engineering, product variants are
automatically generated for a selection of features [6, 14]. For that

1 class Store {

2 private LinkedList values = new LinkedList();

3 Object read() {

4 return values.getFirst();

5 }

6 void set(Object value) {

7 values.addFirst(value);

8 }

9 }

Figure 3: A store for multiple objects (product p1) [47]

Towards Efficient Analysis of Variation in Time and Space SPLC ’19, September 9–13, 2019, Paris, France

1 class Store {

2 #IFDEF SingleStore

3 private Object value;

4 #ELSE

5 private LinkedList values =

6 new LinkedList();

7 #ENDIF

8 #IFDEF AccessControl

9 boolean sealed = false;

10 #ENDIF

11 public Object read() {

12 #IFDEF AccessControl

13 if (sealed)

14 throw new RuntimeException(

15 "Access denied!");

16 #ENDIF

17 #IFDEF SingleStore

18 return value;

19 #ELSE

20 return values.getFirst();

21 #ENDIF

22 }

23 public void set(Object value) {

24 #IFDEF AccessControl

25 if (sealed)

26 throw new RuntimeException(

27 "Access denied!");

28 #ENDIF

29 #IFDEF SingleStore

30 this.value = value;

31 #ELSE

32 values.addFirst(value);

33 #ENDIF

34 }

35 #IFDEF MultiStore

36 public Object[] readAll {

37 return values;

38 }

39 #ENDIF

40 }

Figure 4: An object store product line implemented with preprocessor annotations.

Store

Type

SingleStore MultiStore

AccessControl

Legend:

Abstract Feature
Concrete Feature
Mandatory
Optional
Alternative Group

Figure 5: Feature model of the object store product line [47]

to work, valid feature combinations need to be specified and fea-
tures need to be mapped to code artifacts [6]. The available features
and their valid combinations are typically specified by means of
feature models as illustrated in Figure 5. Our example has two
mandatory features that are mutually exclusive—SingleStore and
MultiStore—any valid product must have one of them, but not
both. In addition, we have an optional feature called AccessControl
that may or may not be included in a product. The feature model
specifies a total of four valid configurations each defined by a set
of selected features: c1 = {MultiStore}, c2 = {SingleStore}, c3 =
{MultiStore,AccessControl}, and c4 = {SingleStore,AccessControl}.
Figure 4 exemplifies how features can be mapped to code artifacts
with conditional compilation. A preprocessor can remove parts of
the code prior to compilation based on the selected features. For
instance, product p′1 discussed above can be derived automatically
by the preprocessor for the configuration c1.

While our example product portfolio evolves to add new variants
in space, variants may also be revised to improve their functionality,
resulting in revisions of variants. For instance, the change from
productp1 top′1 given in (1) may also be applied to an initial revision
of the product line and result in adding the lines 35–39 of Figure 4.
As the reader may have noticed, we introduced a type error by
lettingmethod readAll return a list of type LinkedList instead of the
specified return type Object[]. A further revised implementation

of the readAll method could be:

public Object[] readAll() { return values.toArray(); } (2)

This would consequently lead to new revisions of variants derived
for the configurations c1 and c3 since they contain featureMultiStore.
Even though the compilation error is resolved with this revision
of the product line, unit testing could uncover a security problem
with method readAll, as it grants access to sealed object stores.
Copying lines 12–16 to the beginning of method readAll would fix
that problem, but results in a further revision of the product line.

The detection of the compilation error and the security problem
is not straightforward for a product line. A particular challenge is
that we cannot simply compile and test the code without preprocess-
ing. In our example, a compiler would identify unreachable code in
Line 20, whereas the lines 18 and 20 are never included in the same
product. The brute-force strategy is to run the preprocessor with
every possible configuration followed by the actual analyses (e.g.,
compilation and testing). This strategy would identify the same
compiler error in two products and, thus, involve redundant effort.
While the brute-force strategy is feasible in our tiny example, it
cannot be applied to Linux with up-to 218,000 product variants.

In the past two decades, numerous approaches have been pro-
posed to analyze product lines more efficiently than with the brute-
force strategy [47]. However, they typically only focus on efficient
analysis of variants and not revisions. In contrast, regression analy-
ses focus on revisions, but not variants. In the following, we discuss
how to efficiently analyze variation according to a single dimension
of variation and with respect to both dimensions of variation.

3 APPLYING PRODUCT-LINE ANALYSES TO
VARIATION IN TIME

In this section, we discuss work on product-line analysis, that is,
analyses of software systems that explicitly consider variability in
space as depicted in Figure 2. Such an analysis exploits knowledge
about variability in some way to enable the efficient analysis of
product lines as we discuss in Section 3.1.

SPLC ’19, September 9–13, 2019, Paris, France T. Thüm, L. Teixeira, K. Schmid, E. Walkingshaw, M. Mukelabai, M. Varshosaz, G. Botterweck, I. Schaefer, T. Kehrer

!"#$%&'()*+,$ -*./01()*+,$

-,*'%",()*+,$
!"#&,++/23

!"#$%&'(

4

)
5

6
7

- 8

9

)"*&"+&%&,-./'012&'(

34",5*4
6*15$&'(

:/230,
!"#$%&'

Figure 6: The product-line analysis cube visualizes the space
of possible combinations of product-line analyses [53].

