
Porting the Software Product Line
Refinement Theory to the Coq

Proof Assistant

Thayonara Alves1 , Leopoldo Teixeira1(B) , Vander Alves2 ,
and Thiago Castro3

1 Federal University of Pernambuco, Recife, Brazil
{tpa,lmt}@cin.ufpe.br

2 University of Brasilia, Brasilia, Brazil
valves@unb.br

3 Systems Development Center - Brazilian Army, Brasilia, Brazil
castro.thiago@eb.mil.br

Abstract. Software product lines are an engineering approach to sys-
tematically build similar software products from a common asset base.
When evolving such systems, it is important to have assurance that we
are not introducing errors or changing the behavior of existing products.
The product line refinement theory establishes the necessary conditions
for such assurance. This theory has been specified and proved using the
PVS proof assistant. However, the Coq proof assistant is increasingly
popular among researchers and practitioners, and, given that some pro-
gramming languages are already formalized into such tool, the refine-
ment theory might benefit from the potential integration. Therefore, in
this work we present a case study on porting the PVS specification of
the refinement theory to Coq. We compare the proof assistants based on
the noted differences between the specifications and proofs of this theory,
providing some reflections on the tactics and strategies used to compose
the proofs. According to our study, PVS provided more succinct defini-
tions than Coq, in several cases, as well as a greater number of successful
automatic commands that resulted in shorter proofs. Despite that, Coq
also brought facilities in definitions such as enumerated and recursive
types, and features that support developers in their proofs.

Keywords: Software product lines · Theorem provers · Coq · PVS

1 Introduction

Software product lines (SPLs) are sets of related software systems that are sys-
tematically generated from reusable assets [1]. SPLs combine the benefits of mass
customization and mass production. That is, building individual solutions from
a set of reusable parts, while also tackling scale, aiming to reduce development
costs and enhancing the quality of the developed products [1,8]. In this context,
c⃝ Springer Nature Switzerland AG 2020
G. Carvalho and V. Stolz (Eds.): SBMF 2020, LNCS 12475, pp. 192–209, 2020.
https://doi.org/10.1007/978-3-030-63882-5_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63882-5_12&domain=pdf
http://orcid.org/0000-0002-3841-0190
http://orcid.org/0000-0002-6154-1666
http://orcid.org/0000-0003-1573-048X
http://orcid.org/0000-0001-5758-2097
https://doi.org/10.1007/978-3-030-63882-5_12


Porting the Software Product Line Refinement Theory 193

it is important to take into account that evolving a SPL can be error-prone [10],
since a single change might impact a number of products.

Previous works have defined a number of product line refinement theo-
ries [3,12,15], which provide a sound and rigorous basis to support SPL evo-
lution, when we need to preserve the behavior of (some of the) existing prod-
ucts after the change. In particular, two concepts are formalized through these
theories. The notion of safe evolution [3,10] denotes evolution scenarios where
behavior preservation is required for all existing products in the SPL. Partially
safe evolution [12], on the other hand, only requires behavior preservation for a
subset of the products. In particular, in this work, we focus on the concept of
safe evolution. These theories have been specified and proven using the Prototype
Verification System (PVS) [11] proof assistant.

Another widely used proof assistant is Coq, with a large user community,
which is also reflected by its solid presence in popular websites, such as GitHub
repositories; more than 4000 projects returned from our search on the GitHub
GraphQL API,1 and StackOverflow questions.2 Coq is based on the Calculus
of Inductive Constructions (CIC) [14], a higher-order constructive logic. The
dependent type system implemented in Coq is able to associate types with values,
providing greater control over the data used in these programs.

In this work, we conduct a qualitative study whereby we ported the SPL
refinement theory from PVS to Coq. Our goal is twofold: 1) to port the the-
ory to a system used by a wider user community; but more importantly, 2)
to provide a case study on this process. This enables us to reflect and investi-
gate the similarities and differences between the two proof assistants in terms of
their specification and proofs capabilities, which might be useful for the research
community to better understand the strengths and weaknesses of each tool.

To make this comparison, we present some snippets of specifications from
both systems, discussing similarities and differences. Moreover, we manually cat-
egorized the proof commands, which allow us to compare the proof methods at
a higher granularity level. From this study, we can say that we were able to suc-
cessfully port the theory to Coq, with some advantages from the point of view of
usability and definition, but as the refinement theory heavily relies on sets, the
PVS version ended up with a more succinct form of specification. PVS proofs
also had a greater usage of automated commands than Coq, simplifying their
proofs. However, this might be due to previous experience with this particular
proof assistant and less experience with Coq by the authors. We have mined data
from Github repositories using Coq that suggests that the Coq proofs could have
been simplified using specific tactics.

The remainder of this paper is organized as follows. In Sect. 2, we present an
overview of SPLs and SPL refinement. In Sects. 3 and 4, we present our comparison
between the specifications and proofs in Coq and PVS. In Sect. 5, we present a
discussion on lessons learned from our study. Finally, we discuss related work, and
conclude pointing out future research directions in Sects. 6 and 7, respectively.

