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ABSTRACT

Code smells typically indicate poor design implementation and
choices that may degrade software quality. Hence, they need to be
carefully detected to avoid such poor design. In this context, some
studies try to understand the impact of code smells on the software
quality, while others propose rules or machine learning-based tech-
niques to detect code smells. However, none of those studies or
techniques focus on analyzing code snippets that are really harm-
ful to software quality. This paper presents a study to understand
and classify code harmfulness. We analyze harmfulness in terms of
Clean, Smelly, Buggy, and Harmful code. By Harmful Code, we
define a Smelly code element having one or more bugs reported.
These bugs may have been fixed or not. Thus, the incidence of
Harmful Code may represent a increased risk of introducing new
defects and/or design problems during its fixing. We perform our
study with 22 smell types, 803 versions of 13 open-source projects,
40,340 bugs and 132,219 code smells. The results show that even
though we have a high number of code smells, only 0.07% of those
smells are harmful. The Abstract Function Call From Constructor is
the smell type more related to Harmful Code. To cross-validate
our results, we also perform a survey with 60 developers. Most
of them (98%) consider code smells harmful to the software, and
85% of those developers believe that code smells detection tools are
important. But, those developers are not concerned about select-
ing tools that are able to detect Harmful Code. We also evaluate
machine learning techniques to classify code harmfulness: they
reach the effectiveness of at least 97% to classify Harmful Code.
While the Random Forest is effective in classifying both Smelly
and Harmful Code, the Gaussian Naive Bayes is the less effec-
tive technique. Our results also suggest that both software and
developers’ metrics are important to classify Harmful Code.
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1 INTRODUCTION

During software development, developers perform changes to im-
plement new requirements, to improve the code or to fix bugs.
While those changes contribute to software evolution, they may
introduce code smells, smells represent symptoms of poor design
and implementation choices [13, 29]. The growing incidence of
code smells is also an indicator of poor design [29], change and
fault-proneness [33] as well as it may hinder comprehensibility [1].
Thus, code smell detection is an elementary technique to improve
the software longevity.

Several approaches have been proposed to identify code smells

in an automatic way. For instance, some studies [26, 31] propose
techniques that rely on smell detection rules defined by developers
or reused from other projects or tools. Other studies [3, 5, 21, 23, 30]
indicate that Machine Learning techniques (ML-techniques) such
as Decision Trees [3, 5], Support Vector Machines [30], Genetic Pro-
gramming [21], and Bayesian Belief Networks [23], are a promising
way to automate part of the detection process, without asking the
developers to define their own smell detection rules. Even though
studies [1, 29, 33] have analyzed the impact of code smells and there
are techniques to detect those smells [3, 5, 21, 23, 26, 30, 31], none
of those works focus on analyzing code snippets that are really
harmful to software quality.

This paper presents a study to understand and classify code
harmfulness. In our study, we consider bugs as the main harm-
fulness aspect as they induce software failures. This way, we as-
sess the harmfulness of code snippets in terms of four categories:
Clean: there is no smell or bug historically associated with the
code; Smelly: code contains smells, but no bug is associated with
it; Buggy: code element that has one or more bugs reported. These
bugs may have been fixed or not, but no smell has been detected
into the code history; Harmful: a Smelly code element that has
one or more bugs reported, fixed, or not on its history. First, we
analyze the occurrence of each category in open-source projects
and which smell types are more related to Harmful Code. We also
investigate the developers’ perceptions regarding the harmfulness
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of code smells. Moreover, we evaluate the effectiveness of machine
learning techniques to classify the harmfulness of code snippets,
focusing on Smelly and Harmful Code. Finally, we investigate
which metrics are most influential in Harmful Code detection.

To perform our study, we define an experiment with 22 smell
types, 803 versions of 13 open-source projects, 40,340 bugs mined
from GitHub issues and 132,219 code smells collected by the tools
Designite, PMD, and Intellij. The results show that even though we
have a high number of code smells, only 0.07% of those smells are
harmful. The Abstract Function Call From Constructor is the smell
type more related to Harmful Code. To investigate the developers’
perceptions, we perform a survey with 60 developers. Most of them
(98%) consider code smells as harmful. Moreover, 85% of those
developers believe that code smells detection tools are important,
but these developers do not concern about selecting tools able
to detect Harmful Code. Our results also indicate that machine
learning techniques reach the effectiveness of at least 97% to detect
Harmful Code. While the Random Forest [18] is effective on
detecting both Smelly and Harmful Code, the Gaussian Naive

Bayes [17] is the less effective technique. Finally, our results suggest
software metrics (such as CBO (Couple Between Objects) and WMC

(Weight Method Class)) are important to customizemachine learning
techniques to detect Harmful Code.

2 STUDY DESIGN

Several studies have investigated the impact of code smells [1, 29,
33] as well as tools and techniques to detect smells [3, 5, 21, 23,
26, 30, 31]. However, none of those works focus on analyzing code
snippets that are really harmful to software quality. In this context,
we try to answer four main research questions:

RQ1.Which is the incidence ofHarmful Code in software projects?

