
A Catalog of Object-Relational Mapping Code Smells for Java
Samuel Loli

Federal University of Pernambuco

Recife, Brazil

sbl@cin.ufpe.br

Leopoldo Teixeira

Federal University of Pernambuco

Recife, Brazil

lmt@cin.ufpe.br

Bruno Cartaxo

Federal Institute of Pernambuco

Paulista, Brazil

email@brunocartaxo.com

ABSTRACT

Bad choices during software development might lead to mainte-

nance and performance issues. Code smells are typically used to

indicate such problems. A number of smells have been proposed,

usually focused on generic code problems. In this work, we focus

on the specifics of Object-Relational Mapping (ORM) code in Java.

Developers use ORM frameworks to abstract the complexity of

accessing a database. However, when poorly used, frameworks can

lead to problems that might affect the overall performance of the

system. Therefore, we present a catalog of eight smells extracted

from the state of research and practice, through a combination of

rapid review and grey literature review. For each smell, we also

present a suggested solution and rationale. To evaluate the cata-

log, we conducted a survey with 86 respondents. The majority of

the respondents agree both that the code smells are a problem, as

well as that the suggested solution is adequate. In conclusion, this

work contributes with a systematic way of describing ORM code

smells and an initial catalog, which can be useful for researchers

and practitioners, positively evaluated by our initial results.

ACM Reference Format:

Samuel Loli, Leopoldo Teixeira, and Bruno Cartaxo. 2020. A Catalog of

Object-Relational Mapping Code Smells for Java. In 34th Brazilian Sympo-
sium on Software Engineering (SBES ’20), October 21–23, 2020, Natal, Brazil.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3422392.3422432

1 INTRODUCTION

When developing software, incorrect choices during the design

phase can lead to maintenance and performance problems. Accord-

ing to Fowler [15], less-than-ideal implementation symptoms that

indicate low quality code are called code smells. In the literature, pre-
vious studies show that code smells affect code maintainability [50]

and also indicate potential for future refactorings [27]. Although

this definition is quite general and seems to suggest several type

of code smells that may affect systems, these are typically focused

on code, without considering domain-specific characteristics of the

systems and frameworks used during development.

ORM frameworks are popularly used to ease data management in

software development. They allow conceptual abstraction between

object-oriented systems and data stored in relational databases [9].

However, this abstraction may lead to risks. According to Chen

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SBES ’20, October 21–23, 2020, Natal, Brazil
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8753-8/20/09. . . $15.00

https://doi.org/10.1145/3422392.3422432

et al. [8], developers often create ORM-specific code focusing on

producing code that compiles, without taking into account relevant

aspects such as database performance or code maintainability. This

can cause problems, such as recovering excessive data from data-

base, wasting computational resources, or performing 𝑁 queries

when only one would be enough, which might lead to transaction

timeouts or even large-scale system failures.

In their study on ORM code maintainability in Java, Chen et al.

[10] conclude that changes to such code are complex, and future

studies should study the root causes of the problems to help develop-

ers better design ORM code. In this context, this research proposes a

catalog with eight ORM-specific code smells in Java, together with

suggested solutions. The catalog was developed from the study of

problems, causes and solutions regarding Java ORM frameworks,

extracted from the state of research and practice, through a combi-

nation of rapid review [5] and grey literature review [17]. Literature

reviews are a widely recognized and accepted way to synthesize

knowledge spread into various sources, structuring it in an accessi-

ble way to benefit the scientific and professional community [45].

The proposed catalog is evaluated through a survey with devel-

opers that are familiar with Java ORM frameworks. They discussed

the extent to which they agree that the smells are actual problems,

and that the suggested solutions are indeed candidates to fix those

problems. We received 86 responses, with an average agreement of

75.44% between smells and solutions presented in the catalog.

The remainder of this paper is organized as follows. Section 2

illustrates potential problems caused by ORM code smells. Section 3

describes the research methodology used to develop the catalog

presented in Section 4. Section 5 presents the catalog evaluation.

We discuss threats to validity in Section 6, and present the related

work in Section 7. Finally, we conclude in Section 8.

2 MOTIVATING EXAMPLE

In this section, we present a motivating example adapted from

an existing Java system — in which one of the authors works on,

as developer — to illustrate problems arising from ORM-related

code smells. ORM frameworks provide developers with a concep-

tual abstraction by mapping database records to objects [4, 25].

Java ORM frameworks use the Java Persistence API (JPA) stan-

dard [13, 26] to associate classes, attributes, associations, and types

to the corresponding tables, columns, relationships and SQL types,

respectively. This association occurs through Java annotations or

XML. In Example 1, we see that the @Entity annotation is used to

identify the Person class as an entity in the database, together with

@Table to identify the table name. The @Id annotation defines the

attribute corresponding to the primary key. We can map attributes

to different column names using @Column, while @ManyToOne iden-

tifies many-to-one relationships, as seen with Gender and Address
entities. There is also an implicit relationship between Address

82

https://doi.org/10.1145/3422392.3422432
https://doi.org/10.1145/3422392.3422432

SBES ’20, October 21–23, 2020, Natal, Brazil Loli et al.

and City, omitted from the example. The main method then re-

trieves a list of Person whose name start with “Jh”, by calling the

findPersons method, which performs an ORM query using the

Java Persistence Query Language (JPQL) provided by JPA [26].

The ORM framework generates SQL queries based on the code,

which might present problems, such as retrieving excessive data

from the database. The goal of this particular code snippet is to get a

list of full names, but the resulting queries retrieve all columns in the

Person, Gender, Address and City tables. It would be enough to re-
trieve the name column from the Person table. Retrieving excessive
data from the database can be considered the major performance

problem in most applications that use JPA [35]. Another problem is

the unnecessary queries related to the Address and Gender tables.

This causes the 𝑁 + 1 problem, where a single ORM query leads

to 𝑁 others, according to the number of records in the database,

which increases the severity of the problem over time.

These problems could be detected by a domain-specific smell

detection tool. Fowler [15] defines code smells as symptoms of poor

design and implementation choices. In the presented example there

are three ORM-specific code smells: (i) Eager as a Fetch Strategy

in Class-level (static) Relationships; (ii) Lack of Join Fetch

in ORM Queries to Retrieve Objects With Eager Attributes;

and (iii) Data Retrieval Without Projection for Read-Only.

3 RESEARCH METHODOLOGY

Based on problems such as the reported in the previous section,

we set out to define a catalog of ORM-specific code smells. To

do so, we performed a Rapid Review (RR) combined with a Grey

Literature Review (GLR). Literature reviews are a widely recognized

and accepted way to synthesize knowledge spread into various

sources, structuring it in an accessible way to benefit the scientific

and professional community [45]. In addition, they also can help

to achieve non-trivial conclusions, which might not be possible

with isolated studies. Our catalog presents all smells in one place

in a structured way, also adding possible suggestions to fix them.

Analyzing the evidence resulting from both techniques helped us on

establishing the catalog of ORM code smells in Java. The following

sections provide further details over our methodology.