In case one wants to analyze different revisions over time in an in-
tegrated way, one can regard these different revisions as analogous
to variants. This opens the possibility of applying product-line anal-
yses to revisions, depicted as an arrow leading from product-line
analyses (top left) to regression analyses (bottom right) in Figure 2.
We explore this concept further in Section 3.2.

3.1 Product-Line Analyses
The idea of product-line analyses is to establish properties for all
products of a product line. Basically any of existing product analysis
can be lifted to the product-line level. These can be static analyses
like dead-code analyses, which aim at identifying code parts that are
not part of any variant [46] or type checking of product lines that
aims at identifying whether any variant violates typing rules [11,
27]. For instance, type checking can find the compilation error for
configuration c1 and c3 discussed in Section 2.

Many different analyses have been lifted to the product line
level [47]. However, the basic strategies applied can be divided into
three different categories: product-based, feature-based, and family-
based analysis as well as combinations thereof [47]. A product-
based analysis aims at analyzing the property for each product,
individually, concluding the property when all products have been
shown to exhibit the property. Feature-based analysis, in a similar
way, analyses the property for each feature in the product line.
Finally, family-based analysis aims to perform the analysis for the
whole range of domain assets in an integrated way, taking the
relevant variability explicitly into account.

The product-line analysis cube shown in Figure 6 builds on those
basic strategies and extends it to a formalization of product-line
analysis strategies [53]. It introduces three different strategies for
variability analysis: sampling, feature grouping, and variability
encoding. Sampling refers to the strategy of selecting a subset of
products and performing a product-level analysis on them. Using an
adequate sampling heuristic, this aims to establish a high probability
that if the property under analysis holds for the subset, it will
hold for all products. For instance, it would be sufficient to have
either c1 or c3 in the sample to detect the type error of our running
example. Feature grouping refers to the concept of focusing on
adequately selected subsets of features. Feature grouping does not

necessarily say anything regarding the completeness of the features
to be addressed. It can be combined with sampling, that is, only
addressing some features in total and making a heuristic argument
regarding the completeness, or it can select a subset of features
that allow for the sound conclusion that the property holds for all
features, if it can be shown for the subset [43]. It can also be a way
to subdivide the range of features, but all will be taken into account
over the complete analysis. Finally, variability encoding describes
the strategy of explicitly encoding the variability and using this
information within the analysis. The product-line analysis cube
allows designers of product-line analyses to choose any point in
the cube and to build such an analysis, whereas it depends on the
product line and type of analysis which point in the cube leads to
the most efficient analysis [53].

3.2 Reusing Product-Line Analyses for
Revisions

In principle, we can interpret a set of revisions as a set of products in
the sense of a product line. Thus, we can interpret variation in time
as variation in space, providing a pathway to apply product-line
analysis also to revisions. This way, product-line research and tools
may be applied as-is for the analysis of variation in time.

We can regard the differences that are created by updates from
one revision to another as features that exist in the product line.
For instance, the two revisions of the MultiStore, presented in (1)
and (2) in section 2, could be threated as two separate features—one
that reads only one value from the store and another that can read
all values. This would allow for the application of feature-based
analysis approaches to revisions. To the best of our knowledge, this
has not yet been done, but it would seem to be straightforward
with delta-based approaches like delta-oriented product testing [3].

A different angle would be to use a sufficiently expressive vari-
ation representation, which allows encoding revisions over time
in the same way that we represent variation in space. For example,
with an annotative variation representation such as #ifdefs (see
Listing 4) or the choice calculus [18], we can introduce a “feature”
corresponding to each revision of the program. Similarly, in delta-
modeling, revisions can be captured by deltas [31]. By encoding
revisions as variants, we can directly apply family-based analyses
designed for software product lines to entire revision histories. The
ability to efficiently analyze a large number of revisions in time as
well as in space opens up new potential applications, such as deter-
mining when a particular behavior or interaction was introduced,
supporting sophisticated ways of selectively undoing revisions or
cherry-picking patches, and more.

However, product-line analyses have so far hardly been applied
to the problem of analyzing revisions at scale. Reasons may be that
revision histories can be long and family-based analyses are more
expensive than the analysis of individual products. Since we usually
only care about a limited number of revisions in the history (e.g.,
major releases or specific time slices), more general approaches to
incrementalize and/or constrain family-based analyses are needed
to realize the full potential of such approaches. This opens a new
field for further research.

Towards Efficient Analysis of Variation in Time and Space SPLC ’19, September 9–13, 2019, Paris, France

4 APPLYING REGRESSION ANALYSES TO
VARIATION IN SPACE

In this section, we discuss work related to analyses applied in the
context of variability in time, namely revisions, as illustrated in
Figure 2. We use the term regression analyses to denote works that
apply verification and validation techniques over revisions, such
as regression testing [54], incremental program analysis [7, 45],
and change impact analysis [9, 24]. When considering revisions,
the main goal of these techniques is to ensure that the existing
software still behaves as expected after a change. We discuss ex-
isting approaches which are unaware of variability in Section 4.1.
We then present some works that apply regression analyses to the
variability context in Section 4.2. This corresponds to the arrow
from regression analyses (bottom right) to product-line analyses
(top left) in Figure 2.