This research question assesses the presence of Clean, Smelly,
Buggy, and Harmful code. As a result, we expect to understand
the frequency of each category in open-source projects. This way,
we can analyze whether smells might indicate bugs in such projects,
as well as finding out the frequency of smells that are considered
harmful. A high frequency of Harmful code indicates a close rela-
tion between smells and bugs. On the other hand, a low frequency
of Harmful Code suggests that smells may not be a good proxy
for bugs and, consequently, developers should focus their efforts on
refactoringHarmful Code, instead of refactoring a high number of
smells. After assessing Harmful code, we investigate which smell
types are more harmful. The recognition of such smell types may
help developers to be more cautious during software development
to avoid these smell types.

RQ2. In which extent developers prioritize refactoring Harmful

Code?

In this research question, we analyze to which extent developers
prioritize Harmful Code in refactoring tasks. This analysis may
help us to understand if developers prioritize Harmful Code and if
they believe that code smells are harmful to the software quality.
Also, we investigate how developers handle code smells as harmful.
In particular, we analyze the developer’s perceptions regarding the
use of appropriate tools to not only detect Smelly code but also
Harmful Code.

RQ3. How effective are Machine Learning techniques to detect

Harmful Code?

After analyzing the existence of Harmful Code in open-source
projects and how harmful are code smells for developers, we evalu-
ate the effectiveness of ML-techniques to detect Harmful code in
open-source projects. Several studies have indicated ML-techniques
as an effective way to detect smells [3, 5, 6], but there is no knowl-
edge if they are as effective in detecting Harmful code. As a result,
we expect to shed light toward the use of ML-techniques to detect
smells that are really harmful to the software. This way, developers
could use existing tools and techniques not only to detect Smelly
but also Harmful Code.

RQ4. Which metrics are most influential on detecting Harmful

Code?

Once we recognize the more effective Machine Learning tech-
niques, we also analyze the metrics that have more influence to
identify Harmful code. Identifying these influential metrics may
help developers to avoid common code structures that are more
likely to produce Harmful Code.

2.1 Projects Selection

We manually selected 13 Java projects according to the following
criteria: (i) they must be open-source and hosted at GitHub; (ii) they
must use the GitHub issues bug-tracking tool, to standardize our
process of collecting bug reports (Section 2.4); and (iii) they must
have had at least 3,000 smells and 20 bugs along their development.

Table 1 summarizes the characteristics of the selected projects.
For each project, we analyze its complete history, from the first
commit until the last one at the moment we collect the project in-
formation. The number of code smells ranges from 1,523 (Apollo) up
to 121,165 (Dubbo), and the number of bugs varies from 22 (Apollo)
up to 10,085 (Okhttp). The high numbers are due to analyzing the
whole history of the projects.

Table 1: Analyzed Projects.

Project Name Domain # Versions # Smells # Bugs

Acra Application 52 3,470 163
ActiveAndroid Library 1 141 754
Aeron Application 76 10,914 1,634
Aerosolve Library 100 1,863 443
Apollo Library 32 1,524 27
Butterknife Library 45 1,636 861
Dubbo Framework 62 27,843 2,216
Ethereumj Cryptocurrency 50 9,169 2,763
Ganttproject Application 31 8,275 4,365
Joda-time Library 64 7,421 684
Lottie-android Library 75 4,143 58
Okhttp Library 80 9,412 10,111
Spring-boot Framework 136 46,551 40

2.2 Code Smells

In our study, we analyze 22 smell types, as reported in Table 2. We
select these smell types because: (i) they affect different scopes, i.
e., methods, and classes; (ii) they are also investigated in previous
works on code smell detection [2, 3, 5, 12, 23, 24, 30]; (iii) they have
detection rules defined in the literature or implemented in available
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Table 2: Selected Code Smells and Tools

Code Smell Affected Code Tool

Broken Hierarchy

Class Designite

Cyclic-Dependent Modularization
Deficient Encapsulation
Imperative Abstraction
Insufficient Modularization
Multifaceted Abstraction
Rebellious Hierarchy
Unnecessary Abstraction
Unutilized Abstraction

Long Method

Method

PMD / Designite / Intellij
Long Parameter List
Long Statement
Switch Statements
Simplified Ternary
Abst Func Call From Const

Designite

Magic Number
Missing default
Missing Hierarchy
Unexploited Encapsulation
Empty catch clause

Long Identifier Class / Method PMD / Designite / Intellij

tools12; and (iv) studies [16, 28, 33] indicate a negative impact of
those smell types on software quality.

To collect code smells, we use three smell detection tools: De-
signite, PMD, and Intellij. These tools have already been used in
previous studies [2, 12]. We execute these tools for each version
of the software, in the entire history of the repository. For each
class and method, we register the smells associated with it along
with the software versions. One might argue that smell may be
registered several times to the same class or method along with the
versions. To mitigate this issue, we only count the smell if a class
or method has changed when compared to the previous version.
Furthermore, we conduct a careful manual validation on a sample of
smells detected. Two pairs of researchers (familiar with code smells
detection) from our research lab validated this sample. Each pair
was responsible for a fraction of the sample, and each individual
validated the same candidate smells. In Table 2, we present names,
scope (i.e., method or class), and the tool used to collect each smell.
More details about the instrumentation used by each tool to detect
the analyzed smell types are available on our website3.

