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Abstract. When evolving a software product line, it is often important
to ensure that we do it in a safe way, ensuring that the resulting prod-
uct line remains well-formed and that the behavior of existing products
is not affected. To ensure this, one usually has to analyze the different
artifacts that constitute a product line, like feature models, configura-
tion knowledge and assets. Manually analyzing these artifacts can be
time-consuming and error prone, since a product line might consist of
thousands of products. Existing works show that a non-negligible num-
ber of changes performed in commits deal only with the configuration
knowledge, that is, the mapping between features and assets. This way,
in this paper, we propose a set of algebraic laws, which correspond to
bi-directional transformations for configuration knowledge models, that
we can use to justify safe evolution of product lines, when only the con-
figuration knowledge model changes. Using a theorem prover, we proved
all laws sound with respect to a formal semantics. We also present a case
study, where we use these laws to justify safe evolution scenarios of a
non trivial industrial software product line.

Keywords: Safe evolution · Software product lines · Theorem proving

1 Introduction

A Software Product Line (SPL) is defined as a set of software systems built from
a common asset base, that share common characteristics, but are sufficiently
distinct from each other in terms of features [2,23]. SPLs can bring significant
productivity and time to market improvements [23]. Besides code and other
kinds of assets, an SPL consists of different artifacts, such as Feature Models
(FMs) [18] and Configuration Knowledge (CK) [11]. We use FMs to charac-
terize products, defining what is common and variable through features, which
are reusable requirements and characteristics [11]. We establish the relationship
between features and concrete assets through the CK. Given a valid feature
selection, CK evaluation yields the assets that build a product. When evolving
an SPL, for example, to improve its design, it is important to make sure that
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it remains well-formed, in the sense that it generates valid products, and that
behavior of existing products is not affected.

Manually changing different parts to evolve an SPL requires effort, especially
for checking necessary conditions to make sure the change is performed with-
out impact to existing products, such as introducing bugs or changing behavior.
Moreover, this process is time-consuming and can also introduce defects, compro-
mising the promised benefits on other dimensions of cost and risk. Recent works
investigating the evolution of highly configurable systems through their commit
history show that the mapping between features and assets evolves indepen-
dently [17,21] of changes to the variability model or code. For instance, Gomes
et al. [17] found that 122 out of 500 commits from the highly configurable sys-
tem Soletta, only changed the CK, besides other commits that involve changes
to multiple elements at the same time. In our earlier work, we formalized general
theories for SPL refinement [8,28,33], that take into account FM, CK, and assets
(Sect. 3), capturing the informal notions of safe and partially safe SPL evolution.
Safe evolution states that the resulting SPL must be able to generate products
that behaviorally match all of the original SPL products, while partially safe
relates to preserving behavior of only a subset of the original products. Safe
evolution, which is our focus in this work, even allows adding new products, as
long as we maintain the behavior of the original products. Although formalized,
these notions can also be costly to check, since it can be time consuming, besides
error-prone, to reason over the semantics of all SPL products.

This way, in this paper, we propose a set of bi-directional, semantics-
preserving transformations for compositional CK models, that associate enabling
conditions to asset names (Sect. 2). We use such transformations to ease the rea-
soning over SPL maintenance when only the CK changes, justifying safe evolu-
tion. Therefore, there is no need for developers to do semantic reasoning, making
their task more productive. We use the Prototype Verification System (PVS) [27]
to specify and prove soundness of the transformations. We also use them to jus-
tify safe evolution scenarios of a non trivial industrial product line for automated
test generation tools with approximately 32 KLOC. The formalization we present
here not only avoid errors when manipulating these models, but also contributes
towards the general SPL refinement theory [8], providing transformations that
work with an instance of the concrete CK language previously defined.

The main contributions of this work are the following:

– We present a new CK equivalence notion and its associated compositionality
results for the SPL refinement theory previously proposed [8] (Sect. 3);

– A set of transformations for compositional CK models associating feature
expressions to asset names (Sect. 4);

– Soundness proofs for all laws using the formalized semantics (Sect. 5);
– A case study illustrating the applicability of the laws using evolution scenarios
from a real SPL (Sect. 6).

The remainder of this work is organized as follows: In Sect. 2.1, we infor-
mally discuss the CK model used in this work, and in Sect. 2.2 we present its
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formalization. In Sect. 7 we discuss related work, and we present conclusions and
future work in Sect. 8.