4.1 Regression Analyses
In theory, to apply regression testing, an approach would be to
execute the entire test suite of a system again, to check behavior
preservation. However, the number of tests might grow together
with a system, making such an approach unfeasible in practice.
Therefore, such techniques usually consider what has been changed
in a particular evolution scenario, to increase efficiency by defin-
ing which tests should be executed, identifying redundant tests,
and establishing the priority for ordering test case execution [54].
In our running example, prioritizing a test case containing a call
to the readAll() function can lead to discovering the fault in the
implementation of the function.

A number of works have been proposed targeting incremental
analysis, such as separate compilation [13], to avoid recompiling an
entire program when there is some change in an interface. Recent
works also target incremental program analysis [7, 45], proposing
ways for tackling program changes in an efficient way. For instance,
Reviser [7] extends an existing framework for data-flow analysis to
enable recomputing analysis information after a program changes.
Its basic intuition is to identify changes based on the control-flow
graph of two program versions, and by establishing the origin of
changes, proceed on propagating and updating the results of the
analysis. IncA is a domain-specific language for specifying incre-
mental program analysis, which works in a declarative way over
AST representations of programs [45]. For both works, a speedup
is observed when compared with running the entire analysis again,
while no substantial overhead is introduced. Nonetheless, variabil-
ity is not considered.

4.2 Reusing Regression Analyses for Variants
If we want to apply regression analyses in the context of variants,
one option is to consider variants as revisions, then proceed to
apply standard regression analysis. The first issue that arises is the
number of variants, which might be challenging to deal with since
there might be a huge configuration space. One option is to focus
on a subset of the variants to reduce the effort of the analysis. In
some cases, it is feasible to consider only those products of interest
to particular customers—a common industrial practice [36], and in
other cases dedicated sampling techniques are required to derive a
sample with certain coverage guarantees [2, 52].

Lity et al. apply regression testing techniques to verify that
changes between variants are intended, to systematically exploit
reusability of test artifacts [32]. They use delta-oriented models
to capture commonalities and variabilities among variants. This
approach to modeling is used for reasoning about changes between
variants and test artifacts. Testing effort is reduced while main-
taining the same degree of test coverage. Heider et al. propose
Variability Modeling Regression Testing (VaMoRT) [24]. The ap-
proach relies on decision models as variability models, and allows
identifying the impact of changes to the variability models on ex-
isting products. It avoids testing all variants but rather focuses on
the already derived products, since the decision model stores con-
figuration decisions. Based on that, the approach regenerates the
products and computes the differences.

Another issue is the actual order in which variants are analyzed.
When we are considering variants, change is inherent among them.
Therefore, it could be the case that some changes are analyzed
more than necessary. Hence, an adequate order in which variants
are analyzed may result in minimal changes and avoid rework.
There is some work on prioritizing product orders for testing [3,
30]. Al-Hajjaji et al. [3] focus on obtaining higher coverage with
the goal of early fault detection. Therefore, it privileges selecting
dissimilar products when establishing an order. In contrast, the
work by Lity et al. [30] focuses specifically on leveraging an order
that might benefit incremental analysis. Thus, it prefers an order
in which differences between adjacent products are minimized.
Changes among products are captured in regression deltas, and
this enables graph algorithms to find an optimal product order.
However, this work mainly focuses on comparing products from
the same product-line revision. If we extend it to consider revisions
of variants, depending on the regression analysis and whether it
involves hardware to be reconfigured it could be necessary to have
a linear order of variants to be analyzed. This is opposed to a tree-
like regression analysis, in which the best match is found for each
variant in each of the revisions.

5 EFFICIENT ANALYSES FOR VARIATION IN
TIME AND SPACE

In the previous two sections, we discussed how to efficiently analyze
the variability induced by either variants or revisions. However,
software systems that exist in variants, evolve as well. Thus, as
illustrated by the motivating example in Section 2, there is potential
and a need for incremental analyses along both dimensions of
variation (i.e., time and space) simultaneously.

In this section, we aim to discuss different ways in which product-
line analyses and regression analyses can be applied to both variants
and revisions at the same time. In total, we discuss three different
strategies in the following three subsections: in Section 5.1 we
discuss how product-line analyses can be homogeneously applied
to revisions of variants. In Section 5.2, we complement this by
a discussion of how regression analyses can be simultaneously
applied to variants and revisions of variants. Finally, in Section 5.3,
we discuss the combination of product-line analyses with regression
analyses. This structure is also illustrated in Figure 2.

SPLC ’19, September 9–13, 2019, Paris, France T. Thüm, L. Teixeira, K. Schmid, E. Walkingshaw, M. Mukelabai, M. Varshosaz, G. Botterweck, I. Schaefer, T. Kehrer

5.1 Applying Product-Line Analyses to
Revisions of Variants

While there has been a considerable amount of work on product-
line analyses [47], most of it does not aim to save analysis effort
when applying it to multiple revisions of a product line. The naïve
way of applying any product-line analysis to multiple revisions
is to simply analyze every revision from scratch. However, this
does not take advantage of typically rather local and comparably
small changes to a product line [28]. For instance, in our motivating
example, a very small change was made to the implementation
of the MultiStore feature, affecting only two of the four possible
products of the product line; thus, an analysis of the whole product
line is unnecessary. Nevertheless, this naïve strategy may serve as a
baseline when evaluating the efficiency of more advanced analyses.