2.3 Metrics

For each version of the analyzed projects, we compute metrics
related to the source code and developers involved.

Source CodeMetrics. We collect 52 metrics at class andmethod
level, covering six quality aspects of object-oriented software: com-
plexity, cohesion, size, coupling, encapsulation, and inheritance.
We chose the CK (Chidamber and Kemerer) metrics [11], which
are well-known and have been used by previous studies to detect
code smells [3, 19, 24]. More details about the metrics, as well as
the tools used to collect them, are described at our website3.

DeveloperMetrics. Open-source environments, such as GitHub,
made it easier for developers with different technical capabilities
and social interactions to actively and simultaneously contribute to
the same project. In such environments, developers can perform a

1http://tusharma.in/smells/
2https://pmd.github.io/latest/pmd_rules_java_design.html
3https://harmfulcode.github.io/

variety of activities, such as committing code, opening and closing
pull requests and issues, and discussing contributions. Even though
developers can collaborate on different projects, their technical
capabilities and social interactions can be determinant factors to
the software quality. For example, a novice developer can introduce
bugs when performing some change. Developer metrics may be a
promising way to recognize which developers’ actions may lead to
bugs [4]. To perform our study, we collect 14 previously described
developer metrics [4], related to three main factors: experience,
contribution, and social aspects (i.e., number of followers). We col-
lect metrics using PyDriller [36], a tool to support Git repository
analysis. More details are described at our website3.

2.4 Locating Bug Fixes

GitHub issues are useful to keep track of tasks, enhancements, and
bugs related to a project. Furthermore, developers can label issues
to characterize them. For example, an issue opened to fix a bug
would typically be associated with the bug label. After fixing the
bug, the issue can be closed. To collect the reports of fixed bugs in
the selected projects, we mined the closed issues related to bugs
in each project. To identify these issues, we verified whether they
contained the bug or defect labels. As a result of this process, we
collected 40,340 bug reports from the 13 analyzed projects. A similar
approach was made in recent studies [4, 24, 33].

2.5 Locating the Buggy Code

GitHub provides the functionality to close an issue using commit
messages. For example, prefacing a commit message with keywords
“Fixes”, “Fixed”, “Fix”, “Closes”, “Closed” or “Close”, followed by an
issue number, such as, “Fixes #12345”, will automatically close the
issue when the commit is merged into the master branch. This
way, when this strategy is used to close a bug issue, we assume the
commit that closed the issue as being the bug fixing commit.

Associating a bug (issue) with a commit fixing allows us to iden-
tify the methods and classes that were modified to fix the bug. This
way, we conservatively establish that in the immediate previous
commit to the fix, these methods and classes are considered Buggy.
We perform a similar approach by previous studies [4, 22, 33], which
consists of assuming that the snippet is directly or indirectly linked
to the bug if they were modified in the commit fix.

2.6 Locating Harmful Code

We consider a code snippet that already had bugs associated with it
and still contains smells as Harmful. To identify Harmful Code,
we first collect the code smells detected along with the software
history (from the first software version until the current one). Then,
we verify which code smells already had bugs associated to it. As a
result, we obtain the code snippets that contain smells and already
had bugs associated to it, i.e., the Harmful Code snippets.

2.7 Dataset Structure

After collecting metrics and classifying code snippets, we build
our datasetEach instance in the dataset represents a code snippet
extracted from the analyzed projects. Associated with each code
snippet, we have the software and developer metrics as well as
its harmfulness (Clean, Smelly, Buggy, or Harmful). While the
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metrics represent characteristics (e. g., number of lines of code), the
harmfulness (Clean, Smelly, Buggy and Harmful) indicates the
category that the code snippet belongs. Our dataset is composed of
28,371,822 instances of code snippets, containing 28,216,238 Clean,
132,219 Smelly, 40,340 Buggy and 1,048 Harmful.

2.8 Calculating Effectiveness

We evaluate the effectiveness of seven ML-techniques to classify
Smelly and Harmful Code as follows. First, we split the dataset
into 11 smaller datasets, one for each smell type. They are extremely
imbalanced, i.e., the percentage of Clean code is higher compared
to the other categories (Smelly,Harmful, Buggy). Class imbalance
can result in a serious bias towards the majority class, thus reduc-
ing the evaluation or classifications tasks [14]. To avoid this, we
apply an under-sampling technique that consists on randomly and
uniformly under-sampling the majority across other classes, similar
to a recent study [6]. We chose under-sampling instead of over-
sampling to avoid the generation of artificial instances of Smelly,
Harmful, and Buggy, as performed by over-sampling techniques.

Next, we preprocess the dataset to avoid inconsistencies and to
remove irrelevant and redundant features [3, 5, 6]. In particular, we
normalize metrics with the default range between 0 and 1. Moreover,
if two metrics present a Pearson correlation higher than 0.8, we
randomly remove one of them.