2 Background

In this section, we explain the compositional CK model used in this work. Since
its main purpose is to map features to assets, we first discuss FMs. FMs describe
commonalities and variabilities in an SPL [18]. For instance, the FM in Fig. 1
describes a simplified mobile game SPL.1 The root feature is Rain of Fire. Every
product has an image loading policy, that depends on the memory size, so Image
Load Policy is a mandatory feature. The loading policy is then eitherOn Demand
or during Startup, but not both. This denotes the mutually-exclusive relationship
of alternative features. The game might also show clouds or not, so Clouds is
an optional feature. Moreover, we can state cross-tree constraints over an FM
using propositional logic. In this example, the formula below the FM states that
whenever we select Startup, we must select Clouds as well. The FM describes
product configurations, that is, valid feature selections that define different SPL
products. So, the semantics of an FM denotes the set of SPL products. Formal
representations of the semantics of an FM have been previously proposed [4,29].

Rain of 
Fire

On 
Demand Startup

Image Load 
Policy Clouds

Startup  Clouds

mandatory

alternative
(xor)

optional

Fig. 1. FM of a simplified mobile game SPL.

2.1 Overview

The CK establishes the mapping between features and assets [11]. This knowl-
edge can be mixed with implementation [3,5], as in feature-oriented program-
ming and preprocessing directives, or explicitly separated into a dedicated
model [6]. In this work, we consider the latter: an artifact consisting on a list of
configuration items, relating feature expressions to assets. These expressions, also

1 Rain of fire mobile game, developed by Meantime mobile creations.
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known as presence conditions, are propositional formulae, and enable expressive
mappings of features into assets, instead of 1:1 mapping. The dedicated model
also allows to be independent of the variability implementation language, so
assets correspond to any kind of artifact.

Figure 2 illustrates the CK for the simplified mobile game SPL described by
the FM in Fig. 1. Each row represents a configuration item, associating feature
expressions with assets used to build products. In this example, assets are classes
and aspects. For example, the second row establishes that if we select Startup
or On demand, then CommonImgLoad.java should be part of the product. This
class contains behavior shared by both image loading policies. So, we use an or
feature expression to avoid repeating asset names in different rows.

Feature Expression Assets

Rain of Fire Game.java, GameScreen.java

On demand OnDemand.aj

Startup StartUp.aj

On demand  Startup CommonImgLoad.java

Clouds Clouds.java

Fig. 2. CK for the simplified mobile game SPL.

CK evaluation against a configuration yields the assets needed to build
the corresponding product. For example, evaluating the CK of Fig. 2 against
{Rain of Fire, Image Load Policy, Startup, Clouds} yields the following set
of assets: {Game.java, StartUp.aj, GameScreen.java, CommonImgLoad.java,
Clouds.java}. This gives the basic intuition of the semantics of a CK [7,8].

As an SPL evolves, whether with new features and assets or with changes
to existing assets, the internal structure of a CK might present problems. For
example, in the CK of Fig. 2, we could replace the expression Startup ∨ On
demand with Image Load Policy. This way, if we add a new image loading
policy, we do not need to change the expression in the CK. Duplication could also
happen. For example, if we had used two rows, one for Startup and other for On
demand, both associated to the same asset name CommonImgLoad.java. These
issues, akin to bad smells [15], among others, can difficult the understanding of
the model and its evolution.

2.2 Formalization

In this section, we present the formalization of CK models we have previously
proposed [8] for models such as the one we present in the previous section. We
use PVS [27] to specify this theory. Hereafter, we use well-known mathematical
symbols instead of PVS keywords, such as SET, AND, EXISTS, and FORALL, for
improving readability.
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We define the configuration knowledge (CK) as a finite set of items. Items
contain a feature expression and a set of assets. We specify them with record type
declarations, enclosed in angle brackets. The following fragment specifies these
and other types such as FeatureName and AssetName, which are uninterpreted
types. This means that they only assume that they are disjoint from all other
types. We define the Configuration type to represent product configurations
as a set of feature names, representing the selected features.

FeatureName: TYPE
AssetName: TYPE
Configuration: TYPE = P[FeatureName]
Item: TYPE= < exp:Formula, assets:F[AssetName] >
CK: TYPE= F[Item]

Each CK item contains a feature expression, which is a propositional for-
mula. Possible formulae are: feature name, negation, conjunction and impli-
cation. Other kinds can be derived from these. We represent these with PVS
abstract datatypes [27], which we omit here for brevity.