1 https://developer.github.com/v4/explorer/.
2 https://stackoverflow.com/questions/tagged/coq.

https://developer.github.com/v4/explorer/
https://stackoverflow.com/questions/tagged/coq


194 T. Alves et al.

2 Software Product Lines

SPL engineering aims to increase productivity while also reducing costs, since
we are not creating products from scratch. Moreover, quality might also be
enhanced, since assets are possibly tested a greater number of times [1]. In
this work, we adopted an SPL representation consisting of three elements: (i)
a feature model that contains features and dependencies among them, (ii) an
asset mapping, that contains sets of assets and asset names, (iii) a configuration
knowledge, that allows features to be related to assets. In the remainder of this
chapter, we introduce these elements in more detail. Variability management is
an important aspect, since assets must be developed in a configurable way, to
enable generating different products. Therefore, an SPL is typically structured
using three different elements that are integrated to derive products.

We manage variability through features, which are usually organized into
Feature Models (FM), describing features and their relationships [1,6]. From a
particular feature model F , we use [[F ]] to denote its semantics, that is, the set
of valid configurations, which are used to build SPL products. Additionally, in
a SPL, features are implemented by assets, which can be code, documents, con-
figuration files, and any other artifacts that we compose or instantiate to build
the different products. Since we might have different versions of the same asset,
we use A to refer to the Asset Mapping (AM), where asset names are mapped
to the real assets [3]. This results in a unique mapping, which can help on elim-
inating ambiguities. Finally, the Configuration Knowledge (CK) maps features
to their implementation assets, and guides product derivation. To generate a
specific SPL product, given a valid FM configuration c, and the asset mapping
A, we use [[K]]Ac to denote the set of assets that comprise the product generated
by processing the CK according to the given configuration.

Therefore, we establish that an SPL is a triple (F,A,K) of such elements,
that jointly generate well-formed products. Well-formedness (wf ()) might take
different meanings depending on the particular languages used for the SPL ele-
ments. For instance, it might mean that code is successfully compiling. Since
we do not rely on a particular asset language, we just assume the existence of
a wf () function that must return a boolean value. Its concrete implementation
depends on instantiating the general theory with a particular asset language.

Definition 1. ⟨Software Product Line⟩
For a feature model F , an asset mapping A, and a configuration knowledge K,
the tuple (F,A,K) is a product line when, ∀c ∈ [[F ]] · wf ([[K]]Ac ).

To obtain success with SPL engineering, it is important to understand the
impact of changes. Thus, previous works on SPL evolution proposed ways to
help developers minimize such impacts [3–5,10,12]. In this work, we deal with
the product line refinement notion [3,15]. This notion lifts program refinement
to product lines, by establishing that an SPL is refined after a change when all of
the existing products have their behavior preserved. Since [[K]]Ac is a well-formed
asset set (a program), we use [[K]]Ac ⊑ [[K ′]]A

′

c′ to denote the program refinement



Porting the Software Product Line Refinement Theory 195

notion. In what follows we present the main refinement notion, but we provide
further details in the following section, as we discuss our formalization.

Definition 2. ⟨Software Product Line Refinement⟩
For product lines (F,A,K) and (F ′, A′,K ′), the latter refines the former, denoted
by (F,A,K) ⊑ (F ′, A′,K ′), whenever ∀c ∈ [[F ]] · ∃c′ ∈ [[F ′]] · [[K]]Ac ⊑ [[K ′]]A

′

c′ .

The refinement theory can be used to reason about changes to an SPL, clas-
sifying them as safe evolution, if all products correspond behaviorally to the
original products. However, recurring to the formal definition might be burden-
some to developers, so we can leverage the theory to support developers by
establishing refinement templates [10,12]. These templates abstract recurrent
evolution scenarios which correspond to the refinement notion, that is, they are
an assured way to achieve safe evolution, and they can also help on avoiding
errors when evolving the SPL.

Fig. 1. Replace Feature Expression template.

Figure 1 illustrates the Replace Feature Expression template. We
observe that a template consists of a left-hand side (LHS), corresponding to
the original SPL, and a right-hand side (RHS), representing the SPL after the
change. We represent the three elements of the SPL, namely the FM (F ), AM
(A), and CK (K), showing details only when needed. We also use meta-variables
to denote their constituent elements. For instance, the CK consists of a feature
expression e mapped to an asset name n. If the same meta-variable appears in
both LHS and RHS, this means that this element is unchanged. This template
establishes that we can replace e by e′ whenever they are equivalent according to
the feature model F (see condition at the bottom). Moreover, to avoid ill-formed
expressions, we demand that any name belonging to e′ must be a valid feature
name from F . This change can improve the readability of the CK, by replacing
complex expressions with simpler ones, if they are equivalent.

3 Coq Formalization

In this section, we present details about our Coq formalization, in parallel with
the original PVS specification,3 when they are different. Otherwise, we only
3 https://github.com/spgroup/theory-pl-refinement.

https://github.com/spgroup/theory-pl-refinement


196 T. Alves et al.

show the Coq code. For brevity, we are omitting some definitions. The complete
formalization is available in the project repository.4

3.1 Basic Definitions

A product is described by a valid feature selection, which we call a configuration.
Listings 3.1 and 3.2 illustrate how we represent a configuration as a set of feature
names, as given by the Name type. We use uninterpreted types, without concrete
information about it, which is an important characteristic for reasoning about arbi-
trary values that satisfy some specifications. The basicCoq library does not include
the definition of sets. For this reason, we import the ListSet library for finite sets,
implemented with lists, to specify sets, as is the case with Configuration.