3.1 Method

We followed the procedure described by Cartaxo et al. [5] to conduct

the RR. They define RRs as secondary studies based on adaptations

of regular systematic reviews. Adaptations are performed to attend

to restrictions of professionals, such as time and costs, and used to

obtain a connection with the state of practice in software engineer-

ing. The use of RR has the main objective of providing evidence to

assist decision making regarding problems that professionals usu-

ally have. Thus, RR is the best fit in our context, since this research

was initially motivated by a problem in a real-world project.

Due to the practical aspect of the research, we also used grey

literature, as recomended by Garousi et al. [17]. GLR is a particular

type of Systematic Literature Review (SLR) which allows including

grey literature as primary source. It might include evidence such

as white papers, blogs, documentation, among other non-scientific

sources. This complements existing gaps on academic literature by

providing “current” perspectives [17].

3.2 Research Questions to RR and GLR

Section 2 presents ORM-related problems from a real software

system, which motivated us to conduct this research. Such problems

could have been avoided if developers were aware of ORM code

smells during development. So, to identify a catalog of smells, it is

necessary to investigate what are the problems, their causes and

potential solutions. Based on the aims of this research, we defined

the following questions to guide both reviews (RR and GLR): RQ1:

what are the problems and anti-patterns related to ORM in Java?

RQ2: what are the causes for ORM-related problems in Java? RQ3:

what are the suggested solutions to ORM-related problems in Java?

RQ1 aims to collect existing evidence of ORM-related problems,

to group smells by problems, such as excessive data and N+1. Since

smells are symptoms of problems, RQ2 concerns with the root-

causes of such problems, to identify smells for the catalog. And,

RQ3 aims to identify suggested solutions for the code smells.

3.3 Search Strategy

To perform the RR search, we used the Scopus search engine, as

Cartaxo et al. [6] recommend. It aggregates research from different

digital libraries to cover a large number of studies. Tests were

performed with different search strings until a set was found that

resulted in studies relevant to the RQs. We used the following search

string over titles, abstracts, and keywords:

(”ORM” OR ”hibernate” OR ”JPA” OR ”eclipseLink” OR

”openJPA”) AND (problem* OR *smell OR anti-pattern* OR

”performance”OR ”maintainability”) AND (”software develop*”

OR ”software engineering” OR ”software project” OR

”developer”)

The GLR search was performed using Google, limiting the result

set based on its ranking algorithm, as Garousi et al. [17] recommend.

Some of the wildcards used in the RR search string were adapted.

After tests, the search string was modified so that Google’s search

algorithm could find the most relevant results according to the RQs:

(ORM | hibernate | JPA | eclipseLink | openJPA) AND

(smell | problem | ”anti-pattern” | performance |

maintainability)

3.4 Selection Procedure

We adhered to the following inclusion criteria to select sources,

both in the RR and the GLR: (1) Sources that are directly ORM-

related, in the software engineering context; (2) Sources with ORM

problems or anti-patterns that are undetected during compile-time;

(3) Sources that provide answers to at least one of the RQs; (4)

Sources from 2010 onwards. Criterion (2) contains a restriction to

select only evidence whose solutions are candidates for code smells.

Moreover, criterion (4) avoids results prior to the JPA version 2.1,

released in Dec/2009. Figure 1 shows the overall selection process

and number of sources for both the RR and the GLR.

The RR search yielded 75 unique sources. Sources whose title

was clearly unrelated or which did not meet the inclusion criteria

were removed, so 24 sources remained. After reading and analyzing

the abstracts, we reduced the list to 14 sources. When analyzing

the entire studies content, we ended up selecting five sources.

83

A Catalog of ORM Code Smells for Java SBES ’20, October 21–23, 2020, Natal, Brazil

Example 1 ORM-related code to get a list of full names from part of the name

1 @Entity @Table("Person")
2 class Person{
3 @Id @Column(name = id_person)
4 private Integer id;
5 private String name;
6 @ManyToOne(fetch = FetchType.EAGER)
7 private Address address
8 @ManyToOne(fetch = FetchType.EAGER)
9 private Gender gender
10 }

Listing 1 Person class

1 public static List <Person > findPersons(String p){
2 String jpql= "FROM Person WHERE name LIKE :p");
3 ...
4 }
5 public static void main(String [] args) {
6 List <Person > persons= findPersons("Jh");
7 for (Person p : persons){
8 System.out.println("Name = " + p.getName ());
9 }
10 }

Listing 2Main class

Generated SQL statement:

-- Main SQL
SELECT * FROM Person p WHERE d.name ilike "%Jh%";
-- Additional queries performed:
SELECT * FROM Address d LEFT OUTER JOIN City c WHERE c.id_city = d.city AND d.id_address = :id;
....
SELECT * FROM Gender g WHERE g.id_gender = :id;
....

SQL really needed:

SELECT name FROM Person p WHERE d.name ilike "%Jh%";

Figure 1: Selection procedure

The Google search for the GLR returned over 71 million records,

so we defined limited effort [17] as a criterion for stopping the

search. We used the first 50 relevant sources ranked by Google’s

algorithm. We first used the title and partial text available. The

inclusion criteria was also verified and 33 sources were selected.

Then, the full text was analyzed, resulting in 21 selected sources.

To increase reliability, the evidence was assessed for overall qual-

ity, based in terms of clarity, detail, consistency, plausibility and

alignment with the RQs, similar to previous works [46].

Sources that did not hold to minimum quality standards were

excluded. For instance, sources without sufficient detail or with

unclear explanations. Such standard could not be pre-determined

as a criterion due to the diverse nature of the GLR, which requires

case-by-case evaluation. At this stage, we excluded a source due

to lack of plausibility [48]. It claimed to have discovered an undoc-

umented way to improve JPA’s performance, but some examples

were already in the Hibernate documentation [40]. Another was

excluded due to lack of detail [3]. A StackOverflow answer pointed

to an existing source found by the GLR [35]. The full selection

procedure is available online, with the list of all selected sources.
1

3.5 Synthesis Procedure

Although the inclusion criteria only considers studies performed

since 2010, the earliest study is from 2013 [49]. Only in 2016 we

had more than one source in our search [9, 10]. Four sources have

the same first author [7–10]. Furthermore, there is even a mention

to a lack of studies regarding solutions to ORM problems, which

is the focus of our work [10]. Regarding ORM problems, excessive

data is the most cited problem in the RR [7–10]. The second one is

𝑁 + 1, discussed in three studies [7–9].

In the GLR, 19 sources were selected, three of which are ORM

framework documentation [33, 40, 44]; 14 are blog posts, eight of

them [21–24, 30, 34, 35, 39] related to authors of ORM framework

documentation; one Java developer forum post [1]; and one pre-

sentation by an author of the Hibernate documentation [31]. The

most cited problem is 𝑁 + 1 with 18 sources, followed by excessive

data, with 15 sources. Some problems are explicitly mentioned in

the sources [8, 28, 31], while others were inferred from the con-

text [12, 33, 49]. Since code smells are symptoms of such problems,

we infer their names from the different causes mentioned. We have

summarized our results in an Evidence Briefing,
2
which is a one-

page document that reports the main findings of a research.

1
https://bit.ly/3d0O76v

2
Available at https://bit.ly/31iEKfF.

84

https://bit.ly/3d0O76v
https://bit.ly/31iEKfF

SBES ’20, October 21–23, 2020, Natal, Brazil Loli et al.