After performing the preprocessing, we split each dataset into
two sets: training and testing set containing 2

3 and 1
3 of the en-

tire data respectively. We use the training data to learn the hyper-
parameter configurations of the ML-techniques by applying a strat-
ified 5-fold cross-validation procedure to ensure that each fold
has the same proportion of observations with a given class out-
come value, as previous studies do [5, 6]. Searching for the best
hyper-parameter configuration for each technique is a complex,
time-consuming, and challenging task. Each technique has a set
of hyper-parameters that can be of different types, i.e., continu-
ous, ordinal, and categorical, making it more difficult to calibrate
them, due to the large space of hyper-parameters. The Grid Search
algorithm [8] is the most common way to explore different config-
urations for each ML-technique. However, it would be very time
consuming to explore the entire configuration search space for
each technique. To avoid this, we tune the hyper-parameters using
Hyperopt-Sklearn [25],4 which consists of an automatic hyper-
parameter configuration for the Scikit-Learn Machine Learning
library. Hyperopt-Sklearn uses Hyperopt [9] to describe a search
space over possible parameters configurations for different ML-
techniques using Bayesian optimization. The use of Bayesian opti-
mization algorithms is very effective and less time-consuming than
the traditional approaches [25].

Once we learn the hyper-parameters configuration of the tech-
niques, we evaluate the effectiveness of these techniques on unseen
data — testing data. Previous studies [3] have used this procedure
to avoid overfitting of the techniques, i. e., to avoid that, a tech-
nique becomes too specific to the training data, without it being
generalized to unseen data. We measure effectiveness in terms of
f-measure, which is typically used for evaluating the performance

4https://github.com/hyperopt/hyperopt-sklearn

of classification tasks, providing a more realistic performance mea-
sure of a test, since it is computed by the harmonic mean of the
precision and recall.

2.9 Machine Learning Techniques

In this study, we apply a variety of techniques based on popular
algorithms that had a good performance in previous studies [7]
on classifying code smells. We use the scikit-learn [34] python
library in the followingML-techniques: K-nearest Neighbors (KNN);
Decision Tree; Random Forest; Gradient Boosting; Gaussian Naive
Bayes; Support Vector Machines (SVM) and Ada Boost [15].

2.10 Evaluating the Importance of Features

To evaluate the importance of each metric (feature) in the effective-
ness of the ML-techniques analyzed, we use the Shapley Additive

Explanations (SHAP) framework. It consists of a unified approach
to explain the output of any ML model [27]. The SHAP framework
uses game theory with local explanations to give an importance
value to each feature used by the ML-technique that had the highest
score to detect Harmful code. This way, we can find out which
metrics are more important in the detection of Harmful code.

2.11 Conducting the Survey

We conducted an online survey with developers about their percep-
tions of code smells harmfulness as complementary to the quantita-
tive results. Thus, we are providing a mixed-method study aiming
for qualitative and quantitative evidence.

Survey Design. Our survey consisted of three main parts. The
first part comprises four questions about developer demographics
and experience, related to code smells. Then, three questions related
to different aspects of code smells harmfulness, followed by possible
additional comments justifying the responses. Finally, the last part
contains one open-ended question to allow developers to comment.
The main goal of conducting the survey was to further understand
the perceptions of professionals regarding the harmfulness of code
smells. The complete list of questions and more details about the
survey are described at our website3.

Participants. We sent the survey to a list of developers, in-
cluding contributors of the 13 projects described in Section 2.1.
Moreover, we included the survey in developers discussion forums
such as Reddit5, Hackernews6 and Facebook7 Groups, aiming to
reach as many developers from diverse backgrounds. The survey
ran for one week. As a result, we received the response of 60. Ana-
lyzing the background responses, we found that we had successfully
targeted developers with high programming experience: about 59%
have more than seven years of software development experience,
while another 28% have between 4 and 6 years of experience. All
the respondents have some knowledge about code smells.

2.12 Data Analysis

To answerRQ1, we analyze the frequency of Clean, Smelly,Buggy,
and Harmful code in the projects. Moreover, we assess the pro-
portion of Harmful code when compared to the number of smells.

5https://www.reddit.com/
6https://news.ycombinator.com/
7https://facebook.com/
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Such analysis helps us to understand how close is the relation-
ship between Smelly and Buggy code. We further investigate the
Harmful code by analyzing which smell types are more harmful.
In RQ2, we use an online survey to analyze in which extent devel-
opers prioritize refactoring Harmful Code. Also, we investigate
the developers’ perceptions on the harmfulness of Code Smells. In
RQ3, we use the f1-score metric to analyze the effectiveness of ML-
techniques to recognize Smelly and Harmful Code by following
the procedures described in Section 2.8. Finally, to answer RQ4, we
analyze which metrics are more important to the prediction model
produced from the most effective ML-technique to detect Harmful
code. From this analysis, we can identify code implementations
that are more related to Harmful code and, consequently, help
developers to avoid those implementations.

3 RESULTS AND DISCUSSIONS

In this section, we describe and discuss the main results of the study.
We structure the data presentation and discussion in terms of our
three research questions.

RQ1. Which is the incidence of Harmful Code

in software projects?

In this research question, we analyze the code smells harmfulness
by assessing the proportion of smells that are associated with bugs.
Table 3 presents the number and proportion of code snippets con-
sidered as Clean, Smelly, Buggy, or Harmful.

Clean. All the analyzed projects present more than 96% of
Clean code. This high proportion is expected since we analyze all
software versions along with its evolution history. Although we
have been careful by avoiding unchanged code snippets between
versions, the code snippets are frequently changed over time. This
high proportion has pros and cons.High proportion means that

developers could focus their efforts on a small part of the

source code to identify smells or bugs. On the other hand, a
lower proportion could mean that the software has many smells
or bugs, which can be harmful to quality but can also be useful for
researchers to better understand inherent characteristics of this
type of code.