One strategy to avoid redundant effort under evolution is to iden-
tify which products are affected by the change. A common solution
is to classify changes to the product line into refactorings, special-
izations, generalizations, and arbitrary edits [5, 10, 15, 48]. When
applying a refactoring to a product line (i.e., the set of derivable
products is identical in both revisions) [49], there is no need to ana-
lyze the product line again, as long as it is verified that the change
is indeed a refactoring. When applying a specialization (i.e., some
products are removed but no new products are added) [15], then
an analysis is only necessary if the previous revision did produce
errors, as those may be fixed by means of the specialization. For gen-
eralizations and arbitrary edits (i.e., changes that add new products),
product-line analyses need to run again usually. Borba et al. gener-
alized refactorings, generalizations, and specializations with safe
evolution [8], which also incorporate changes to implementation
artifacts and not only feature models. Schulze et al. and Pietsch et
al. propose a catalog of refactorings [44] and a refactoring construc-
tion kit [39, 40] for delta-oriented product line implementations.
Sampaio et al.’s extension to partially safe evolution even allows to
classify which products are affected by a change [42]. Tool support
for classifying changes of the evolution history has been proposed
by Dintzner et al. [16].

As product lines can be arbitrarily complex and changes often
only have local effects, it has been proposed to modularize product
lines into multiple product lines [26, 43, 51]. The overall idea is that
a tool checks whether a change is local to an individual product
line; if it is indeed local, then it is sufficient to analyze changes only
locally and avoid the analysis of all product lines. This imposes
some constraints on how the product line is implemented and
modeled, but may significantly reduce the effort when analyzing
new revisions of the product lines.

Product-line analyses can be organized according to whether
their basic unit of analysis is a single product, a feature imple-
mentation (e.g., a component or plug-in), or the entire family of
products (see Section 3.1). Of these, perhaps feature-based analyses
best support product-line evolution, because they are inherently
incremental. After a revision, one needs only to re-analyze the fea-
tures that have changed. One challenge is that feature interactions
cannot be detected by a feature-based analysis, which is why it is
typically combined with a product-based or family-based analy-
sis [47]. So changing a feature implementation may also require
re-analyzing other unchanged features that potentially interact

with the changed feature. There is likely potential for reuse in these
analyses since presumably most code in other features does not
interact with the changed feature.

5.2 Applying Regression Analyses to Revisions
of Variants

Regression analyses are typically only applied either to revisions [7,
9, 24, 45, 54] or to variants [4, 47]. Applying a regression analysis
to both dimensions of variation is feasible, but there seem to be
many opportunities to make it more efficient that are not yet well
researched and discussed in the following.

A trivial way to apply regression analysis to revisions of a prod-
uct line is to follow the strategy described in Section 4.2 to apply
it to all variants of a revision and then to apply it from scratch to
the next revision, to which we refer to as variant-only regression
strategy. However, in this case we do not exploit the similarities
among the product-line revisions. In contrast, we may exploit the
similarities among the product-line revisions, by applying the re-
gression analysis to each variant with respect to its prior revision,
to which we refer to as revision-only regression strategy. However,
then we cannot exploit the similarities among variants within one
revision of the product line. Furthermore, it is necessary to have
a mapping from variants in the old product-line revision to the
variants in the new product-line revision [37]. Such a mapping may
not be easy to find depending on the kind of evolution that hap-
pened and the implementation technique for variation in space. For
delta-oriented product lines, the revision-only regression strategy
has been applied in the context of model-based testing [34]. A more
advanced strategy, as mentioned in Section 4.2, would be to find the
variant with the smallest number of changes to all those that have
been analyzed previously. This could include not only analyzed
variants of the old product-line revision, but also already analyzed
variants from the new product-line version.

As discussed in Section 4.2, the application of regression analyses
to product lines typically requires to sample products. When the
product line evolves, we can sample the product line again and then
apply regression analyses to those sample products. The creation
of a new sample can be avoided if none of the artifacts being used
as input to the sampling is affected [38]. For instance, if only the
feature model is used as input to the sampling algorithm, then we
only need to apply the sampling algorithm again on changes to the
feature model. However, there are many cases when the compu-
tation of a new sample cannot be avoided. While there are many
sampling algorithms for product lines [2, 52], they are typically
oblivious to the evolution of the product line [38]. In the context of
regression analysis, it would be favorable to retrieve a sample for a
new revision of the product line that is largely similar to the old
sample [37]. The reason is that the efficiency of regression analyses
typically depends on the number of changes and similar samples
could reduce the number of changes. Besides that, it could be more
efficient to adapt the old sample than to start over the sampling
algorithm from scratch [37].

Towards Efficient Analysis of Variation in Time and Space SPLC ’19, September 9–13, 2019, Paris, France

5.3 Combinations of Product-Line Analyses
and Regression Analyses

So far, we discussed how existing product-line analyses and regres-
sion analyses can be reused or extended to support variation in time
and space. Besides that, we could combine existing product-line
analyses and regression analyses or even invent new product-line
regression analyses. Both regression analyses and product-line anal-
yses have in common that they lift an existing analysis to some form
of variation, whether variation in time or variation in space. Ideally,
we would accomplish an efficient two-dimensional lifting by lifting
an existing analysis first to variation in time and then to variation
in space, or vice versa. Midtgaard et al. proposed to automatically
lift existing analyses for variation in space [35], which could be
a starting point for the automatic derivation of product-line re-
gression analyses. Two-dimensional lifting has great potential, but
it is unclear how much automation is feasible and how efficient
automatically derived analyses are.