4 A CATALOG OF ORM CODE SMELLS

In this section, we present the catalog of ORM-related code smells in

Java. The definition of what a code smell represents is a subjective

process, based on human experience and intuition [15]. For a prac-

tice to be considered a ORM-specific code smell, it should indicate

a bad implementation choice, and suggest symptoms that may be

indicative of something wrong in the code, thus indicating the need

for refactoring. Therefore, based on the results of the reviews (RR

and GLR) discussed in section 3, we extracted bad practices related

to ORM in Java. We focus on the Java language in this catalog,

since it has a standard API for ORM (JPA), that allows the uniform

categorization of code smells from different ORM frameworks.

We defined a smell for each issue that had at least three mentions

in different sources, resulting in eight code smells. We used this

criterion to establish recurrence, as in the Rule of Three for defining

patterns.
3
To delimit the scope of the research, we focused on the

most recurring problems to explore them in detail, and also propose

solutions. In this paper, we only present four smells, focusing on the

most frequently mentioned issues, for brevity. The remaining are

summarized at the end of this section. The full catalog is available

online.
4
We present each smell with a short description, followed

by a potential fix in the form of a refactoring, according to the

best practices found in the reviews. Finally, we discuss and provide

further details. Table 1 presents all smells in our catalog, classified

by their problem type and followed by the evidences from both RR

and GLR from which we extracted it.

4.1 Eager as a Fetch Strategy In Class-level

(Static) Relationships

4.1.1 Smell Description. Using Eager fetching in attributes rep-

resenting class-level relationships means that the related object is

always retrieved from the database, even when never used. This

might cause performance and maintainability issues and it prevents

overriding the fetching strategy dynamically at the query level.

Example 2 shows a code snippet in which the Person entity is

unnecessarily retrieved when getting the student enrollment, due

to the use of Eager as a fetch strategy. We use ... to denote that

code may exist before and after the snippets we show.

Example 2 Eager Smell

1 @Entity
2 class Student{
3 @ManyToOne(fetch = FetchType.EAGER)
4 private Person person ;...
5 }
6 public static void main(String [] args) {
7 ... Student d = findStudentById (1);
8 d.getEnrollment ();...
9 }

Generated SQL statement:

SELECT * FROM Student d LEFT OUTER JOIN Person p
ON p.id_person = d.id_person WHERE d.id=1;

3
http://wiki.c2.com/?RuleOfThree

4
https://bit.ly/3aPOcu5

4.1.2 Refactoring Suggestion. Developers should use Lazy instead

of Eager, to avoid always loading all the related objects. This way,

they can retrieve data on demand, through additional queries.When

needed, the object can be loaded in advance (Eager) at the query

level through the Join Fetch clause or at the class level, by the

@NamedEntityGraph annotation introduced in JPA 2.1.
5
Example 2

shows how to fix this, together with the resulting SQL query. The

fix basically changes the fetching strategy to Lazy, thus avoiding

unnecessary Joins with the Person entity.

Example 3 Fix Eager Smell

1 @Entity
2 class Student{
3 @ManyToOne(fetch = FetchType.LAZY)
4 private Person person ;...
5 }
6 public static void main(String [] args) {
7 ... Student d = findStudentById (1);
8 d.getEnrollment ();...
9 }

Generated SQL statement:

SELECT * FROM Student d WHERE d.id=1;

4.1.3 Discussion. According to the Hibernate documentation [40],

using the Eager fetching strategy in a static way (defined at the

class-level) is often a bad choice. This smell relates to the following

risks: (i) Data of the related object is always loaded, even if not

used. This causes unnecessary processing in the database. It can

be worsened if the loaded object also has other Eager objects,

which transitively generates unnecessary joins and queries [8]; (ii)

If Join Fetch strategy is not used for all Eager relationships, a

sub-query is performed, which may result in the 𝑁 +1 problem [40];

(iii) An Eager relationship definition in the class-level cannot be

overwritten to Lazy at the query-level. The opposite is possible, by

performing a Join Fetch at the query-level [33].

Chen et al. [8] reports that changing the fetching strategy from

Eager to Lazy for a class attribute with 10 records results in a 71%

performance increase. Mihalcea [35], who is one of the authors

of the Hibernate documentation, reports that using Eager in a

static way is a code smell. Most of the time it is used to simplify

development, but long-term performance issues are not considered.

Despite the fact that the reference documentation of both Hi-

bernate version 5 [40] and Eclipselink [44] do not recommend its

use, currently Eager is the default fetching strategy for ManyToOne
and OneToOne mappings in Java ORM frameworks. According to

Mihalcea et al. [40], this is due to the JPA specification. Before

the JPA, Hibernate used Lazy by default for all of its mappings.

When JPA 1.0 was released, it was believed that not all providers

would use proxies to implement JPA. This could cause errors when

lazily retrieving information in a closed connection, throwing the

LazyInitializationException. Since ORM frameworks imple-

ment JPA, they follow the specification, but recommend against

using Eager for ManyToOne and OneToOne mappings. Other map-

pings are Lazy by default. ManyToOne and OneToOne mappings

5
https://docs.jboss.org/hibernate/jpa/2.1/api/

85

http://wiki.c2.com/?RuleOfThree
https://bit.ly/3aPOcu5
https://docs.jboss.org/hibernate/jpa/2.1/api/

A Catalog of ORM Code Smells for Java SBES ’20, October 21–23, 2020, Natal, Brazil

Table 1: ORM Code Smells catalog. RR lists evidence from the Rapid Review, while GLR relates to the Grey Literature Review

Num Problem Type ORM Code Smell RR GLR

1. Excessive Data Eager as a Fetch Strategy in Class-level

(static) Relationships

[7–9] [1, 12, 18, 20, 24, 28–31, 34, 35, 39–41, 44]

2. Excessive Data Data Retrieval Without Projection for

Read-Only

[9] [18, 24, 31, 35]

3. Excessive Data Unnecessary Updating of the Entire Entity [7, 9, 10]

4. Excessive Data Not Using ORM Pagination to Avoid Unnec-

essary Result Transfer

[18, 29, 31, 33, 35]

5. 𝑁 + 1 Lack of Join Fetch in ORM Queries to Re-

trieve Objects With Eager Attributes

[8, 9] [1, 12, 18, 20, 22, 28–30, 35, 39, 41, 44]

6. 𝑁 + 1 One-by-one: Fetch Type Lazy in Loops [7, 8] [1, 12, 18, 20, 23, 28, 29, 33, 41]

7. 𝑁 + 1 Unilateral @OneToMany with Inappropri-

ate Use of Collections

[49] [30, 40]

8. Others Not Using Read-OnlyQueries [33, 35, 40]

using Eager might lead to performance problems. For instance,

when the retrieved object contains large data (binaries or images)

or also has other Eager relationships [9]. This smell might also

cause maintenance issues. It can be easily fixed early during devel-

opment by changing to Lazy. However, if we consider an already

deployed system, in production, if other use cases use that class,

expecting the object to be fully loaded, changing it to Lazy might

result in throwing the LazyInitializationException. To avoid

this, it is necessary to check all methods using the changed class,

which relates to the Shotgun Surgery smell [15], where a small

change in the code requires changes in several other classes.