To enable unambiguous references to assets, instead of considering that a
SPL contains a set of assets, we assume a mapping from asset names to actual
assets. Such an Asset Mapping (AM) corresponds to an environment of asset
declarations. This allows conflicting assets in an SPL, for instance, two versions
of the same class, that implement mutually exclusive features. The semantics of
a given configuration knowledge K is a function that maps AMs and product
configurations into finite sets (represented by F) of assets. We define that using
the auxiliary eval function, which maps configurations into sets of asset names—
for a configuration c, the set that eval yields contain an asset name n iff there
is a row in K that contains n and its expression evaluates to true according to
c. We use the notation A⟨ ⟩ for the relational image [30] of an asset mapping A,
and ∃ i ∈ K · p(i) as an abbreviation for the PVS notation ∃ i:Item · i ∈
K ∧ p(i).

eval(K:CK, c:Configuration) : F[AssetName] =
{an | ∃ i ∈ K · satisfies(exp(i),c) ∧ an ∈ assets(i)}

semantics(K:CK, A:AM, c:Configuration) : F [Asset] =
A⟨eval(K, c)⟩

To evaluate the CK, we need to check, for each item, if the feature expres-
sion is satisfied against the product configuration. We do this through the
satisfies function. It evaluates a propositional formula against a configura-
tion. For instance, feature expression A ∧ B evaluates to true when we select
both A and B in a product configuration. More importantly, a configuration c
satisfies the feature name formula n if n is a value in c. For conciseness, we do
not present here the complete PVS formalization, which is available in our online
appendix [32].
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3 Safe Evolution of Product Lines

In this section we introduce the necessary concepts about SPL refinement and
CK equivalence to understand the algebraic laws presented in this work. We
first present a formal definition for SPLs and the refinement notion previously
defined [8]. We then present a novel CK equivalence notion, different than the
one from previous works, as it is indexed by the FM, and it is necessary for some
of the laws we propose.

To guide our SPL evolution analysis, we rely on the SPL refinement theory [8].
Such theory is based on an asset refinement notion, which is useful for comparing
assets with respect to behavior preservation. For our purposes, an SPL consists
of an FM, a CK, and an AM that jointly generate products, that is, well-formed
asset sets in their target languages. Although we use the term FM, this theory
is defined in a general way as to avoid depending on particular FM, CK, and
asset languages. Thus, we do not depend on a particular FM notation, and could
use alternatives such as decision models [36]. The theory just assumes a generic
function, represented as [[F ]], to obtain its semantics as a set of configurations.
Hereafter, for making the discussion less abstract, we use FM terminology. The
theory specifies AMs as a finite function from asset names to assets. Finally, it
also abstracts the details for CK, representing its semantics as [[K]]Ac —a function
that receives a configuration knowledge K, an asset mapping A, and a product
configuration c, to yield a finite set of assets that corresponds to a product
from the SPL. The definition for SPLs given in what follows establishes that
these three elements (FM, CK, AM) must jointly generate well-formed products.
We use wf torepresent the well-formedness constraint. It is necessary because
missing an entry on a CK might lead to asset sets that do not correspond to
valid products. Similarly, a mistake when writing a CK or AM entry might yield
an invalid asset set due to conflicting assets. Since the theory does not depend
on a particular asset language, wf might have different forms, depending on the
particular asset language used. For instance, it might mean simply that the code
compiles without errors.

Definition 1 ⟨Product line⟩
For a feature model F , an asset mapping A, and a configuration knowledge K,
we say that tuple (F,A,K) is a product line when, for all c ∈ [[F ]], wf ([[K]]Ac ).

!

Similar to program refinement, SPL refinement is concerned with behavior
preservation. However, it goes beyond code and other kinds of reusable assets,
considering also FM and CK. In an SPL refinement, the resulting SPL should be
able to generate products that behaviorally match the original SPL products. So
users of an original product cannot observe behavior differences when using the
corresponding product of the new SPL. This is exactly what guarantees safety
when improving the SPL design.

In most SPL refinement scenarios, many changes need to be applied to code
assets, FMs and CK, which often leads the refactored SPL to generate more
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products than before [22]. As long as it generates enough products to match
the original SPL, users have no reason to complain. We extend the SPL, not
arbitrarily, but in a safe way. Figure 3, illustrates this by showing two SPLs,
PL and PL’. In this example, PL is refined by PL’ because for each product in
PL (represented by a star), there is a corresponding product in PL’ that refines
it (represented by a square). As explained before, PL’ can have new products
and still preserve the refinement relation. This ensures that the transformation
is safe; we extend the SPL without impacting existing users. We formalize these
ideas in terms of asset set refinement. Basically, each product generated by the
original SPL must be refined by some product of the new, improved, SPL.