Table 3: Code Category

Project # Clean # Smelly # Buggy # Harmful

Acra 195,874 (98.18%) 3,470 (1.74%) 141 (0.07%) 22 (0.01%)
Aeron 1,861,703 (99.33%) 10,914 (0.58%) 1,489 (0.08%) 145 (0.01%)
Aerosolve 532,715 (99.57%) 1,863 (0.35%) 308 (0.06%) 135 (0.03%)
Apollo 313,379 (99.51%) 1,523 (0.48%) 22 (0.01%) 5 (0%)
Butterknife 74,153 (96.74%) 1,636 (2.13%) 857 (1.12%) 4 (0.01%)
Dubbo 2,854,863 (98.96%) 27,843 (0.97%) 1,939 (0.07%) 277 (0.01%)
Ethereumj 1,690,701 (99.3%) 9,168 (0.54%) 2,638 (0.15%) 125 (0.01%)
Ganttproject 4,263,646 (99.7%) 8,275 (0.19%) 4,077 (0.1%) 288 (0.01%)
Joda-time 3,021,538 (99.73%) 7,420 (0.24%) 676 (0.02%) 8 (0%)
Lottie-android 499,291 (99.17%) 4,143 (0.82%) 52 (0.01%) 6 (0%)
Okhttp 1,422,553 (98.65%) 9,412 (0.65%) 10,085 (0.7%) 26 (0%)
Spring-boot 11,485,822 (99.6%) 46,551 (0.4%) 33 (0%) 7 (0%)

Smelly. Different from Clean code, the projects present a low
proportion of Smelly code. The projects have at most 2.13%. Al-
though the proportion of Smelly code is lower than Clean, smells
are still present in a large portion of the code snippets. The number
of Smelly code snippets in the projects varies from 1,523 (Apollo) up
to more than 27 thousand (Dubbo). Such results indicate that code

smells detection tools still identify a large number of smells,

making it difficult for developers to use them in practice.
Buggy. The proportion of Buggy code is lower than Smelly

code. The projects contain a proportion lower than 2%. But, this
low proportion does not mean a low number of Buggy code snip-
pets. The projects contain from 22 (Apollo) up to more than 10,085
(Okhttp) Buggy code snippets. Which means that developers still
have to concern with a considerable number of Buggy code

snippets to inspect.
Harmful. Similarly to Buggy code, the projects also present

low proportion of Harmful code. The number of Harmful code
snippets is much lower than the number of Buggy ones, varying
from only four (Butterknife) up to 288 (Ganttproject). This sug-
gests that even though existing tools detect a large number

of smells, there is still a high number of bugs that are not re-

lated to those smells. Such results reinforce a previous study [32],
indicating that only a few smells types are considered as harmful
by developers. Hence, we also analyze the smell types more related
to Smelly and Harmful code. Table 4 describes the smell types
analyzed in our study, the number of smells, and Harmful Code
associated with each type.

Table 4: Harmful Smell Types.

Smell Type # Code Smells # Harmful Code

Abstract Function Call From Constructor 118 (92.2%) 10 (7.8%)
Broken Hierarchy 18,152 (99.8%) 30 (0.2%)
Cyclic-Dependent Modularization 20,448 (99.6%) 79 (0.4%)
Deep Hierarchy 88 (98.9%) 1 (1.1%)
Deficient Encapsulation 31,774 (99.8%) 56 (0.2%)
Empty catch clause 8,116 (99.7%) 23 (0.3%)
Imperative Abstraction 1,100 (98%) 23 (2%)
Insufficient Modularization 20,351 (99.6%) 75 (0.4%)
Long Identifier 4,588 (99.7%) 15 (0.3%)
Long Method 11,371 (99.4%) 70 (0.6%)
Long Parameter List 10,839 (99.4%) 61 (0.6%)
Long Statement 52,701 (99.7%) 169 (0.3%)
Magic Number 40,388 (99.6%) 155 (0.4%)
Missing default 3,888 (99.7%) 12 (0.3%)
Missing Hierarchy 908 (99.8%) 2 (0.2%)
Multifaceted Abstraction 885 (99.4%) 5 (0.6%)
Rebellious Hierarchy 671 (99.3%) 5 (0.7%)
SimplifiedTernary 314 (98.4%) 5 (1.6%)
Switch Statements 7,740 (99.3%) 58 (0.7%)
Unexploited Encapsulation 688 (99.7%) 2 (0.3%)
Unnecessary Abstraction 665 (99.7%) 2 (0.3%)
Unutilized Abstraction 128,751 (99.9%) 188 (0.1%)

Smell Types Harmfulness. Abstract Function Call From Con-

structor presents the highest percentage of Harmful code, reaching
7.8% of Harmful smells. Both Imperative Abstraction and Simpli-

fiedTernary present a slightly lower percentage than Abstract Func-

tion Call From Constructor, reaching 2% and 1.6% of Harmful Code,
respectively.While the Switch Statements, Rebellious Hierarchy, Long
Method, Long Parameter List and Switch Statements present percent-
age between 0.6% and 0.7%, the Magic Number, Cyclic-dependent
Modularization and Long Identifier present percentage between 0.3%
and 0.4%. Even tough some smell types present a percentage higher
1%, in half of the smell types analyzed the percentage of Harmful
Code is close to zero.