The excessive data problem also increases when Eager is used

with OneToMany and ManyToMany associations, which represent

collections and by default are Lazy. Using this strategy, the query

may perform a Cartesian Product by limiting the speed of the query

to the number of associated records, or causing the 𝑁 + 1 problem,

performing 𝑁 additional queries [32].

Therefore, we consider the use of Eager as a fetch strategy

in class-level (static) relationships as a code smell. We can con-

clude that this is a bad implementation choice and may cause fu-

ture issues related to performance and maintainability. Therefore,

any class attribute representing an association between entities

using @ManyToMany, @OneToMany, @ManytoOne, or @OneToOne, an-
notated with FetchType.EAGER is an instance of this smell. More-

over, for ManyToOne and OneToMany relationships, we also

consider as a smell those that are not explicitly annotated with

FetchType.LAZY. ManyToMany and OneToMany with Eager

associations are worse, because querying an object results in re-

trieving 𝑁 other objects in the relationship.

4.2 Not Using ORM Pagination to Avoid

Unnecessary Result Transfer

4.2.1 Smell Description. Retrieving all records from a database

table might result in excessive data and performance issues, spe-

cially when records are not fully used or necessary. Example 4

shows a code snippet with an example, in which all records from

the Student entity from the year 2020 are retrieved, but only ten

records are effectively used by the view layer, assuming that the

students method is called with such value.

Example 4 Paged Smell

1 public List <Student > findStudents(int year){
2 ...hql = "FROM Student d WHERE year = :year";
3 Query q = entityManager.createQuery(hql);...
4 }
5 public List <Student > students(int year , int page ,

int limit) {
6 int fromIndex = (page - 1) * limit;
7 List <Student > students = findStudents(year);
8 return students.subList(fromIndex , Math.min(

fromIndex + limit , students.size()));
9 }

Generated SQL statement:

SELECT * FROM Student d WHERE year=2020;

4.2.2 Refactoring Suggestion. The JPA specification provides the

setFirstResult(n) and setMaxResults(n) methods. Both pro-

vide pagination features that can be used when performing an ORM

query. Example 5 shows how to retrieve only ten Student records

requested by the view layer, to avoid performance problems.

4.2.3 Discussion. To obtain better results in the ORM-generated

SQL statements, it is important to also consider the number of

records being retrieived, besides the number of columns, queries

and joins [35]. We can use pagination to specify a limit on the

number of retrieved records by a query [33]. For instance, we might

use methods such as setFirstResult(int) to specify the offset,

while setMaxResults(int) allows to specify the limit [18].

In the view layer, information is usually presented to the user in

a paginated form. This visualization is directly linked to how we

configure ORM data pagination [29]. For instance, for an entity with

1,000,000 records, we might only display a subset of information on

aweb page, such as 100 records per page. Therefore, to avoid loading

all records, we can use setFirstResult(1) and setMaxResults
(100) to retrieve only the first 100. Another issue related to not

86

SBES ’20, October 21–23, 2020, Natal, Brazil Loli et al.

Example 5 Fix Paged Smell

1 public List <Student > findStudents(
2 int year , int fromIndex , int limit) {
3 ... hql = "FROM Student d WHERE year = :year";
4 Query q = entityManager.createQuery(hql);
5 q.setFirstResult(fromIndex);
6 q.setMaxResults(limit);...
7 }
8 public List <Student > students(int year , int page ,

int limit) {
9 int fromIndex = (page - 1) * limit;
10 return findStudents(year ,fromIndex ,limit);
11 }

Generated SQL statement:

SELECT * FROM Student d WHERE year=2020
LIMIT 10 OFFSET 10;

using pagination is that the amount of data tends to grow over

time [35], which might lead to performance issues.

This way, we consider an ORM code smell to not use pagination

in data collections when the recovered records are not fully used.

This indicates potential future problems related to performance

according to the database growth.

4.3 Lack of Join Fetch in ORM Queries to

Retrieve Objects With Eager Attributes

4.3.1 Smell Description. ORM query languages, such as HQL and

JPQL, allow using objects with Eager relationships without per-

forming Join Fetch clauses for the related objects. This causes the

𝑁 + 1 problem, in which the framework performs one query to

retrieve the object, and N additional queries for the related Eager

objects, until all data is retrieved. Example 6 shows how a query to

return a list might result in N additional queries.

Example 6 Join Fetch Smell

1 @Entity
2 class Student{
3 @ManyToOne(fetch = FetchType.EAGER)
4 private Person person ;...
5 }
6 public List <Student > findStudents(int year){
7 ... hql = "FROM Student d WHERE d.year= :year";...
8 }
9 public static void main(String [] args) {
10 List <Student > d = findStudents (2020) ;...
11 }

Generated SQL statement:

SELECT * FROM Student d WHERE d.year=2020;
-- Additional queries performed:
SELECT * FROM Person p where p.id_person = 1;
SELECT * FROM Person p where p.id_person = 2;
....

4.3.2 Refactoring Suggestion. A potential fix is to change the fetch

type from Eager to Lazy. When this is not possible, due to mainte-

nance issues regarding dependencies, one can use Join Fetch to

retrieve all information in a single query. Example 7 shows how to

use Join Fetch to retrieve the Person entity trough join.

Example 7 Fix Join Fetch Smell

1 @Entity
2 class Student{
3 @ManyToOne(fetch = FetchType.EAGER)
4 private Person person ;...
5 }
6 public List <Student > findStudents(int year){
7 ...hql.append("FROM Student d ");
8 hql.append("JOIN FETCH d.person p ");
9 hql.append("WHERE d.year = :year");...
10 }
11 public static void main(String [] args) {
12 List <Student > d = findStudents (2020) ;...
13 }

Generated SQL statement:

SELECT * FROM Student d INNER JOIN Person p
ON p.id_person = d.id_person WHERE d.year=2020;

4.3.3 Discussion. We observe that the ORM frameworkmight need

to perform additional queries to retrieve information and properly

instantiate the object. This can lead to performance problems, de-

pending on the number of performed queries to complete the oper-

ation [37]. We previously discussed that using Eager in class-level

relationship is a code smell. Therefore, the recommendation would

still be to avoid using Eager as a fetching strategy at the class-level.

When this is not possible, due to maintenance problems regard-

ing dependencies, developers can use Join Fetch for all Eager

attributes to avoid the 𝑁 + 1 problem. The maintenance problem oc-

curs when the existing code expects that the related object is already

loaded. This way, changing to Lazy can result in problems such

as the LazyInitializationException from Hibernate [40]. The

bad way to handle this exception is to use the Open Session in View

pattern or enable the hibernate.enable_lazy_load_no_trans
option [38]. These are considered anti-patterns, because they only

treats the symptoms and does not solve the real cause of the prob-

lem [36]. The best way is to fetch all necessary associations before

closing the persistence context through the Join Fetch clause [40].

This is particularly important to avoid the 𝑁 + 1 problem [35].

Regarding the fix in Example 7, a developer analysis is impor-

tant, because the number of joins can also negatively affect perfor-

mance [4]. There are differences between performing a common

Join and a Join Fetch. Fetch is JPA-specific [24]. It tells the per-

sistence provider to also initialize the association on the retrieved

object besides performing the join between the two entities.

Based on the above, we consider a code smell in ORM query

languages the lack of Join Fetch when using entities with the

Eager fetching strategy, as it might cause the 𝑁 + 1 problem.