A direct approach to perform such lifting would be to directly
combine an existing product-line analysis with a regression com-
ponent. As the analysis of real-world product lines shows that
individual commits in an evolution history typically have only a
very limited impact on the variability in a product line [28], one
can expect regression-based extensions of product-line analysis to
be very efficient as the updating of analysis results may be a rather
local affair. This idea has been applied to dead code analysis over a
significant part of the Linux kernel evolution history [20], leading
to a speedup over the baseline by an order of magnitude despite
the fact that any variability-relevant change of the build model and
variability model lead to a complete reanalysis.

Another perspective on product-line regression analyses is to
consider time as a fourth dimension in the product-line analysis
cube [53]. As discussed in Section 3.1 and illustrated in Figure 6,
the existing cube focuses on the mix and match of different analysis
strategies with the goal to provide efficient analyses. However, all
three existing dimensions, namely variability encoding, sampling,
and feature grouping, are mainly focused on variation in space. It is
an open research question how to extend the product-line analysis
cube to variation in time, but time could be considered as a fourth
dimension, or there could be several dimensions for variation in
time as there are also three for variation in space.

Another open research question is to what extent the realization
techniques for variation in space and variation in time have an
impact on the efficiency of product-line regression analyses. For
instance, are plug-insmore amendable to analysis than preprocessor
annotations? Do we need the change operations that have been
applied or is a diff equally good for analysis? Furthermore, it is
an open question whether analysis efficiency can be improved if
variation in space and variation in time are expressed by the same
means, as with higher-order deltas [31] or 175% modeling [33].

6 CONCLUSION AND FUTUREWORK
Today’s software development needs to cope with variation in time,
variation in space, or even in time and space. Crucial for quality
assurance and efficient analysis methods that take advantage of

commonalities arising from both dimensions of variation. Tradi-
tionally, regression analyses are used for variation in time and
product-line analyses are used for variation in space.

We discussed fundamental strategies to apply regression analy-
ses and product-line analyses to both dimensions of variation. In
particular, we identified how product-line analyses can be applied to
analyze variation in time, which seems to be a new application area
for many existing product-line analyses. That is, research results
of the product-line community could be reused by communities
working on regression analyses. While regression analyses have
often been applied to variation in space, we summarized common
challenges for their application to variants.

With product-line regression analysis, we denote analyses that
cope with variation in both dimension, namely time and space.
For that purpose, two-dimensional lifting of traditional analyses is
necessary with respect to both dimensions of variation. It requires a
community effort to identify how to automate the lifting according
to both dimensions and which strategies for lifting lead to the most
efficient analyses, perhaps also paving the way for an integration
of multiple strategies.

ACKNOWLEDGMENTS
In this paper, we summarize the insights of our discussions during
a breakout group at Dagstuhl 19191 on Software Evolution in Time
and Space: Unifying Version and Variability Management. We grate-
fully acknowledge discussions on sampling for product-line evolu-
tion with Sascha Lity, Tobias Pett, Malte Lochau, Sebastian Krieter,
and Tobias Runge. This work has been partially supported by the
German Research Foundation within the project VariantSync (TH
2387/1-1 and KE 2267/1-1), Science Foundation Ireland (13/RC/2094),
FACEPE (APQ-0570-1.03/14), CNPq (409335/2016-9), and the ITEA3-
project REVaMP2, funded by the BMBF (German Ministry of Re-
search and Education) under grant 01IS16042H.

REFERENCES
[1] Iago Abal, Jean Melo, Stefan Stănciulescu, Claus Brabrand, Márcio Ribeiro, and

Andrzej Wąsowski. 2018. Variability Bugs in Highly Configurable Systems: A
Qualitative Analysis. Trans. Software Engineering and Methodology (TOSEM) 26,
3, Article 10 (2018), 10:1–10:34 pages.

[2] Bestoun S. Ahmed, Kamal Z. Zamli, Wasif Afzal, and Miroslav Bures. 2017. Con-
strained Interaction Testing: A Systematic Literature Study. IEEE Access 5 (2017),
25706–25730.

[3] Mustafa Al-Hajjaji, Sascha Lity, Remo Lachmann, Thomas Thüm, Ina Schaefer,
and Gunter Saake. 2017. Delta-Oriented Product Prioritization for Similarity-
Based Product-Line Testing. In Proc. Int’l Workshop on Variability and Complexity
in Software Design (VACE). IEEE, 34–40.

[4] Nauman bin Ali, Emelie Engström, Masoumeh Taromirad, Mohammad Reza
Mousavi, Nasir MehmoodMinhas, Daniel Helgesson, Sebastian Kunze, andMahsa
Varshosaz. 2019. On the Search for Industry-Relevant Regression Testing Re-
search. Empirical Software Engineering (12 Feb 2019). https://doi.org/10.1007/
s10664-018-9670-1

[5] Vander Alves, Rohit Gheyi, Tiago Massoni, Uirá Kulesza, Paulo Borba, and Carlos
José Pereira de Lucena. 2006. Refactoring Product Lines. In Proc. Int’l Conf. on
Generative Programming and Component Engineering (GPCE). ACM, 201–210.