Summary RQ1: Code smell detection tools identify a large
number of smells, but only a few of them are associated with
bugs. The Abstract Function Call From Constructor presents
the highest proportion of Harmful Code.
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RQ2. In which extent developers prioritize

refactoring Harmful Code?

This research question focuses on analyzing to which extent de-
velopers prioritize Harmful Code in refactoring tasks. We also
investigate other aspects that can help us to understand better the
refactoring prioritization. In particular, we also investigate how
harmful are code smells to the software quality and the impor-
tance of existing code smells detection tools from the developers’
perspective. Figure 1(a)-(c) summarizes the survey results.

Refactoring PrioritizationMost of the developers (30%) prior-
itizes Harmful Code when refactoring, (21.7%) prioritizes Buggy
Code, and (23.3%) Code Smells, as shown in Figure 1(a). Looking
in another perspective, note that 51.7% and 53.3% of the developers
prioritize code associated with bugs or smells, respectively, which
suggests that developers care about bugs and smells when refactor-
ing:

“When refactoring, it is ideal for dealing with all mod-
ules of the code, but due to some limitations, such as
time, it is most important to look at fragile parts as
Harmful Code."

“Since a smell only indicates there might be a problem
and Harmful Code definitely does have a problem,
you should look at that first."

Code Smells harmfulness. The vast majority of the developers
(98.3%) consider code smells harmful to the software quality, as
shown in Figure 1(b). This result suggests that developers believe in
the harmfulness of code smells. Some of them left some comments
regarding the code smells harmfulness:

“Code smells often indicate or lead to bigger problems.
Those bigger problems can make a code base fragile,
difficult to maintain, and prone to errors."

“Code smells make software readability and compre-
hensibility worse. That itself already degrades soft-
ware quality.Moreover, code smells canmake it harder
to find bugs in the software, since you can only find
bugs in code that you can read, and understand."

Figure 1: Survey Results.

Importance of Code Smells Tools. Our results indicate that
developers can be convinced that code smells are harmful to the
software, but they may not be aware that the detection tools are not

previously configured to detect smells that are really harmful. In
fact, we observe that 85% of the developers believe that code smell
detection tools are important, as shown in Figure 1(c). But, when
we analyze the comments, there is no concern in selecting tools
able to detect code smells that are really harmful to the software
quality. Most of the developers mention code smell detection tools
that we use in our study.

Summary RQ2: Majority of the developers prioritize code
associated with bugs or smells, and most of them prioritizes
Harmful Code when refactoring code.

RQ3. How effective are Machine Learning

techniques to classify Harmful Code?

In RQ1, we observed that even though code smells detection tools
identify a large number of smells, only a few of them are really
harmful. On the other hand, the results of the RQ2 indicate that
developers care about Harmful Code. Hence, it is important to
investigate whether ML-techniques classify Harmful Code as ef-
fective as they classify code smells.

Although we analyze 22 smell types in our study, we evaluate
the effectiveness of the ML techniques in 11 types. The remaining
smell types present a low number of bugs associated with them, as
described in Table 4. Figures 2 and 3 present the effectiveness of the
ML-techniques to recognize Smelly and Harmful code, respectively.
In each figure, the y-axis describes the f-measure value reached by
each technique on classifying the analyzed smell type. In addition,
we attach the exact value to the bar associated with each technique.

Harmful. For the 11 smell types analyzed, the ML techniques
could reach high effectiveness on classifying Harmful code, reach-
ing an effectiveness of at least 97% in all the cases analyzed. In partic-
ular,RandomForest reaches an effectiveness equal or greater

than the other algorithms in ten of the 11 smell types. Also,

Gradient Boosting present an effectiveness slightly lower than

Random Forest, reaching an effectiveness equal or greater than
the other algorithms in nine smell types analyzed. Both techniques
are more effective in all smells types, except in the Deficient Encap-
sulation smell type, where Decision Tree is more effective. On the
other hand, GaussianNB reaches the lowest effectiveness in

six of the smell types (Magic Number, Insufficient Modularization,
Unutilized Abstraction, Cyclic-Dependent Modularization, Deficient
Encapsulation and Long Statement).

Smelly. Differently from Harmful code, the ML techniques
could not reach a high effectiveness on classifying some smell types.
While the ML techniques reach an effectiveness of at least 97% on
classifying Harmful Code, these techniques could not reach an
effectiveness greater than 75% in five of the 12 smell types ana-
lyzed (Switch Statements, Long Identifier, Insufficient Modularization,
Cyclic-Dependent Modularization and Deficient Encapsulation). Sim-

ilarly to Harmful code, GaussianNB presents a low effec-

tiveness, reaching the lowest value in six of the smell types

analyzed.. On the other hand, Gradient Boosting is the most

effective algorithms with an effectiveness equal or greater than
Random Forest and SVM in six smell types (Long Identifier, Long
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Figure 2: Results for Harmful Code (f1-score).