87

A Catalog of ORM Code Smells for Java SBES ’20, October 21–23, 2020, Natal, Brazil

4.4 One-by-one: Fetch Type Lazy in Loops

4.4.1 Smell Description. When one needs to retrieve an attribute

from an object inside a loop, if its fetch strategy is Lazy, additional

queries are performed for each loop iteration. Example 8 demon-

strates a query for retrieving a list of Person and subsequently

obtaining the students attribute inside a loop. This generates ex-
tra queries to load the Lazy relationship for each loop iteration.

4.4.2 Refactoring Suggestion. One solution to this problem would

be to preload the information using Join Fetch to retrieve all data in

a single query. This consists of adding a Join Fetch statement, sim-

ilarly as Example 7. Another solution is to use the @BatchSize(n)
annotation so that the ORM framework uses the SQL IN operator,

grouping and decreasing the number of additional queries. Exam-

ple 9 shows a solution using @BatchSize.

Example 8 One-by-one Smell

1 @Entity
2 class Person{
3 @OneToMany(fetch = FetchType.LAZY)
4 private List <Student > students ;...
5 }
6 public static void main(String [] args) {
7 List <Person > persons = findAll ();
8 for (Person person : persons){
9 assertNotNull(person.getStudents ());
10 }
11 }

Generated SQL statement:

SELECT * FROM Person p;
-- Additional queries performed:
SELECT * FROM Student d where d.id_person = 1
SELECT * FROM Student d where d.id_person = 2
....

Example 9 Fix: One-by-one Smell with@BatchSize

1 @Entity
2 class Person{
3 @BatchSize(size=4) @OneToMany(fetch=FetchType.LAZY)
4 private List <Student > students ;...
5 }
6 public static void main(String [] args) {
7 List <Person > persons = findAll ();
8 for (Person person : persons){
9 assertNotNull(person.getStudents ());
10 }
11 }

Generated SQL statement:

SELECT * FROM Person p;
-- Additional queries performed:
SELECT * FROM Student d where d.id_person in (1,2,3,4)
SELECT * FROM Student d where d.id_person in (5,6,7,8)
....

4.4.3 Discussion. The Lazy fetching strategy, used by default in

the @OneToMany and @ManyToMany annotations in the JPA specifica-

tion [35] retrieves data on demand. This means that the persistence

context will not load the relationship entity until performing an

operation on it [20]. However, when the code requests the data, usu-

ally the transaction and database session have already ended. Since

there is no possibility of joining, the framework performs 𝑁 other

queries to retrieve the data [40]. Inside a loop, this might generate

an excess number of queries and decrease system performance.

There may also be maintenance issues when solving this smell.

One widely used strategy, which can be found in Stack Overflow, is

to change the fetching strategy to Eager [28]. However, this only

changes the problem, instead of fixing it. As mentioned in Section

4.1, using Eager at the class level might lead to excessive data issues.

A better strategy is to follow the suggested fix in Section 4.4.2.

Therefore, we consider a smell the retrieval of an attribute using

the Lazy fetching strategy from an object in a collection inside a

loop. The following conditions apply: the code must reside inside

a loop, which accesses an attribute annotated with Lazy; it must

not be loaded in advance using Join Fetch; it does not contain the

@BatchSize annotation in the relationship attribute.

4.5 Other Code Smells

As mentioned, we do not detail the entire catalog for brevity. Here

we briefly present the remaining smells.Data RetrievalWith-

out Projection for Read-only: Using ORM queries with-

out using projection for read-only (when no persistence context

management is required) can lead to performance issues, espe-

cially when retrieving large data, such as BLOB columns, or us-

ing unnecessary joins, causing incompatibility between required

and recovered data. Unnecessary Updating of the Entire

Entity: Updating all columns of an entity instead of only the

modified ones results in excessive data updates. This might lead to

performance issues, in particular when the table has non-clustered

indexes, large binary data or a large number of columns. Uni-

lateral @OneToMany with Inappropriate Use of Collec-

tions: Using the @OneToMany annotation without the correspond-

ing @ManyToOne in the other side of the relationship, combined

with inappropriate use of collections, might lead to the 𝑁 + 1 issue.

When a change in an element of a collection results in all related

records being removed and added again, depending on the seman-

tics used. Not Using Read-OnlyQueries: Retrieving objects

from the database for read-only purposes, without informing this to

the ORM framework. Since the object does not need to be managed

by the persistence context, failing to use read-only queries causes

unnecessary memory allocation when saving state and also makes

fetching and flushing less efficient.

5 EVALUATING THE CATALOG

To evaluate the proposed catalog, we conducted a survey with de-

velopers that are familiar with Java ORM frameworks. We believe

it is important to understand practitioners’ opinions, as they might

influence on how to address the topic, and how to present empir-

ical evidence Devanbu et al. [11]. We understand that the survey

captures developers’ beliefs, which also impacts practice. In what

follows we detail the survey methodology and results.

88

SBES ’20, October 21–23, 2020, Natal, Brazil Loli et al.

5.1 Survey Methodology

We applied a mixed strategy to announce the survey and collect

responses. We used snowballing [19] to share the survey link with

professionals who met the requirements and encouraging them

to indicate other potential participants. Moreover, we also shared

the survey on social networks, such as Twitter and Reddit. We also

mined Stackoverflow to contact potential participants from those

who interacted through questions and answers regarding ORM

frameworks in Java. We used the Stack Exchange Data Explorer
6

to extract data from users who interacted with questions with the

following tags: ORM, Hibernate, EclipseLink, OpenJPA, and JPA.
After processing the data to extract the emails, we obtained a list

of 368 emails from candidates to answer the survey.

We produced Portuguese and English versions of the survey. The

online questionnaire is composed of: (i) an introduction explaining

the requirements for answering the survey; (ii) a demographics

section asking participants about their academic background, Java,

and ORM experience; (iii) an introduction to ORM code smells; a

set of 8 ORM code smells and their solution, with code examples; a

field for general comments about the survey.

For each code smell, we used a 5-level Likert scale [43] to assess

the agreement with problems and solutions. Besides, an optional

text field allowed the participant to comment about the smell or

the solution. No problems were reported to answer the survey.

5.2 Results

We received 86 responses, in which 48 come from the English ver-

sion and 38 from the Portuguese. Most participants have a masters

degree (41) followed by bachelor degree (35), high school diploma

(5), vocational training (4) and doctorate degree (1). Most also have

5-10 years of experience in Java development (34) and 3-5 years

(22) followed by more than 10 (18) and 0-2 (12) . Regarding their

previous experience using ORM to develop Java applications, there

was greater diversification among participants, with 3-5 (24) more

than 10 (23), 0-2 (22) and 5-10 (17) developed applications.

Figure 2: Average agreement level

Figure 2 shows the average agreement level among all smells and

solutions. The three percentages shown in the chart indicate the

proportion of disagreements, neutral responses, and agreements re-

spectively. In addition, dark and light green indicate the proportion

of “Strongly agree” and “Agree” responses, while dark and light

brown refer to “Strongly disagree” and “Disagree”. The majority of

respondents are positive (agree or strongly agree) about the smells

(72.09%) and proposed solutions (78.78%). We noticed that agree-

ment increases with the respondent experience level with ORM in

6
https://data.stackexchange.com

Java. Thus, we also analyze our data separating the responses into

Experienced (34) and Beginner/intermediate (52) developers.