[6] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. 2013. Feature-
Oriented Software Product Lines. Springer.

[7] Steven Arzt and Eric Bodden. 2014. Reviser: Efficiently Updating IDE-/IFDS-based
Data-flow Analyses in Response to Incremental Program Changes. In Proceedings
of the 36th International Conference on Software Engineering (ICSE 2014). ACM,
New York, NY, USA, 288–298. https://doi.org/10.1145/2568225.2568243

[8] Paulo Borba, Leopoldo Teixeira, and Rohit Gheyi. 2012. A Theory of Software
Product Line Refinement. Theoretical Computer Science 455, 0 (2012), 2–30.

[9] Larissa Braz, Rohit Gheyi, Melina Mongiovi, Márcio Ribeiro, Flávio Medeiros,
Leopoldo Teixeira, and Sabrina Souto. 2018. A Change-Aware Per-File Analysis

https://doi.org/10.1007/s10664-018-9670-1
https://doi.org/10.1007/s10664-018-9670-1
https://doi.org/10.1145/2568225.2568243

SPLC ’19, September 9–13, 2019, Paris, France T. Thüm, L. Teixeira, K. Schmid, E. Walkingshaw, M. Mukelabai, M. Varshosaz, G. Botterweck, I. Schaefer, T. Kehrer

to Compile Configurable Systems with #ifdefs. Computer Languages, Systems &
Structures 54 (2018), 427–450. https://doi.org/10.1016/j.cl.2018.01.002

[10] Johannes Bürdek, Timo Kehrer, Malte Lochau, Dennis Reuling, Udo Kelter, and
Andy Schürr. 2015. Reasoning about Product-Line Evolution Using Complex
Feature Model Differences. Automated Software Engineering 23, 4 (2015), 687–733.

[11] Sheng Chen, Martin Erwig, and Eric Walkingshaw. 2014. Extending Type Infer-
ence to Variational Programs. ACM Trans. Programming Languages and Systems
(TOPLAS) 36, 1, Article 1 (2014), 1:1–1:54 pages.

[12] Reidar Conradi and Bernhard Westfechtel. 1998. Version Models for Software
Configuration Management. Comput. Surveys 30, 2 (1998), 232–282.

[13] Regis Crelier. 1994. Separate Compilation andModule Extension. Ph.D. Dissertation.
Institute for Computer Systems, ETH Zurich. ftp://ftp.inf.ethz.ch/doc/diss/
th10650.ps.gz

[14] Krzysztof Czarnecki and Ulrich Eisenecker. 2000. Generative Programming: Meth-
ods, Tools, and Applications. ACM/Addison-Wesley.

[15] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. 2005. Staged Config-
uration through Specialization and Multi-Level Configuration of Feature Models.
Software Process: Improvement and Practice 10, 2 (2005), 143–169.

[16] Nicolas Dintzner, Arie van Deursen, and Martin Pinzger. 2018. FEVER: An
Approach to Analyze Feature-Oriented Changes and Artefact Co-Evolution in
Highly Configurable Systems. Empirical Software Engineering (EMSE) 23, 2 (2018),
905–952.

[17] Sascha El-Sharkawy, Adam Krafczyk, and Klaus Schmid. 2017. An Empirical
Study of Configuration Mismatches in Linux. In Proc. Int’l Systems and Software
Product Line Conf. (SPLC). ACM, 19–28.

[18] Martin Erwig and Eric Walkingshaw. 2011. The Choice Calculus: A Represen-
tation for Software Variation. Trans. Software Engineering and Methodology
(TOSEM) 21, 1, Article 6 (2011), 6:1–6:27 pages.

[19] Dennis Felsing, Sarah Grebing, Vladimir Klebanov, Philipp Rümmer, and Mat-
tias Ulbrich. 2014. Automating Regression Verification. In Proc. Int’l Conf. on
Automated Software Engineering (ASE). ACM, New York, NY, USA, 349–360.
https://doi.org/10.1145/2642937.2642987

[20] Moritz Flöter. 2018. Prototypical Realization and Validation of an Incremental
Software Product Line Analysis Approach.

[21] Paul Gazzillo. 2017. Kmax: Finding All Configurations of Kbuild Makefiles
Statically. In Proc. Europ. Software Engineering Conf./Foundations of Software
Engineering (ESEC/FSE). ACM, 279–290.

[22] Paul Gazzillo and Robert Grimm. 2012. SuperC: Parsing All of C by Taming the
Preprocessor. In Proc. ACM SIGPLAN Conf. on Programming Language Design
and Implementation (PLDI). ACM, 323–334.

[23] Benny Godlin and Ofer Strichman. 2009. Regression Verification. In Proceedings
of the 46th Annual Design Automation Conference (DAC ’09). ACM, New York, NY,
USA, 466–471. https://doi.org/10.1145/1629911.1630034

[24] Wolfgang Heider, Rick Rabiser, Paul Grünbacher, and Daniela Lettner. 2012. Using
Regression Testing to Analyze the Impact of Changes to Variability Models on
Products. In Proc. Int’l Systems and Software Product Line Conf. (SPLC). ACM,
196–205.