The validity of a configuration is given by satisfying the restrictions among fea-
tures, which in our specification are expressed using propositional formulae. Such
formulas are defined as a new set of data values, enumerated types in Coq, and
abstract datatype in PVS. In both cases, it is necessary to provide a set of con-
structors that cover the abstract syntax of propositional formulae for the possible
values and relations, such as true/false, feature names, negation, conjunction, and
implication, which in PVS come along with associated accessors and recognizers.

Coq has a small set of built-in features, with only twelve libraries in its
Prelude library versus more than one hundred theories in the PVS Prelude.
When we define an inductive type, Coq automatically includes theorems, so that
it is possible to reason and compute enumerated types. So, for Formula, Coq
includes the Formula ind induction principle, in addition to the Formula rec
and Formula rect recursion principles. With these implicit definitions, we are
able to define a function on the formula type and we can also use Formula rec
to give recursive definitions, without the Fixpoint command, for example.
4 https://github.com/spgroup/theory-pl-refinement-coq.

https://github.com/spgroup/theory-pl-refinement-coq


Porting the Software Product Line Refinement Theory 197

3.2 Feature Model

Features are used to distinguish SPL products. A feature model is then a set
of feature names, together with propositional formulae using such names. As
previously mentioned, a configuration is only considered valid if it satisfies the
FM formulae. The satisfies function is responsible for this check.

To specify a recursive definition in PVS, we need to prove Type-Correctness
Conditions (TCCs), to guarantee that functions always terminate. This is done
by the MEASURE keyword that receives a well-founded order relation, to show
that the recursive function is total. For recursive datatypes, PVS automatically
generates such an structural order relation over Formula, which is provided as
<< in what follows the BY keyword. Coq employs conservative syntactic criteria
to check termination of all recursive definitions, allowing recursive calls only on
syntactic subterms of the original primary argument.

The semantics of the FM is given by the set of all valid configurations. In
Coq, following an operational specification, we use the genConf function, which
generates the powerset of the FM features, that is, it generates all possible
configurations from a given set of features. We then use the filter function,
which takes the FM restrictions into account, to only yield the configurations of
interest, that is, the valid ones. Meanwhile, with declarative style of specification,
PVS allows subtypes of the form: A = {x: B | P (x)}, which allows a simplified
declaration of this function.

3.3 Assets and Asset Mapping

A SPL has a set of assets from which products are built. Assets are related to
names through the AM. To express this, we created a theory for maps, which
are basically key-value pairs, where S represents a key and T the value associated



198 T. Alves et al.

with that key, and both are uninterpreted types. Once we have S and T, we can
provide the definition of asset name, asset and map, in the Asset module.

The product line refinement notion relies on an asset refinement notion. For
generality, we assume this function, as the theory does not depend on a particular
asset language. The basic intuition is that it returns True when refinement holds.
The constructs of this function are not analogous in the two proof assistants.
In Coq, we use global declarations using the Parameter inline command to
define a function interface.

While we do not demand a specific asset refinement notion, we require it to be
a preorder. The Orders theory in the PVS prelude provides a nice syntactic sugar
for specifying this, while we hard-coded this notion in the Coq specification.

As mentioned in Sect. 2, the AM is a unique mapping between the asset name
and the asset. We also define an AM refinement notion, which is important
for establishing compositionality. In this case, the original and modified AM
domains must be equivalent. Any asset contained in the original AM must have
a corresponding refined version in the modified AM. We observe that the Coq
specification is more verbose for dealing with sets, when compared to PVS. Using
Coq’s dependent typing the definition could have been reduced, since we had to
make explicit the set In an (dom am1) premise in aMR



Porting the Software Product Line Refinement Theory 199

Another detail in the Coq definition is that working with lists requires that
its element types are decidable, due to CIC. A type has decidable equality if any
two elements of that type are the same or different. Since ListSet uses lists
to implement sets, we need to demand the following predicate ∀xy : R, {x =
y} + { x = y}, where R is an arbitrary type for a list element. For this reason,
we need to introduce axioms such as Asset dec to establish that certain types
are decidable. Adding axioms is a threat to validity of this study, but these
axioms are mostly limited to types belonging to lists, or from things we assume
to be true from the SPL refinement theory.

3.4 Configuration Knowledge

The CK relates features to artifacts. One way of doing this is to associate feature
expressions to transformations, instead of mere asset selection. In this case, we
specify the CK as a list of items, defined as the product of feature expressions
and a transformation. For simplicity, we limit one transformation per item, but
we could extend the theory to handle an arbitrary number of transformations.

The CK semantics is defined as an interpreter that evaluates transformations
to generate products. The Coq version uses pattern-matching to specify the
function that runs through the list of items, applying the transformations when
the expression is evaluated as true according to the configuration c.

3.5 Software Product Lines

Definition 1 states that an SPL is formed by the FM, AM and CK, jointly
generating well-formed products. In PVS, we are able to use predicate subtypes
to establish this fact. Using (p) to define a type restricts that all elements of
such type satisfy the predicate p. This might result in proof obligations that
we might need to satisfy to produce a consistent specification. In Coq, we use
records. Record fields are defined with :>, which make that field accessor a
coercion. This coercion is automatically created by Coq. Thus, in the definitions
that make use of PL, the well-formedness constraint is required, as we see in
Listing 3.20.