Parameter List, Unutilized Abstraction, Cyclic-Dependent Modular-

ization, Long Method and Long Statement). Both Random Forest and
SVM reach the highest effectiveness in three smell types.

Summary RQ3:ML-techniques classify Harmful Code as
effective as they identify code smells. While Random Forest

and Gradient Boosting are effective on detecting both Smelly
andHarmful code,GaussianNB is the less effective technique.

RQ4. Which metrics are most influential on

classifying Harmful Code?

Figure 4 shows the results of the most important metrics in terms
of SHAP values for each smell.

Parameters Amount (PA). The PA metric has the highest im-
portance on detecting Harmful Code in the Long Statement smell
type. It reaches an importance of 0.1951. In the case of the Deficient
Encapsulation and Long Parameter List, the PA metric has an impor-
tance slightly lower than QUW and NQ, reaching a value of 0.0709
and 0.1176 respectively.

Weight Method Class (WMC). The metric has the highest im-
portance on detectingHarmful Code in the smell types Insufficient

Modularization, Empty Catch Clause and Deficient Encapsulation. It
reaches an importance of 0.0446 in the Insufficient Modularization

and 0.1467 in the Empty Catch Clause. In the case of the Deficient
Encapsulation, the PA metric has an importance slightly lower than
WMC, reaching a value of 0.0709.

MathOperationsQuantity (MOQ),NumbersQuantity (NQ),

and Couple Between Objects (CBO). These metrics reach the

highest importance in Long Identifier, Long Parameter List andMagic

Number. While MOQ reaches an importance of 0.1035, in the Long
Identifier, NQ reaches an importance of 0.1211 in the Long Param-

eter List. In the case of Magic Number, only CBO could reach an
importance above 0.0500.

Returns (RE) and Lines of Code Method (LOCM). The RE
and LOCM metrics present the highest importance inCyclic-Dependent
Modularization (0.0699) and Unutilized Abstraction (0.0723), respec-
tively. Assignments Qty reaches the highest importance in the Long
Parameter List, (0.1590). Also, these metrics metric have the second
highest importance in the smell types Magic Number and Long

Statement, reaching a value of 0.0430 and 0.0321 respectively.
Developer Metrics. Among the developer metrics analyzed in

our study, only Number of Commits (NC) reaches some importance.
In this case, this metric presents the importance of 0.0016 in the
Deficient Encapsulation. The remaining metrics present importance
below 0.0010 in this smell type. One might argue that developer
metrics are not important to detect Harmful Code since only one
reaches some importance. However, note that we analyze the impor-
tance of 52 software metrics and only 11 developers’ metrics. Even
analyzing a greater number of software metrics, the developer ones
could reach some importance in the Deficient Encapsulation. These
results show that it is worthwhile to investigate developer metrics
as other contexts in software engineering (i.e., bug prediction), but
it is still early to affirm that they are useful since it is the first study
that utilizes developer metrics in the context of code smells.
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Figure 3: Results for Smelly Code (f1-score).

Figure 4: Most Important metrics among code smells (SHAP values).
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Summary RQ4: Software Metrics reach the highest impor-
tance.Weight Method Class (WMC) present the highest impor-
tance in three smells. RE, MOQ, NQ, PA, CBO, LOCM metrics
reach the highest importance in the remaining smells. Devel-
opers metrics (such as Number of Commits (NC)) reach some
importance in the smell Deficient Encapsulation.

4 LIMITATIONS AND THREATS TO VALIDITY

Construct Validity. In our study, we collected a set of code smells
that were not manually validated. To mitigate this threat, we used
tools and configurations used in previous studies [3, 5, 6, 19, 20].
Another threat to validity is to identify commits that fixed bugs
correctly. GitHub provides the functionality to close issues by com-
mits messages or pull requests comments. We mitigated this threat
by identifying as the bug-fix, the commits, or pull requests (the last
commit) that close issues labeled as “bug” or “defect” using this
functionality. Besides, we identified methods and classes associated
with each bug and establish the immediate previous commit of
these methods and classes as Buggy Code. However, some buggy
methods and classes could not have a bug directly associated with
him since developers may be working on code improvements or
new features during a fix. Also, some types of Harmful Code
may not be identified because the tools used in the research not
identify all the types of code smells. Other characteristics reported
by the developers in the survey of Harmful Code like Legibility
and Financial Cost could be explored in our dataset, but due to the
limitation of resources and time, we opted the only use Bugs and
Smells both characteristics were the most reported.

Internal Validity. Another threat is the procedures of the steps
adopted in Section 2.8. These steps are related to the type of dataset
splitting, selection of hyper-parameters, and construction of the
ML-techniques. To mitigate this, we relied on decisions made by
previous studies that obtained good results detecting code smells
using ML-techniques [7].

External Validity. Regarding the validity of our findings, we
selected only projects in which the primary language adopted is
Java. Although we have selected a large number of projects from six
different domains with different sizes and developers, our results
might not be generalized to other projects which Java is not the
primary language as they may have different characteristics.