Definition 2 ⟨Product line refinement⟩
For product lines (F,A,K) and (F ′, A′,K ′), the second refines the first, denoted
(F,A,K) ⊑ (F ′, A′,K ′), whenever ∀c ∈ [[F ]] · ∃c′ ∈ [[F ′]] · [[K]]Ac ⊑ [[K ′]]A

′

c′ . !

1

4

3

2

5

2

1

3

6

4

PL products PL' products

Fig. 3. Software product line refinement notion

Remember that, for a configuration c, a configuration knowledge K, and an
asset mapping A related to a given SPL, [[K]]Ac is a well-formed set of assets.
Therefore, [[K]]Ac ⊑ [[K ′]]A

′

c′ refers to asset set refinement. Again, as the general
theory does not rely on a particular asset language, asset refinement is just
assumed as a pre-order. The definition just mentioned relates two SPLs, there-
fore, all products in the target SPL should be well-formed. The ⊑ symbol is
used for SPLs as a relation that says when the transformation is safe. It does
not mean functional equivalence because the refinement notion is a pre-order. It
can reduce non-determinism, for example. The definition is also compositional,
in the sense that refining an FM, AM, or CK that are part of a valid SPL yields
a refined valid SPL. Such property is essential to guarantee independent devel-
opment of these artifacts in an SPL. However, the CK equivalence previously
defined [8] states that two CK modelsK andK ′ are equivalent, denotedK ∼= K ′,
whenever [[K]] = [[K ′]]. Notice that this definition demands equality of functions.
The equivalence must hold for any asset mapping and configuration.

However, in some occasions, it is important to have a weaker CK equivalence
definition, that is restricted by a particular FM, instead of demanding equality of
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functions for any FM. In this work, we present a weaker equivalence notion, that
is indexed by the FM, since the CK is used in conjunction with such artifact. For
example, we can replace On Demand ∨ Startup with Image Load Policy on the
CK of Fig. 2. Even though these are not propositionally equivalent, we can do
so because selecting Image Load Policy implies in selecting one of the two child
features. We have proved this equivalence notion to be reflexive, symmetric, and
transitive.

Definition 3 ⟨Configuration Knowledge Equivalence⟩
For a feature model F , and configuration knowledge K and K ′, we say that
K ∼=F K ′ when, for all asset mapping A and c ∈ [[F ]], [[K]]Ac = [[K ′]]Ac . !

Since SPL refinement is reflexive [8], and the CK equivalence defined above
ensures that all products remain the same, we can use this notion to justify safe
evolution of SPLs when only the CK changes. The following theorem states this.

Theorem 1 ⟨CK equivalence compositionality⟩
For product lines (F,A,K) and (F,A,K ′), if K ∼=F K ′ then (F,A,K) ⊑
(F,A,K ′). !

Based on these properties, we can propose transformations to avoid reason-
ing over the semantics of CK models, which might be complex, by specifying
syntactic conditions where we can guarantee that the equivalence holds. If the
transformations have conditions that depend on reasoning about the FM, we
need to use the weaker equivalence notion. Otherwise, we can use the previously
proposed stronger equivalence notion [8].

4 Configuration Knowledge Laws

In this section, we propose primitive laws, that is, transformations that fix some
of the problems we mention in Sect. 2, while preserving the behavior of the SPL
products [8]. Although primitive, we can compose them to derive coarse-grained
transformations.

A law consists of two templates (patterns) of equivalent CK models, on the
Left-Hand Side (LHS) and Right-Hand Side (RHS). For example, Law 1 estab-
lishes that we can replace a feature expression by another whenever their evalua-
tion is equivalent by the FM. Therefore, we use the equivalence notion indexed by
the FM, thus the fm symbol in the equality. A law may declare meta-variables.
For instance, in Law 1, we use exp to denote a feature expression and n to
denote an asset name. For simplicity we use a single asset name in the law, but
the proof can handle any set of assets associated with exp. The dots represent
other CK items that remain unaltered. We can specify a condition below the
template. Since each law defines two semantics-preserving CK transformations,
the condition holds for both directions of the transformations. The condition for
Law 1 states that we can apply this law when, according to fm, exp is equivalent
to exp’ . A special case of this law is the case where expressions are equivalent
by propositional reasoning only, and we would not need to check expressions
against the FM.
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Law 1 ⟨Simplify Feature Expression⟩