200 T. Alves et al.

We are then able to formalize the SPL refinement function, as in Definition 2.

In practice, it might not be the case that all three elements are changed in
an evolution scenario [5,7]. In this sense, we prove the so-called compositionality
theorems, that enable reasoning when a single one of the three elements evolves.
The main idea is to establish that safely evolving one of such elements results
in safe evolution of the entire SPL. We have compositionality results established
for the independent evolution of each element (FM, AM, and CK), and the full
compositionality theorem, that enables reasoning when all three of them evolve.
It basically states that if we change the FM and CK resulting in equivalent
models (this notion is provided in our repository), and the AM is refined as
previously described in Listing 3.14, the resulting SPL is a refined version of the
original. The formalization in Coq is analogous to that of PVS, except for the
use of the Where command to define pl2 , in the PVS theorem.

3.6 Theory Instantiation and Templates

Even though we present concrete FM and CK languages in the previous section,
the SPL refinement theory does not rely on a particular concrete language for
FM, CK, or AM. Nonetheless, instantiating the theory with concrete languages
enables us to establish refinement templates (see Sect. 2). In PVS, we do this
through the theory interpretation mechanism. We use the IMPORTING clause to
provide the parameters for the uninterpreted types and functions. PVS then
generates proof obligations that we must prove to show that such instantiation
is consistent.



Porting the Software Product Line Refinement Theory 201

In Coq, we use typeclasses. We establish the SPL class with interface declara-
tions and required properties. Properties are defined as axioms or theorems. We
also specify parameters for instantiating the class. As we import functions from
other typeclasses, we need to handle constraints. For instance, the SPL class
generates the FeatureModel constraints, due to the typeclass defined earlier.
FeatureModel is satisfied by {FM: FeatureModel F Conf}, for example.

We use the Program Instance keyword to provide concrete instance, and
we must prove that each parameter satisfies the previously defined properties.
Class methods must also be related to their implementation, as is the example
of plRefinement. Finally, Coq generates obligations for the remaining fields,
which we can prove in the order that they appear, using the Next Obligation
keyword.

With such instantiation, we are then able to prove soundness of the refine-
ment templates. That is, for each template, we prove that performing the changes
as described to the original SPL, results in SPL refinement. The specification
and proofs of the templates is a work in progress, so far we have two templates
already fully specified and proven, and other templates already specified and
with an ongoing proof. For space reasons, we refer the reader to our Github
repository.



202 T. Alves et al.

4 Proofs

In proof assistants, unlike automated theorem provers, we need to interact with
the system to prove lemmas and theorems. For this, they provide commands—
namely tactics in Coq, and rules or strategies in PVS—that act on the current
proof goal, potentially transforming it into subgoals, which might be simpler to
prove. Once every subgoal of the proof is dealt with, the task is finished.

Coq offers the Search feature. We use this command to search for previously
stated lemmas/theorems that might assist proving the current goal. This pre-
vents us from declaring other lemmas unnecessarily. As Coq’s Prelude is smaller,
we were unable to obtain much advantage of it, except for the lemmas from
ListSet and other results that we had proven. PVS contains a richer Prelude,
and we often used available results. For instance, nine existing lemmas were
used to prove AM refinement in PVS. Nevertheless, PVS does not provide an
easy search feature such as Coq, so the user needs to have prior knowledge of
the theories that are in its standard library or integrate PVS with Hypatheon
library5.

Although we are porting an existing PVS specification, the proof methods
often differ between the two systems. For example, Listings 4.1 and 4.2 show
Coq’s and PVS’s proofs for the inDom lemma. This lemma belongs to the map
theory and states that, if there is a mapping of a key l to any value r, then the
domain of that map contains l. In Coq, we prove the lemma by induction. The
base case is solved with the HMpb hypothesis simplification and the contradiction
tactic, since we obtain False as assumption. In the inductive case, in addition to
other tactics, the apply tactic was used to apply the isMappable elim lemma, to
remove a pair from the mapping check. We also use this same tactic to transform
the goal from the implications of lemmas set add intro1 and set add intro2 , by
ListSet.

The intuition tactic was used to complete the last two subgoals. This tactic
calls auto, which works by calling reflexivity and assumption, in addition to
applying assumptions using hints from all hint databases. These calls generate
subgoals that auto tries to solve without error, but limited to five attempts,
to ensure that the proof search eventually ends. The prover has the option of
increasing this number of attempts in order to increase the chances of success,
as well as adding already solved proofs to the hint databases. Both should be
used with care due to performance.

5 https://github.com/nasa/pvslib.

https://github.com/nasa/pvslib


Porting the Software Product Line Refinement Theory 203

The PVS proof, in turn, is simpler. The basis of PVS logic is also based on
set theory, which influences in this simplicity. We first perform skolemization,
then we expand the definition of dom, which results in the proof goal EXISTS
(r: Asset): m(l,r). We instantiate the existential quantifier with r, which
concludes the proof.