5 RELATEDWORK

Impact. Recent studies [28, 33] investigated the impact of code
smells in the change and fault-proneness. Palomba et al. [33] con-
ducted a study on 395 releases of 30 open-source projects and
considering 17,350 code smells manually validated of 13 different
types. The results show that classes with code smells have a higher
change-and-fault-proneness than smell-free classes. Moreover, an-
other study [28] investigated the relationship between smells and
fine-grained structural change-proneness. They found that, in most
cases, Smelly classes are more likely to undergo structural changes.
Tracy et al. [16] investigated the relationship between faults and
five smells: Data Clumps, Switch Statements, Speculative General-
ity, Message Chains, and Middle Man. They collected the fault data
from changes and faults in the repositories of the systems. Their
findings suggest that some smells do indicate fault-prone in some

circumstances, and they have different effects on different systems.
Besides, all these studies provide evidence that bad code smells
have negative effects on some maintenance properties. Our study
complements them on pointing the smells that are really harmful to
the software, helping developers prioritize them while refactoring.

Detection Tools and Techniques. Previous studies [3, 5, 23,
24, 30] have indicated the use of machine learning techniques as a
promising way to detect code smells. These techniques use exam-
ples of code smells previously reported by the developer in order
to learn how to detect such smells. In this way, Amorim et al. [3]
present a preliminary study on the effectiveness of decision tree
techniques to detect code smells by using four open-source projects.
The results indicate that this technique can be effective to detect
code smells. Other studies [23, 30] also inferred ML techniques
to detect code smells by using Bayesian Belief Networks [23] or
Support-vector machine [30]. Hozano et al. [19] introduced Histrat-
egy, a guided customization technique to improve the efficiency
on smell detection. Histrategy considers a limited set of detection
strategies, produced from different detection heuristics, an input
of a customization process. The output of the customization pro-
cess consists of a detection strategy tailored to each developer.
The technique was evaluated in an experimental study with 48
developers and four types of code smell. The results show that His-
trategy is able to outperform six widely adopted machine learning
algorithms – used in unguided approaches – both in effectiveness
and efficiency. Fontana et al. [6] extended their previous work [5]
by applying several machine learning techniques, varying from
multinominal classification to regression. In this study, the authors
modeled the code smell harmfulness as an ordinal variable and com-
pared the accuracy of the techniques. Even though the previous
studies [3, 5, 23, 24, 30] have contributed to evidence the effec-
tiveness of ML-techniques in the detection of code smells, none
of these studies analyze how effective are these techniques to de-
tect Harmful Code. Our study complements all these approaches.
Specifically, we focus on the identification of Harmful Code, sup-
ported by the addition of new features (Developers’ Metrics and
Bugs) approach similar to Catolino et al. work [10].

Developers’ Perceptions. Palomba et al. [32] conducted a sur-
vey to investigate developers’ perception on bad smells, they showed
to developers code entities affected and not by bad smells, and asked
them to indicate whether the code contains a potential design prob-
lem, nature, and severity. The authors learned the following lessons
from the results: I. There are some smells that are generally not per-
ceived by developers as design problems. II. The instance of a bad
smell may or may not represent a problem based on the “intensity”
of the problem. III. Smells related to complex/long source code are
generally perceived as an important threat by developers. IV. Devel-
oper’s experience and system’s knowledge pay an important role
in the identification of some smells. Sae-Lim et al. [35] investigated
professional developers to determine the factors that they use for
selecting and prioritizing code smells. They found that Task Rele-
vance and Smell Severity were most commonly considered during
code smell selection, while Module Importance is employed most
often for code smell selection. Our study supports those previous
studies. Our survey results confirm their results on suggesting that
developers consider factors related to readability, maintainability,
cost, and effort to fix while detecting smells.
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6 CONCLUSIONS

This paper presented a study to understand and classify code harm-
fulness. First, we analyzed the occurrence of Clean, Smelly, Buggy,
and Harmful code in open-source projects as well as which smell
types are more related to Harmful Code. Further, we investigated
in which extent developers prioritizes refactoring Harmful Code.
We also evaluated the effectiveness of machine learning techniques
to detectHarmful and Smelly code. Finally, we investigated which
metrics are most important in Harmful Code detection.

To perform our study, we defined an experiment with 22 smell
types, 803 versions of 13 open-source projects, 40,340 bugs mined
from GitHub issues and 132,219 code smells. The results show that
even though we have a high number of code smells, only 0.07%
of those smells are harmful. The Abstract Function Call From Con-

structor is the smell type more related to Harmful Code. Also, we
performed a survey with 60 developers investigated in which extent
developers prioritizes refactoring Harmful Code. The mayority
(53.8%) of the developers prioritize code associated with bugs, and
most of them (30%) prioritizes Harmful Code when refactoring.
Also most of them (98%) consider code smells harmful to the soft-
ware. Regarding the effectiveness of machine learning techniques
to detect Harmful Code, our results indicate that they reach effec-
tiveness at least 97%. While the Random Forest [18] is effective in
detecting both Smelly and Harmful Code, the Gaussian Naive

Bayes [17] is the less effective technique. Finally, our results sug-
gest software metrics (such as CBO (Couple Between Objects) and
WMC (Weight Method Class)) are important to customize machine
learning techniques to detect Harmful Code.

As future work, we intend to extend this investigation by using
the theory of Social Representations to further expand the under-
standing of Harmful Code from the perspective of the developers.
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