An Experienced developer is someone with more than five years

of experience with Java, and with an extensive experience with

ORM in Java (five or more developed applications). The remaining

responses are considered as Beginner/Intermediate developers.

Figure 3: Average agreement by experienced developers

Figure 3 shows the average agreement level for experienced de-

velopers only. We notice an increase of 8.7% in the agreement level

(strongly agree and agree) for both smells and solution combined

(81.99%), when compared to the average of all participants. The

agreement level for smells (76.84%) and solutions (87.13%) was also

higher than the overall average. Regarding the less experienced

developers (total of 52), there was actually a 5.7% decrease in the

agreement level. The respondents agreed 68.99% with the smells

and 73.32% for the solution, as shown in Figure 4.

Figure 4: Average agreement by beginner/intermediate de-

velopers

Figure 5 shows the agreement of each smell represented by num-

bers, related to the Table 1. The highest values refer to the 1. Ea-

ger as a Fetch Strategy In Class-level(Static) Relationships,

with 75.58%, followed by 4. Not Using ORM Pagination to Avoid

Unnecessary Result Transfer, 5. Lack of Join Fetch in ORM

Queries to Retrieve Objects With Eager Attributes and 7.

Unilateral @OneToMany with Inappropriate Use of Collec-

tions all with 74.42%. Regarding the solutions, Figure 6 shows that

the highest agreement is with 4. Not Using ORM Pagination to

Avoid Unnecessary Result Transfer, with 86.05%, followed by

1. Eager as a Fetch Strategy In Class-level(Static) Relation-

ships and 5. Lack of Join Fetch in ORM Queries to Retrieve

Objects With Eager Attributes both with 80,23%.

Comparing the averages between experienced (81.99%) and be-

ginning/intermediate developers (71.15%), we observe that there

was a positive variation of 15.23% for the experienced developers

group. Experienced developers tend to work with the most com-

plex part of the code, as well as problems of different causes [47].

We believe that the highest agreement level is due to the fact that

89

https://data.stackexchange.com

A Catalog of ORM Code Smells for Java SBES ’20, October 21–23, 2020, Natal, Brazil

Figure 5: Agreement level for each smell

experienced developers check these smells from ORM code and

the problems generated for practical applications more often than

beginner/intermediate developers.

Figure 6: Agreement level for each solution

We received some general comments about the catalog presented

in the survey. Some participants showed appreciation for the cat-

alog, for instance: “Awesome! Everyone has to follow this. Highly
recommend the solutions.”; “...It was enlightening and useful to learn
such Bad Smells. My code will be better from now on.”, among others.

Other participants expressed contempt for ORM, for example: “As-
sumption that ORM is valid (& can be fixed up) is false. ORM needs
to be eliminated...”; “SQL is better than ORM”.

6 THREATS TO VALIDITY

In this section, we present the threats to validity for our research.

Since RR is a lightweight technique, some of its procedures might

present threats compared to a full-blown systematic literature re-

view [5]. The GLR also has its threats, particularly due to its sources

being non-scientific. Threats and limitations that apply to both RR

and GLR consist on the selection procedure, which was conducted

by a single researcher, and might cause selection bias; moreover,

there was also no quality evaluation in the sources, which can

reduce confidence in the evidences. Only one search engine was

used for the RR. We mitigate this by using an engine that aggre-

gates several databases. For GLR, limiting the results to the Google

ranking algorithm imposes a hard limit on the number of analyzed

resources, which might have discarded useful resources. Due to the

practical nature of the research, we used the first 50 results, as it is

often the case that users tend to focus on the first page, mostly.

Even though Java implements JPA, ORM frameworks might have

particular issues, that are not captured by the catalog. This happens

because we intend to have a general code smells catalog. Not every

code smell needs refactoring, necessarily. For example, the use of

Eager fetching in class-level may never lead to a performance or

maintainability problem in cases where the information is always

necessary in the relationship and database size is small. However,

this code smell can often lead to problems, so a manual review by

the developer is recommended before refactoring.

Although we state upfront the requirements for participating in

the survey, we cannot guarantee that participants fulfill them. We

also did not include the discussion of each smell, making it difficult

for the participant to better understand the exceptions to the smell.

7 RELATEDWORK

Previous studies propose approaches to catalog or detect smells

in different contexts. Garcia et al. [16] discuss architectural smells,

describing four representative smells encountered through reverse-

engineering. Aniche et al. [2] provide a catalog of Model-View-

Controller architectural smells defined by surveying 53 MVC de-

velopers. Fard and Mesbah [14] propose a set of 13 JavaScript code

smells collected from various developer resourceswithmetric-based

approach to detect smells in code. Similar to those, our study has a

domain-specific focus, that is, ORM-related code smells.

Some studies propose approaches to identify ORM problems.

Nazario et al. [42] developed a framework that detects and reports

12 ORM problems identified through an observational study. The

addressed problems related to compile- or runtime errors when

integrating ORM code. In our study, we focus on problems that

might lead to performance or maintainability issues. Chen et al.

[8] propose a framework to detect ORM performance anti-patterns

based on static code analysis. They later provide an automated

approach to locate redundant data problems in ORM code [9], find-

ing out that 87% of the transactions in their evaluation performed

with redundant data. Węgrzynowicz [49] discuss five performance

anti-patterns related to the usage of one-to-many associations in

Hibernate. Most prior studies on ORM focus on performance anti-

patterns. Nonetheless, code smells are not limited to such issues.

To the best of our knowledge, our work is the first to present ORM

code smells in a structured way, discussing their root causes.

8 CONCLUSION

ORM frameworks provide a conceptual abstraction by mapping

database records to objects aiming to make developers focus on

business logic. However, this abstraction may lead to several prob-

lems due to less-than-ideal implementation choices in ORM code.

These symptoms that indicate low quality code are called code

smells. In this paper, we propose a catalog of ORM code smells for

Java in a systematic way through evidence found in the context of

literature and practice. The catalog was evaluated regarding the

agreement level of the smells and solutions presented to Java de-

velopers through a survey, obtaining 86 responses with an average

agreement of 75.44%. There was an increase of 8.7% in the general

agreement level with the catalog when we only consider responses

from experienced developers. This might relate to the fact that they

may have seen the problems generated by the reported smells in

the catalog more often. We believe this catalog can be useful not

only to researchers but also to practitioners. Presenting smells to

Java developers might avoid future maintenance and performance

problems. Future work can use the catalog to develop tools to au-

tomatically detect smells. We also intend to study ORM smells in

frameworks for other programming languages.

90

SBES ’20, October 21–23, 2020, Natal, Brazil Loli et al.

ACKNOWLEDGMENTS

Leopoldo Teixeira was partially supported by CNPq (409335/2016-

9) and FACEPE (APQ-0570-1.03/14), as well as INES 2.0,
7
FACEPE

grants PRONEXAPQ-0388-1.03/14 andAPQ-0399-1.03/17, and CNPq

grant 465614/2014-0.