Feature Expression Assets
... ...

exp n =
fm   (exp  exp')

Feature Expression Assets
... ...

exp' nfm

We apply a law whenever the CK matches a template and satisfy its condi-
tions. A matching is an assignment of all variables occurring in LHS/RHS models
to concrete values. There are occasions where it might be better to apply a law
from left to right, whereas in other situation, it is better to apply it from right
to left. Applying Law 1 can be useful to improve CK readability. It might also
be useful to improve maintainability. For example, in Fig. 2, we can replace the
feature expression OnDemand ∨ Startup with Image Loading Policy, as they are
equivalent by the FM, since both form an alternative group, therefore, whenever
we select Image Loading Policy, we must select either OnDemand or Startup.
If we add another image loading policy, we do not need to update the changed
CK, while in the original, we would have to modify the feature expression.

Law 2 establishes that we can merge two CK items whenever their feature
expressions are equivalent, according to the FM. We see that we merge n and n’
into the same CK item, when applying the law from left to right. When applying
from right to left, it also states that a CK item with multiple asset names can be
splitted into items that have equivalent feature expressions. Application of this
law from left to right can be useful in the context of improving long CK models,
so we can reduce its size, thus, reducing cost for maintenance. However, it can
also compromise readability.

Law 2 ⟨Merge items with equivalent feature expressions⟩

Feature Expression Assets
... ...

exp n =
fm   (exp  exp')

Feature Expression Assets
... ...

exp n, n'fm
exp' n'

Duplicated assets can happen in the CK. Law 3 states that we can merge
CK items with duplicated assets. It establishes that, from left to right, we can
merge two CK items into a single item, creating a new feature expression. The
new expression is the disjunction of the previous feature expressions. Applying
the law from right to left, we can split an or feature expression into CK items
containing duplicated assets. Notice that there is no fm in the equality. Therefore,
we use the stronger equivalence notion, which is not indexed by the FM, since we
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do not need it in this case. When applying from left to right, this law improves
readability of CK models, since we avoid duplication of assets names in the CK.

Law 3 ⟨Duplicated Assets⟩

Feature Expression Assets
... ...

exp n =
Feature Expression Assets

... ...
exp  exp' n

exp' n

A dead feature is a feature that does not appear in any product configuration
from the FM [34]. During SPL evolution, modifications to the FM can result in
dead feature expressions. That is, no product configurations can satisfy them.
This might be the result of changing feature relationships. Law 4 establishes
that we can remove a feature expression exp from the LHS CK, when we deduce
from fm that it is never evaluated as true. Since we can represent FMs as logical
propositions, we can efficiently check this [25]. This law also states that, when
applying it from right to left, we can add a line with a dead feature expression
to our CK, without changing the semantics.

Law 4 ⟨Dead Feature Expression⟩

Feature Expression Assets
... ...

exp' n =
fm  exp

Feature Expression Assets
... ...

exp' nfm
exp n'

Law 5 states that the order in which we write the CK has no effect on its
semantics. We can change the order of any item in the CK. This holds since we
are dealing with assets selection only, not with complex transformations that
might need some sort of ordering among them. This law is useful to generalize
application of all other laws. Since we do not modify anything in the CK except
for the order, it is straightforward to understand why this transformation pre-
serves semantics. Evaluation of the CK for all product configurations yields the
same set of assets in both LHS and RHS CK models.
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Law 5 ⟨Change Order⟩

Feature Expression Assets
... ...

exp n =
Feature Expression Assets

... ...
exp' n'

exp' n' exp n

5 Soundness

We also used PVS to prove all laws sound according to the CK equivalence notion
(Definition 3). We use a similar approach as the one used for proving FM laws [16]
and SPL refinement templates [8,26,28]. We structure each law as a theorem
ensuring that it preserves the semantics of the CK, as follows. We represent
the LHS and RHS CK models with the ck1 and ck2 variables, respectively.
We represent FMs (fm) and AM (am) likewise. The syntax and conditions
predicates describe syntactic similarities and differences between the LHS and
RHS CK models in the law, and transformation conditions, respectively. The
equivalence notion we use depends on the law we want to prove. When the law
depends on the FM, we use the equivalence notion indexed by the FM (∼=F ).
Otherwise, we use the stronger notion.