4.1 Comparing Proof Methods

To compare proof commands of both systems, we have clustered the tactics
and proof rules according to their effect on the goals, as follows, with selected
examples of Coq tactics and PVS rules or strategies. This is an adaptation of an
existing categorization.6

–Category 1 - Proving Simple Goals: This category groups simple com-
mands that discharge trivial proof goals.
• Coq: assumption, reflexivity, constructor, exact, contradiction;
• PVS: Simple goals are automatically solved.

–Category 2 - Transforming goals or hypotheses: These commands
change the state of goals through simplification, unfolding definitions, using
implications, among others, allowing progress in the proof process.
• Coq: simpl, unfold, rewrite, inversion, replace;
• PVS: replace, replace *, expand, instantiate, use, inst,
generalize.

–Category 3 - Breaking apart goals or hypotheses: Those that split the
goal or hypothesis (antecedent and consequent in PVS) into steps that are
easier to prove.
• Coq: split, destruct, induction, case;
• PVS: flatten, case, split, induct.

6 https://www.cs.cornell.edu/courses/cs3110/2018sp/a5/coq-tactics-cheatsheet.
html.

https://www.cs.cornell.edu/courses/cs3110/2018sp/a5/coq-tactics-cheatsheet.html
https://www.cs.cornell.edu/courses/cs3110/2018sp/a5/coq-tactics-cheatsheet.html


204 T. Alves et al.

–Category 4 - Managing the local context: Commands to add hypotheses,
rename, introduce terms in the local context. There is no direct progress in
the proof, but these commands bring improvements that might facilitate such
progress.
• Coq: intro, intros, clear, clearbody, move, rename;
• PVS: skolem!, copy, hide, real, delete.

–Category 5 - Powerful Automatic Commands: Powerful automation
tactics and strategies that solve certain types of goals.
• Coq: ring, tauto, field, auto, trivial, easy, intuition, congruence;
• PVS: grind, ground, assert, smash.

We could also establish other categories, but those listed here are sufficient
to group all tactics and rules used in our Coq and PVS proofs.

Table 1. Total tactics by category

Proof Assistant Category 1 Category 2 Category 3 Category 4 Category 5 Total

Coq 25 357 225 120 33 760

PVS — 209 97 85 126 517

Table 1 presents the numbers for such categories in our specifications. First,
we note that the number of tactics in Coq is 47.7% higher than that of PVS,
even though we often use sequences of tactics such as destruct H0, H1, which
breaks hypotheses H0 and H1 into two others in the same step. One possible
reason for these differences is the ability of PVS to automatically solve simple
goals, which does not happen in Coq. Additionally, the PVS specification has
taken more advantage of automatic commands. In these systems, six results are
proven using the grind rule and, in other six proofs, this command resolved all
the subgoals generated by a command of the type Breaking apart goals and
hypotheses. The PVS documentation recommends automating proofs as much
as possible. One reason may be proof brittleness, as on some occasions, updates
to PVS have broken existing proofs [9].

A greater number of commands that make changes to goals and hypothe-
ses can also be explained by a greater number of branches generated from the
Managing the local context category. induction, which generates from one
to six more subgoals in this formalization, was used 15 times in Coq and only
five times in PVS, for example. Also, for each subgoal generated, we mark each
one with bullets in Coq, increasing the number of commands in the Breaking
apart goals and hypotheses category.



Porting the Software Product Line Refinement Theory 205

Finally, we also notice that we do not use tactics that act on other tactics -
which would be a new category - such as repeat and all, which would simplify
the proofs. We intend to do this in the future. We did not find this type of proof
rule being used in PVS, but some commands like skosimp and grind implicitly
contain control structures.

Fig. 2. Tactics from our Coq specification Fig. 3. Tactics from Github

Nonetheless, to provide some external validity for our Coq specification,
we also mined Coq repositories from Github using GraphQL API v4 and
PyDriller [13]. This resulted in 1.981 projects, with 65.661 .v files. We have
also categorized the tactics from these projects, in this case also considering
more categories to group a larger number of tactics. Figures 2 and 3 compare
the distribution of command among the categories, for both our specification and
the aggregated data from the Github projects. The percentage of Transform-
ing goals or hypotheses commands is similar, but Proving Simple Goals
appears more often among Github projects. In addition, automated commands
are further explored in these projects. In projects where the Hint command was
found, 16.43% of the tactics are automated versus 5.38% in projects that have
not made such use. This suggests that we could have simplified our proofs using
this command.

5 Discussion and Lessons Learned

The general approach of this work was to stay close to the original specification
and we were able to successfully port the SPL refinement theory from PVS to
Coq. However, Coq posed some difficulties during this process, as well as easing
some other tasks. It is important to highlight that authors had a much stronger
previous experience in PVS than Coq, so this certainly has an impact in our
results. We intend to collect further feedback from experts in Coq to improve
the Coq specification. Nevertheless, in general, both specifications are similar
for most encodings. Most of the differences noted are presented earlier in this
section and their key aspects are summarized in Table 2.