REFERENCES

[1] Sayem Ahmed. 2018. JPA Tips: Avoiding the N + 1 select problem. Retrieved

Feb. 16, 2020 from https://www.javacodegeeks.com/2018/04/jpa-tips-avoiding-

the-n-1-select-problem.html

[2] Maurício Aniche, Gabriele Bavota, Christoph Treude, Marco Aurélio Gerosa, and

Arie van Deursen. 2018. Code smells for model-view-controller architectures.

Empirical Software Engineering (2018).

[3] Mat B. 2011. Hibernate performance - Stack Overflow. Retrieved Feb. 16, 2020

from https://stackoverflow.com/questions/5155718/hibernate-performance

[4] Christian Bauer, Gavin King, and Gary Gregory. 2016. Java Persistence with
Hibernate. Manning Publications Co.

[5] Bruno Cartaxo, Gustavo Pinto, and Sergio Soares. 2018. The Role of Rapid Reviews

in Supporting Decision-Making in Software Engineering Practice. In EASE’18.
[6] Bruno Cartaxo, Gustavo Pinto, and Sergio Soares. 2020. Contemporary Empirical

Methods in Software Engineering (1 ed.). Springer, Chapter Rapid Reviews in

Software Engineering.

[7] T. Chen. 2015. Improving the quality of large-scale database-centric software

systems by analyzing database access code. In ICDEW’15.
[8] T. Chen, W. Shang, Z. M. Jiang, A. E. Hassan, M. Nasser, and P. Flora. 2014.

Detecting Performance Anti-patterns for Applications Developed Using Object-

relational Mapping. (2014).

[9] T. Chen, W. Shang, Z. M. Jiang, A. E. Hassan, M. Nasser, and P. Flora. 2016.

Finding and Evaluating the Performance Impact of Redundant Data Access for

Applications that are Developed Using Object-Relational Mapping Frameworks.

IEEE Transactions on Software Engineering (Dec 2016).

[10] T. Chen, W. Shang, J. Yang, A. E. Hassan, M. W. Godfrey, M. Nasser, and P. Flora.

2016. An Empirical Study on the Practice of Maintaining Object-Relational

Mapping Code in Java Systems. In MSR’16.
[11] Prem Devanbu, Thomas Zimmermann, and Christian Bird. 2016. Belief & Evi-

dence in Empirical Software Engineering. In ICSE ’16.
[12] Hippolyte Durix. 2020. Boost the performance of your Spring Data JPA ap-

plication. Retrieved Feb. 16, 2020 from https://blog.ippon.tech/boost-the-

performance-of-your-spring-data-jpa-application

[13] EclipseLink. 2019. What is Object-Relational Mapping. Retrieved Oct. 22, 2019

from https://wiki.eclipse.org/EclipseLink/FAQ/JPA#What_is_Object-Relational_

Mapping

[14] A. M. Fard and A. Mesbah. 2013. JSNOSE: Detecting JavaScript Code Smells. In

SCAM’13.
[15] Martin Fowler. 1999. Refactoring: improving the design of existing code. Addison-

Wesley, Reading, MA.

[16] J. Garcia, D. Popescu, G. Edwards, and N. Medvidovic. 2009. Identifying Archi-

tectural Bad Smells. In CSMR’09.
[17] Vahid Garousi, Michael Felderer, and Mika V. Mäntylä. 2019. Guidelines for

including grey literature and conducting multivocal literature reviews in software

engineering. Information and Software Technology (2019).

[18] Gustavo Gomes. 2016. Performance Improvement in Java Applications: ORM

/ JPA. Retrieved Feb. 16, 2020 from https://dzone.com/articles/performance-

improvement-in-java-applications-orm-j

[19] Leo Goodman. 1961. Snowball Sampling. Ann Math Stat (1961).
[20] Chris Hut. 2015. Avoiding JPA Performance Pitfalls. Retrieved Feb. 16,

2020 from https://www.veracode.com/blog/secure-development/avoiding-jpa-

performance-pitfalls

[21] Thorben Janssen. 2015. How to Improve JPA Performance | Rebel. Retrieved Feb.

16, 2020 from https://www.jrebel.com/blog/how-to-improve-jpa-performance

[22] Thorben Janssen. 2017. Solve Hibernate Performance Issues in Development.

Retrieved Feb. 16, 2020 from https://stackify.com/find-hibernate-performance-

issues

[23] Thorben Janssen. 2018. 3 Common Hibernate Performance Issues in Your Log.

Retrieved Feb. 16, 2020 from https://www.baeldung.com/hibernate-common-

performance-problems-in-logs

[24] Thorben Janssen. 2020. 7 Tips to boost your Hibernate performance - Thoughts

on Java. Retrieved Feb. 16, 2020 from https://thoughts-on-java.org/tips-to-

boost-your-hibernate-performance

[25] Rod Johnson. 2005. J2EE Development Frameworks. Computer (Jan. 2005).
[26] Josh Juneau. 2018. The Query API and JPQL. In Java EE 8 Recipes. Springer.

7
http://www.ines.org.br

[27] Foutse Khomh, Massimiliano Di Penta, and Yann-Gael Gueheneuc. 2009. An

exploratory study of the impact of code smells on software change-proneness. In

WCRE’09. IEEE.
[28] Michal Marciniec. 2019. JPA: N+1 SELECT problem. Retrieved Feb. 16, 2020

from https://codete.com/blog/jpa-n-plus-1-select-problem

[29] Igor Medeiros. 2015. Java Persistence API: Otimizando a performance das apli-

cações. Retrieved Feb. 16, 2020 from https://www.devmedia.com.br/java-

persistence-api-otimizando-a-performance-das-aplicacoes/32091

[30] Vlad Mihalcea. 2016. Hibernate Performance Tuning and Best Practices. Re-

trieved Feb. 16, 2020 from https://in.relation.to/2016/09/28/performance-tuning-

and-best-practices

[31] Vlad Mihalcea. 2016. High-Performance Hibernate Devoxx France. Retrieved

Feb. 16, 2020 from https://www.slideshare.net/VladMihalcea/high-performance-

hibernate-devoxx-france

[32] V. Mihalcea. 2016. High-Performance Java Persistence. Vlad Mihalcea.

[33] Vlad Mihalcea. 2017. Performance Features. Retrieved Feb. 02, 2020 from https://

www.eclipse.org/eclipselink/documentation/2.7/solutions/performance001.htm

[34] Vlad Mihalcea. 2019. EAGER fetching is a code smell when using JPA and

Hibernate. Retrieved Feb. 16, 2020 fromhttps://vladmihalcea.com/eager-fetching-

is-a-code-smell

[35] Vlad Mihalcea. 2019. Hibernate performance tuning tips. Retrieved Feb. 03, 2020

from https://vladmihalcea.com/hibernate-performance-tuning-tips

[36] Vlad Mihalcea. 2019. The hibernate.enable_lazy_load_no_trans Anti-Pattern.

Retrieved Jan. 19, 2020 from https://vladmihalcea.com/the-hibernate-enable_

lazy_load_no_trans-anti-pattern

[37] Vlad Mihalcea. 2019. How to detect the Hibernate N+1 query problem during

testing. Retrieved Mar. 22, 2020 from https://vladmihalcea.com/how-to-detect-

the-n-plus-one-query-problem-during-testing

[38] Vlad Mihalcea. 2020. The best way to handle the LazyInitializationException.