[25] Christian Kästner, Paolo G. Giarrusso, Tillmann Rendel, Sebastian Erdweg, Klaus
Ostermann, and Thorsten Berger. 2011. Variability-Aware Parsing in the Presence
of Lexical Macros and Conditional Compilation. In Proc. Conf. on Object-Oriented
Programming, Systems, Languages and Applications (OOPSLA). ACM, 805–824.

[26] Christian Kästner, Klaus Ostermann, and Sebastian Erdweg. 2012. A Variability-
Aware Module System. In Proc. Conf. on Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA). ACM, 773–792.

[27] Andy Kenner, Christian Kästner, Steffen Haase, and Thomas Leich. 2010. Type-
Chef: Toward Type Checking #Ifdef Variability in C. In Proc. Int’l Workshop on
Feature-Oriented Software Development (FOSD). ACM, 25–32.

[28] Christian Kröher, Lea Gerling, and Klaus Schmid. 2018. Identifying the Intensity
of Variability Changes in Software Product Line Evolution. In Proceedings of the
22Nd International Systems and Software Product Line Conference - Volume 1 (SPLC
’18). ACM, New York, NY, USA, 54–64. https://doi.org/10.1145/3233027.3233032

[29] Jörg Liebig, Alexander von Rhein, Christian Kästner, Sven Apel, Jens Dörre, and
Christian Lengauer. 2013. Scalable Analysis of Variable Software. In Proc. Europ.
Software Engineering Conf./Foundations of Software Engineering (ESEC/FSE). ACM,
81–91.

[30] Sascha Lity, Mustafa Al-Hajjaji, Thomas Thüm, and Ina Schaefer. 2017. Op-
timizing Product Orders Using Graph Algorithms for Improving Incremental
Product-line Analysis. In Proc. Int’l Workshop on Variability Modelling of Software-
Intensive Systems (VaMoS). ACM, 60–67.

[31] Sascha Lity, Matthias Kowal, and Ina Schaefer. 2016. Higher-Order Delta Model-
ing for Software Product Line Evolution. In Proceedings of the 7th International
Workshop on Feature-Oriented Software Development (FOSD 2016). ACM, New
York, NY, USA, 39–48. https://doi.org/10.1145/3001867.3001872

[32] Sascha Lity, Malte Lochau, Ina Schaefer, and Ursula Goltz. 2012. Delta-Oriented
Model-based SPL Regression Testing. In Proceedings of the Third International
Workshop on Product LinE Approaches in Software Engineering (PLEASE ’12). IEEE
Press, Piscataway, NJ, USA, 53–56. http://dl.acm.org/citation.cfm?id=2666064.
2666078

[33] Sascha Lity, Sophia Nahrendorf, Thomas Thüm, Christoph Seidl, and Ina Schaefer.
2018. 175% Modeling for Product-Line Evolution of Domain Artifacts. In Proc.
Int’l Workshop on Variability Modelling of Software-Intensive Systems (VaMoS).
ACM, 27–34.

[34] Sascha Lity, Manuel Nieke, Thomas Thüm, and Ina Schaefer. 2019. Retest Test
Selection for Product-Line Regression Testing of Variants and Versions of Variants.
J. Systems and Software (JSS) 147 (2019), 46–63.

[35] Jan Midtgaard, Aleksandar S. Dimovski, Claus Brabrand, and Andrzej Wąsowski.
2015. Systematic Derivation of Correct Variability-Aware Program Analyses. Sci.
Comput. Program. 105, C (July 2015), 145–170. https://doi.org/10.1016/j.scico.
2015.04.005

[36] Mukelabai Mukelabai, Damir Nesic, Salome Maro, Thorsten Berger, and Jan-
Philipp Steghöfer. 2018. Tackling Combinatorial Explosion: A Study of Industrial
Needs and Practices for Analyzing Highly Configurable Systems. In Proc. Int’l
Conf. on Automated Software Engineering (ASE). ACM, 155–166. https://doi.org/
10.1145/3238147.3238201

[37] Tobias Pett. 2018. Stability of Product Sampling under Product-Line Evolution.
Master’s thesis. TU Braunschweig, Germany.

[38] Tobias Pett, Thomas Thüm, Tobias Runge, Sebastian Krieter, Malte Lochau, and
Ina Schaefer. 2019. Product Sampling for Product Lines: The Scalability Challenge.
In Proc. Int’l Systems and Software Product Line Conf. (SPLC). ACM. To appear.

[39] Christopher Pietsch, Timo Kehrer, Udo Kelter, Dennis Reuling, and Manuel
Ohrndorf. 2015. SiPL–A Delta-Based Modeling Framework for Software Product
Line Engineering. In International Conference on Automated Software Engineering.
IEEE, 852–857.

[40] Christopher Pietsch, Udo Kelter, Timo Kehrer, and Christoph Seidl. 2019. Formal
Foundations for Analyzing and Refactoring Delta-Oriented Model-Based Soft-
ware Product Lines. In Proc. Int’l Systems and Software Product Line Conf. (SPLC).
ACM. To appear.

[41] Hendrik Post and Carsten Sinz. 2008. Configuration Lifting: Verification Meets
Software Configuration. In Proc. Int’l Conf. on Automated Software Engineering
(ASE). IEEE, 347–350.