206 T. Alves et al.

Table 2. Specification summary

Section Definition Coq PVS

Basic
definition

Sets ListSet library Prelude

Set of data values Enumerated type Abstract datatype

Feature model Recursive function Conservative
syntactic criteria

TCCs; measure
function

FM semantics Operational
specification

Declarative
specification

Asset and AM AM Maps theory Maps theory

Asset refinement Parameter inline Syntactic sugar for
function interface

Refinement is preorder Explicit
reflexivity’s and
transitivity’s
definition

Syntactic sugar
from order theory

AM refinement Axioms of
decidability;
Explicit definition

Predicative subtype

SPL PL Record Predicative subtype

Compositionality PL as a triple Where command

Theory
instantiation

Instances Typeclasses Theory
Instantiation

A point to be considered in favor of Coq, which contributed to the devel-
opment of our specification, is its large active community and the vast amount
of available information, which provides greater support to its users. There are
forums that support Coq developers, as well as an active community in both
StackOverflow and Theoretical Computer Science Stack Exchange.7 We are also
aware of The Coq Consortium,8 which provides greater assistance to subscribing
members, with direct access to Coq developers, premium bug support, among
others.

Regarding the specification, Coq presented an easier way to define recursive
functions. It uses a small set of syntactic and conservative criteria to check for
termination, where the developer must provide an argument that is decreasing as
the calls are made. In fact, there is a way to perform recursive definitions without
meeting this requirement. Just specify a well-founded relation or a decreasing
measure mapping to a natural number, but it is necessary to prove all obligations
to show this function can terminate. On the other hand, PVS generates TCCs
to ensure that the function is complete and a measure function to show this.

7 https://cstheory.stackexchange.com/questions/tagged/coq.
8 https://coq.inria.fr/consortium.

https://cstheory.stackexchange.com/questions/tagged/coq
https://coq.inria.fr/consortium


Porting the Software Product Line Refinement Theory 207

PVS allows partial functions, but only within total logic structures, from
predicate subtypes. The definitions that made use of these subtypes made the
specifications more succinct and easier to read when compared to the Coq defi-
nitions. PVS also provided syntactic sugar throughout its specification, allowing
for less coding effort by the developer. We could have further leveraged Coq nota-
tions to achieve similar results. Besides that, PVS provides a greater amount of
theories in its standard library. However, there is also a wide variety of Coq
libraries available on the web.

The proofs are often different between the proof assistants. PVS proofs had
a greater usage of automated commands like grind, solving some goals with
just that command. It was also not necessary to worry about simpler goals.
For example, the flatten rule not only yields a subgoal in order to simplify
the goal, but it also solves simpler goals then, such as when we have False in
the antecedent. In Coq, except in cases where automated tactics can be used,
we need to explicitly use tactics such as contradiction to deal with False as
assumption, or reflexivity to prove goals that are automatically discharged
by PVS.

Although the proofs in Coq are longer in our specification, we noticed that
important features, which give greater support to the prover, were not used.
Tactics like all and repeat could have been useful to avoid repetition. The use
of Hints and the increased search depth of the auto tactic may increase the
chances of automated tactics being successful in their attempts.

From a usability point of view, Coq specifications and their corresponding
proofs belong to the same file. In PVS, it is also necessary for the prover to
be aware of control rules to go through the .prf file, such as the undo rule that
undoes commands. In addition, it is common to lose proofs that are in these
files, because of automatically renamed TCCs, for example. Finally, Coq also
has search commands, either by identifying or by patterns, which might prevent
the unnecessary definition of lemmas.

6 Related Work

Wiedijk [16] draws a comparison between 15 formalization systems, including
Coq and PVS. In his work, users of each system were asked to formalize the
irrationality of

√
2 by reducing it to the absurd. For each system, the author

compare the number of lines of the specification, whether it was proven by the
irrationality of

√
2 or by an arbitrary prime number, in addition to verifying

whether the users proved the statement using their system’s library. Despite the
breadth of such study, the comparison among the systems is performed against
a simple proof problem. This points to the need for comparison on a larger scale,
in order to have the possibility to further explore the difference between these
systems, specifically. This is what we have attempted to perform in this work,
even though we only compare two systems. Moreover, our findings cannot be
readily generalized to any mechanization using Coq or PVS, since we have only
specified a particular type of theory.



208 T. Alves et al.

Bodeveix et al. [2] formalized the B-Method using Coq and PVS. The work
provides the mechanization of most constructions, showing the main aspects in
the coding of the two systems for each stage of formalization. This work is similar
to ours, but we also draw a comparison between the tactics and strategies that
make up the proof, using data collected from Github projects to strengthen our
statements.

7 Conclusions and Future Work

In this work, we port the existing SPL refinement theory mechanized in PVS to
Coq. This theory is the basis of previous works [3,5,10,12] related to safe and
partially safe evolution of SPLs, although here we only discuss the safe evolution
aspect of this theory. We also compared Coq and PVS using the specifications
performed on these systems, showing the differences observed in the specifica-
tions and proofs.

Through our study, we concluded that Coq’s formalism and languages are
sufficiently expressive to deal with and represent the different types of definitions
found in the PVS mechanization. We have seen, however, that PVS provides
ways to simplify most of the formalization presented, as well as proof rules that
reduce the proof effort by the user. Nevertheless, we also need to emphasize that
Coq brings features, such as Hint, tactical commands, dependent typing and
advanced notations in which users of this tool can overcome this difference. Its
larger community and documentation availability might provide greater support
for this purpose. In addition, we must take the constant improvements made to
the systems into account.