Retrieved Mar. 20, 2020 from https://vladmihalcea.com/the-best-way-to-handle-

the-lazyinitializationexception

[39] Vlad Mihalcea. 2020. prevent JPA and Hibernate performance issues. Retrieved

Feb. 16, 2020 from https://vladmihalcea.com/jpa-hibernate-performance-issues

[40] Vlad Mihalcea et al. 2018. Hibernate ORM 5.4.3.Final User Guide. Retrieved Feb.

16, 2020 from https://docs.jboss.org/hibernate/orm/5.4/userguide/html_single/

Hibernate_User_Guide.html

[41] João Munhoz. 2019. Hibernate and the n+1 selections problem - QuintoAndar

Tech. Retrieved Feb. 16, 2020 from https://medium.com/quintoandar-tech-

blog/hibernate-and-the-n-1-selections-problem-c497710fa3fe

[42] Marcos Felipe Carvalho Nazario, Eduardo Guerra, Rodrigo Bonifacio, and Gustavo

Pinto. 2019. Detecting and Reporting Object-Relational Mapping Problems: An

Industrial Report. In ESEM’19.
[43] A.N. Oppenheim. 2000. Questionnaire Design, Interviewing and Attitude Measure-

ment. Bloomsbury Academic.

[44] Oracle. 2015. Oracle TopLink JPA Performance Tuning. Retrieved Feb. 16, 2020

from https://docs.oracle.com/middleware/1212/core/ASPER/toplink.htm

[45] Guy Paré, Marie-Claude Trudel, Mirou Jaana, and Spyros Kitsiou. 2015. Synthesiz-

ing information systems knowledge: A typology of literature reviews. Information
& Management 52, 2 (2015).

[46] Edith Tom, Aybüke Aurum, and Richard Vidgen. 2013. An exploration of technical

debt. Journal of Systems and Software (2013).
[47] T. Tsunoda, H.Washizaki, Y. Fukazawa, S. Inoue, Y. Hanai, andM. Kanazawa. 2017.

Evaluating the work of experienced and inexperienced developers considering

work difficulty in sotware development. In SNPD’17.
[48] Fabrício U. 2015. I discovered an undocumented way to improve JPA perfor-

mance. Retrieved Feb. 16, 2020 from https://bewire.be/blog/i-discovered-an-

undocumented-way-to-improve-jpa-performance

[49] P. Węgrzynowicz. 2013. Performance antipatterns of one to many association in

hibernate. In FedCSIS’13.
[50] Aiko Yamashita and Leon Moonen. 2013. Exploring the impact of inter-smell

relations on software maintainability: An empirical study. In ICSE’13. IEEE Press.

91

https://www.javacodegeeks.com/2018/04/jpa-tips-avoiding-the-n-1-select-problem.html
https://www.javacodegeeks.com/2018/04/jpa-tips-avoiding-the-n-1-select-problem.html
https://stackoverflow.com/questions/5155718/hibernate-performance
https://blog.ippon.tech/boost-the-performance-of-your-spring-data-jpa-application
https://blog.ippon.tech/boost-the-performance-of-your-spring-data-jpa-application
https://wiki.eclipse.org/EclipseLink/FAQ/JPA#What_is_Object-Relational_Mapping
https://wiki.eclipse.org/EclipseLink/FAQ/JPA#What_is_Object-Relational_Mapping
https://dzone.com/articles/performance-improvement-in-java-applications-orm-j
https://dzone.com/articles/performance-improvement-in-java-applications-orm-j
https://www.veracode.com/blog/secure-development/avoiding-jpa-performance-pitfalls
https://www.veracode.com/blog/secure-development/avoiding-jpa-performance-pitfalls
https://www.jrebel.com/blog/how-to-improve-jpa-performance
https://stackify.com/find-hibernate-performance-issues
https://stackify.com/find-hibernate-performance-issues
https://www.baeldung.com/hibernate-common-performance-problems-in-logs
https://www.baeldung.com/hibernate-common-performance-problems-in-logs
https://thoughts-on-java.org/tips-to-boost-your-hibernate-performance
https://thoughts-on-java.org/tips-to-boost-your-hibernate-performance
http://www.ines.org.br
https://codete.com/blog/jpa-n-plus-1-select-problem
https://www.devmedia.com.br/java-persistence-api-otimizando-a-performance-das-aplicacoes/32091
https://www.devmedia.com.br/java-persistence-api-otimizando-a-performance-das-aplicacoes/32091
https://in.relation.to/2016/09/28/performance-tuning-and-best-practices
https://in.relation.to/2016/09/28/performance-tuning-and-best-practices
https://www.slideshare.net/VladMihalcea/high-performance-hibernate-devoxx-france
https://www.slideshare.net/VladMihalcea/high-performance-hibernate-devoxx-france
https://www.eclipse.org/eclipselink/documentation/2.7/solutions/performance001.htm
https://www.eclipse.org/eclipselink/documentation/2.7/solutions/performance001.htm
https://vladmihalcea.com/eager-fetching-is-a-code-smell
https://vladmihalcea.com/eager-fetching-is-a-code-smell
https://vladmihalcea.com/hibernate-performance-tuning-tips
https://vladmihalcea.com/the-hibernate-enable_lazy_load_no_trans-anti-pattern
https://vladmihalcea.com/the-hibernate-enable_lazy_load_no_trans-anti-pattern
https://vladmihalcea.com/how-to-detect-the-n-plus-one-query-problem-during-testing
https://vladmihalcea.com/how-to-detect-the-n-plus-one-query-problem-during-testing
https://vladmihalcea.com/the-best-way-to-handle-the-lazyinitializationexception
https://vladmihalcea.com/the-best-way-to-handle-the-lazyinitializationexception
https://vladmihalcea.com/jpa-hibernate-performance-issues
https://docs.jboss.org/hibernate/orm/5.4/userguide/html_single/Hibernate_User_Guide.html
https://docs.jboss.org/hibernate/orm/5.4/userguide/html_single/Hibernate_User_Guide.html
https://medium.com/quintoandar-tech-blog/hibernate-and-the-n-1-selections-problem-c497710fa3fe
https://medium.com/quintoandar-tech-blog/hibernate-and-the-n-1-selections-problem-c497710fa3fe
https://docs.oracle.com/middleware/1212/core/ASPER/toplink.htm
https://bewire.be/blog/i-discovered-an-undocumented-way-to-improve-jpa-performance
https://bewire.be/blog/i-discovered-an-undocumented-way-to-improve-jpa-performance

	Abstract
	1 Introduction
	2 Motivating Example
	3 Research Methodology
	3.1 Method
	3.2 Research Questions to RR and GLR
	3.3 Search Strategy
	3.4 Selection Procedure
	3.5 Synthesis Procedure

	4 A Catalog of ORM Code Smells
	4.1 Eager as a Fetch Strategy In Class-level (Static) Relationships
	4.2 Not Using ORM Pagination to Avoid Unnecessary Result Transfer
	4.3 Lack of Join Fetch in ORM Queries to Retrieve Objects With Eager Attributes
	4.4 One-by-one: Fetch Type Lazy in Loops
	4.5 Other Code Smells

	5 Evaluating the Catalog
	5.1 Survey Methodology
	5.2 Results

	6 Threats to Validity
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