[42] Gabriela Sampaio, Paulo Borba, and Leopoldo Teixeira. 2016. Partially Safe
Evolution of Software Product Lines. In Proc. Int’l Systems and Software Product
Line Conf. (SPLC). ACM, 124–133.

[43] Reimar Schröter, Sebastian Krieter, Thomas Thüm, Fabian Benduhn, and Gunter
Saake. 2016. Feature-Model Interfaces: The Highway to Compositional Analyses
of Highly-Configurable Systems. In Proc. Int’l Conf. on Software Engineering
(ICSE). ACM, 667–678.

[44] Sandro Schulze, Oliver Richers, and Ina Schaefer. 2013. Refactoring Delta-
Oriented Software Product Lines. In International Conference on Aspect-Oriented
Software Development. ACM, 73–84.

[45] Tamás Szabó, Sebastian Erdweg, and Markus Voelter. 2016. IncA: A DSL for the
Definition of Incremental Program Analyses. In Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering (ASE 2016). ACM,
New York, NY, USA, 320–331. https://doi.org/10.1145/2970276.2970298

[46] Reinhard Tartler, Daniel Lohmann, Julio Sincero, and Wolfgang Schröder-
Preikschat. 2011. Feature Consistency in Compile-Time-Configurable System
Software: Facing the Linux 10,000 Feature Problem. In Proc. Europ. Conf. on
Computer Systems (EuroSys). ACM, 47–60.

[47] Thomas Thüm, Sven Apel, Christian Kästner, Ina Schaefer, and Gunter Saake.
2014. A Classification and Survey of Analysis Strategies for Software Product
Lines. Comput. Surveys 47, 1 (2014), 6:1–6:45.

[48] Thomas Thüm, Don Batory, and Christian Kästner. 2009. Reasoning about Edits to
Feature Models. In Proc. Int’l Conf. on Software Engineering (ICSE). IEEE, 254–264.

[49] Thomas Thüm, Christian Kästner, Sebastian Erdweg, and Norbert Siegmund.
2011. Abstract Features in Feature Modeling. In Proc. Int’l Systems and Software
Product Line Conf. (SPLC). IEEE, 191–200.

[50] Thomas Thüm, André van Hoorn, Sven Apel, Johannes Bürdek, Sinem Getir,
Robert Heinrich, Reiner Jung, Matthias Kowal, Malte Lochau, Ina Schaefer, and
Jürgen Walter. 2019. Performance Analysis Strategies for Software Variants and
Versions. In Design for Future—Managed Software Evolution. Springer, Berlin,
Heidelberg. To appear.

[51] Thomas Thüm, TimWinkelmann, Reimar Schröter, Martin Hentschel, and Stefan
Krüger. 2016. Variability Hiding in Contracts for Dependent Software Product
Lines. In Proc. Int’l Workshop on VariabilityModelling of Software-Intensive Systems
(VaMoS). ACM, 97–104.

[52] Mahsa Varshosaz, Mustafa Al-Hajjaji, Thomas Thüm, Tobias Runge, Moham-
mad Reza Mousavi, and Ina Schaefer. 2018. A Classification of Product Sampling
for Software Product Lines. In Proc. Int’l Systems and Software Product Line Conf.
(SPLC). ACM, 1–13.

[53] Alexander von Rhein, Sven Apel, Christian Kästner, Thomas Thüm, and Ina
Schaefer. 2013. The PLA Model: On the Combination of Product-Line Analyses.
In Proc. Int’l Workshop on Variability Modelling of Software-Intensive Systems
(VaMoS). ACM, 14:1–14:8.

[54] Shin Yoo and Mark Harman. 2012. Regression Testing Minimization, Selection
and Prioritization: A Survey. Software Testing, Verification and Reliability (STVR)
22, 2 (2012), 67–120.

https://doi.org/10.1016/j.cl.2018.01.002
ftp://ftp.inf.ethz.ch/doc/diss/th10650.ps.gz
ftp://ftp.inf.ethz.ch/doc/diss/th10650.ps.gz
https://doi.org/10.1145/2642937.2642987
https://doi.org/10.1145/1629911.1630034
https://doi.org/10.1145/3233027.3233032
https://doi.org/10.1145/3001867.3001872
http://dl.acm.org/citation.cfm?id=2666064.2666078
http://dl.acm.org/citation.cfm?id=2666064.2666078
https://doi.org/10.1016/j.scico.2015.04.005
https://doi.org/10.1016/j.scico.2015.04.005
https://doi.org/10.1145/3238147.3238201
https://doi.org/10.1145/3238147.3238201
https://doi.org/10.1145/2970276.2970298

	Abstract
	1 Introduction
	2 Motivating Example
	3 Applying Product-Line Analyses to Variation in Time
	3.1 Product-Line Analyses
	3.2 Reusing Product-Line Analyses for Revisions

	4 Applying Regression Analyses to Variation in Space
	4.1 Regression Analyses
	4.2 Reusing Regression Analyses for Variants

	5 Efficient Analyses for Variation in Time and Space
	5.1 Applying Product-Line Analyses to Revisions of Variants
	5.2 Applying Regression Analyses to Revisions of Variants
	5.3 Combinations of Product-Line Analyses and Regression Analyses

	6 Conclusion and Future Work
	Acknowledgments
	References