This is an initial case study on a specific project and we would benefit from
conducting similar analyses on other projects. For future work, we intend to com-
plete the proofs of the remaining SPL safe evolution templates, as well as extend
our formalization to consider partially safe evolution as formalized through par-
tial SPL refinement [12], since they are threats to the validity of this study.
Besides, as mentioned earlier, the fact that the authors have more experience
with PVS affects our results, being a threat to the validity of our comparison.
We intend to collect feedback from Coq experts to improve our formalization.
Nonetheless, our initial focus was to have a Coq specification closer to the previ-
ously proposed PVS specification. Additionally, we plan to address simplification
of proofs, taking important Coq features presented in Sect. 5 into account, which
was not our focus in this work.

Acknowledgments. This work was partially supported by CNPq (grant 409335/
2016-9) and FACEPE (APQ-0570-1.03/14), as well as INES 2.0 (http://www.ines.
org.br), FACEPE grants PRONEX APQ-0388-1.03/14 and APQ-0399-1.03/17, and
CNPq grant 465614/2014-0. Thayonara Alves is supported by FACEPE (grant IBPG-
0749-1.03/18). Vander Alves was partially supported by CNPq (grant 310757/2018-
5), FAPDF (grant SEI 00193-00000926/2019-67), and the Alexander von Humboldt
Foundation.

http://www.ines.org.br
http://www.ines.org.br


Porting the Software Product Line Refinement Theory 209

References

1. Apel, S., Batory, D., Kästner, C., Saake, G.: Feature-Oriented Software Product
Lines. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37521-7

2. Bodeveix, J.P., Filali, M., Munõz, C.: A formalization of the B method in Coq and
PVS. In: FM’99 - B Users Group Meeting - Applying B in An Industrial Context:
Tools, Lessons and Techniques, pp. 32–48. Springer, Cham (1999)

3. Borba, P., Teixeira, L., Gheyi, R.: A theory of software product line refinement.
Theoret. Comput. Sci. 455, 2–30 (2012)

4. Bürdek, J., Kehrer, T., Lochau, M., Reuling, D., Kelter, U., Schürr, A.: Reason-
ing about product-line evolution using complex feature model differences. Autom.
Softw. Eng. 23(4), 687–733 (2015). https://doi.org/10.1007/s10515-015-0185-3

5. Gomes, K., Teixeira, L., Alves, T., Ribeiro, M., Gheyi, R.: Characterizing safe and
partially safe evolution scenarios in product lines: an empirical study. In: VaMoS.
Association for Computing Machinery (2019)

6. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, S.: Feature-oriented domain
analysis (foda) feasibility study. Technical report. CMU/SEI-90-TR-21, Software
Engineering Institute, Carnegie Mellon University, November 1990

7. Kröher, C., Gerling, L., Schmid, K.: Identifying the intensity of variability changes
in software product line evolution. In: SPLC, p. 54–64. Association for Computing
Machinery (2018)

8. Van der Linden, F., Schmid, K., Rommes, E.: Software Product Lines in Action:
the Best Industrial Practice in Product Line Engineering. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-71437-8

9. Miller, S., Greve, D., Wilding, M., Srivas, M.: Formal verification of the Aamp-Fv
microcode. Technical report (1999)

10. Neves, L., et al.: Safe evolution templates for software product lines. J. Syst. Softw.
106(C), 42–58 (2015)

11. Owre, S., Shankar, N., Rushby, J.M., Stringer-Calvert, D.W.J.: PVS Language
Reference. SRI International (2001). http://pvs.csl.sri.com/doc/pvs-language-
reference.pdf, version 2.4

12. Sampaio, G., Borba, P., Teixeira, L.: Partially safe evolution of software product
lines. J. Syst. Softw. 155, 17–42 (2019)

13. Spadini, D., Aniche, M., Bacchelli, A.: PyDriller: Python framework for mining
software repositories. In: ESEC/FSE, pp. 908–911. Association for Computing
Machinery (2018)

14. Team, T.C.D.: The COQ proof assistant reference manual. Technical report, INRIA
(2020). https://coq.inria.fr/distrib/current/refman/

15. Teixeira, L., Alves, V., Borba, P., Gheyi, R.: A product line of theories for reason-
ing about safe evolution of product lines. In: SPLC, pp. 161–170. Association for
Computing Machinery (2015)

16. Wiedijk, F.: Comparing mathematical provers. In: Asperti, A., Buchberger, B.,
Davenport, J.H. (eds.) MKM 2003. LNCS, vol. 2594, pp. 188–202. Springer, Hei-
delberg (2003). https://doi.org/10.1007/3-540-36469-2 15

https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.1007/s10515-015-0185-3
https://doi.org/10.1007/978-3-540-71437-8
http://pvs.csl.sri.com/doc/pvs-language-reference.pdf
http://pvs.csl.sri.com/doc/pvs-language-reference.pdf
https://coq.inria.fr/distrib/current/refman/
https://doi.org/10.1007/3-540-36469-2_15

	Preface
	Organization
	Contents
	Invited Talks
	Formal Verification of Neural Networks?
	1 Introduction
	2 Verification vs. Validation vs. Trustworthy AI
	3 Property-Directed Verification of Recurrent Neural Networks
	4 Conclusion
	References

	Navigating the Universe of Z3 Theory Solvers
	1 Introduction
	1.1 Present and Future

	2 CDCL(T) - In the Light of Theory Solvers
	2.1 Invariants

	3 Boolean Theories
	4 Base Theories
	4.1 Arithmetic
	4.1.1 Rational Linear Arithmetic
	4.1.2 Integer Linear Arithmetic
	4.1.3 Non-linear Arithmetic


	5 Reducible Theories
	5.1 Refinement Types
	5.2 Reducible Theories in Z3
	5.2.1 Arrays
	5.2.2 Floating Points
	5.2.3 Algebraic Datatypes


	6 Hybrid Theories
	7 External Theories
	8 Conclusion
	References

	Revisiting Refactoring Mechanics from Tool Developers' Perspective
	1 Introduction
	2 Motivating Example
	3 Technique
	3.1 JDolly
	3.2 Overview
	3.3 Detecting Differences in Refactoring Implementations

	4 Evaluation
	4.1 Experiment Definition
	4.2 Results and Discussion
	4.3 Threats to Validity

	5 Related Work
	6 Conclusion
	References

	Experience Reports
	Safety Assurance of a High Voltage Controller for an Industrial Robotic System
	1 Introduction
	2 HVC and Previously Detected Errors
	2.1 Properties for Formal Verification

	3 Finite State Machine Modelling
	4 Model Checking
	4.1 Model Checking in RoboTool
	4.2 Model Checking in Simulink Design Verifier (SDV)

	5 Concluding Remarks and Future Work
	References

	Statistical Model Checking in Drug Repurposing for Alzheimer's Disease
	1 Introduction
	2 Background
	2.1 Statistical Model Checking—SMC
	2.2 Alzheimer's Disease Pathophysiology
	2.3 PI3K/AKT/mTOR Pathway and Alzheimer Disease

	3 Formal Model
	3.1 Related Work
	3.2 The Proposed Model

	4 Results
	4.1 Simulations
	4.2 Effect of Rapamycin in Tau
	4.3 Effect of Rapamycin in A 
	4.4 Discussion

	5 Conclusion
	References

	Models, Languages and Semantics
	Calculational Proofs in Relational Graphical Linear Algebra
	1 Introduction
	2 Syntax and Semantics of Graphical Linear Algebra
	2.1 Syntax
	2.2 Semantics
	2.3 Diagrammatic Reasoning

	3 Algebraic Structure
	3.1 Bialgebra Structure

	4 Applications
	4.1 Dictionary
	4.2 Classical Existence Theorems
	4.3 Dotted Line Associativity in Block Linear Algebra

	5 Conclusions and Future Work
	References

	Modeling Big Data Processing Programs
	1 Introduction
	2 Background
	3 Modeling Big Data Processing Programs
	3.1 Data Flow
	3.2 Data Sets and Transformations
	3.3 Abstracting Features from Big Data Processing Systems

	4 Applications of the Model
	5 Related Work
	6 Conclusions and Future Work
	References

	Optimization of Timed Scenarios
	1 Introduction
	2 A General, Flexible Optimisation Algorithm
	2.1 Preliminaries
	2.2 Implied Constraints
	2.3 The Notion of Support
	2.4 The General Algorithm
	2.5 An Application of the Algorithm

	3 Comparison with Difference Bounds Matrices
	4 Conclusions
	References

	Reversal Fuzzy Switch Graphs
	1 Introduction
	2 Preliminaries
	3 Reversal Fuzzy Switch Graphs
	3.1 Reactivity of RFSGs
	3.2 Products of RFSGs

	4 A Logic for RFSGs
	5 Modeling a Tank Level Control System
	6 Final Remarks
	References

	Separation Logic-Based Verification Atop a Binary-Compatible Filesystem Model
	1 Introduction
	2 Background
	2.1 ACL2
	2.2 Program Logic
	2.3 FAT32

	3 Abstract Separation Logic for Filesystem Verification
	3.1 System Calls and Support for Filesystem Clients
	3.2 Rewriting
	3.3 LoFAT-HiFAT Correspondence

	4 Evaluation
	5 Related Work
	6 Conclusion
	References

	Software Product Lines
	Merging Cloned Alloy Models with Colorful Refactorings
	1 Introduction
	2 Colorful Alloy
	3 Refactoring Laws for Colorful Alloy
	4 Migrating Clones into a Colorful Alloy Model
	5 Implementation and Evaluation
	6 Related Work
	7 Conclusion and Future Work
	References

	Porting the Software Product Line Refinement Theory to the Coq Proof Assistant
	1 Introduction
	2 Software Product Lines
	3 Coq Formalization
	3.1 Basic Definitions
	3.2 Feature Model
	3.3 Assets and Asset Mapping
	3.4 Configuration Knowledge
	3.5 Software Product Lines
	3.6 Theory Instantiation and Templates

	4 Proofs
	4.1 Comparing Proof Methods

	5 Discussion and Lessons Learned
	6 Related Work
	7 Conclusions and Future Work
	References

	Safe Evolution of Product Lines Using Configuration Knowledge Laws
	1 Introduction
	2 Background
	2.1 Overview
	2.2 Formalization

	3 Safe Evolution of Product Lines
	4 Configuration Knowledge Laws
	5 Soundness
	6 Case Study
	7 Related Work
	8 Conclusions
	References

	Author Index