law: THEOREM
∀ fm:FM, ck1,ck2:CK ... ·

syntax(...) ∧ conditions(...)
⇒ ck1 ∼= ck2

Next we specify these predicates for Law 1—Simplify Feature Expression.
For each element in the template, we declare a variable for it in our PVS theory.
For instance, the items which we refer to on Law 1 are represented by the PVS
variables it1 and it2, respectively. Aside from the item we are interested in
changing, all other items from both CK models remain the same—its. For the
item we are modifying, we are only changing the feature expression. Therefore,
the asset set remains the same for it1 and it2.

syntax(it1,it2:Item,its:P[Item],ck1,ck2:CK):boolean =
ck1 = {it1} ∪ its ∧ ck2 = {it2} ∪ its ∧ assets(it1) = assets(it2)

We specify the conditions predicate as follows. The sat function specifies
that, for all product configurations that can be derived from fm, evaluation of
the feature expression (satisfies) for both items must be equivalent.

conditions(it1,it2:Item,fm:FM) = sat(fm,exp(it1),exp(it2))
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We now detail the proof for Law 1. For arbitrary fm, ck1, ck2, it1 and it2,
assume that the syntax and conditions predicates hold. Therefore, since we
want to prove that ck1 ∼=fm ck2 we need to prove, for an arbitrary am and a
c ∈ semantics(fm), that

semantics(ck1,am,c) = semantics(ck2,am,c)

Fully expanding the definition of semantics and replacing ck1 and ck2 with
their respective values from the syntax predicate, we have to prove that

{a:Asset |
∃ (an:AssetName) ·

(∃ (i:Item) · item = it1 ∨ item ∈ its ∧ satisfies(exp(i),c)
∧ an ∈ assets(i)) ∧ (an,a) ∈ am)}

=
{a:Asset |
∃ (an:AssetName) ·

(∃ (i:Item) · item = it2 ∨ item ∈ its ∧ satisfies(exp(i),c)
∧ an ∈ assets(i)) ∧ (an,a) ∈ am)}

For items in its, it is straightforward to prove that the yielded assets are
the same in both models. The only distinct items are it1 and it2. Using the
conditions predicate, we have that eval(exp(it1),c) ⇔ eval(exp(it2),c)
for all c ∈ semantics(fm). This way, we are able to prove that the assets set
yielded for ck1 is equal to the assets set yielded for ck2, since we have that
assets(it1) = assets(it2) in the syntax predicate.

Using similar reasoning, we can prove that Law 2 is sound, since we have the
same condition for both laws. For Law 3, we prove soundness by demonstrating
that the merging preserves semantics, since the RHS model yields a whether exp
or exp’ evaluates to true, according to a product configuration. Therefore, the
assets set yielded remain the same as in the LHS model. Law 4 also preserves
semantics, since we are introducing or removing an item whose feature expression
is dead, meaning that it is not evaluated true for any product configuration.
Therefore, it has no effect in the assets yielded when evaluating the CK. Finally,
in Law 5, all items of both LHS and RHS CK models are the same, except for the
order in which we write them. Therefore, it preserves semantics. Formal proofs
and all PVS specification files are available at our online appendix [32].

6 Case Study

In this section, we analyze the evolution of a real SPL and evaluate how the laws
can be used to evolve the CK during its development and maintenance. We ana-
lyzed TaRGeT [14], an SPL of tools that automatically generate functional tests
from use case documents written in natural language. This SPL has been used
by a mobile phone company to generate tests for its devices. It has six releases
and over 32 KLOC on the latest. We manually analyzed CK transformations in
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commits of its last three versioned releases, looking for scenarios where only the
CK was changed. Moreover, after this evaluation, we have extended a toolset for
checking SPL refinements [13] to include the automated checking for all of these
laws.

We found four scenarios where we could justify safe evolution of the SPL
applying the laws presented in this work. In the first one, the developer team
replaced the feature expression TC 3 ∨ TC 4 with Output, to improve CK read-
ability and maintainability. Figure 4 depicts this transformation, presenting the
CK before and after the transformation, as well as part of the FM that is of
interest for this transformation, represented by fm in the equality. After per-
forming this transformation, if we add a new child for Output, we do not need to
update the feature expression in the CK anymore. We can justify safe evolution
in this transformation applying Law 1, from left to right.

Feature Expression Assets
... ...

TC 3  TC 4 tcgplugin.xml =
fm

Feature Expression Assets
... ...

Output tcgplugin.xml

Output

TC 3 TC 4

TaRGeT

..
.

Fig. 4. Usage of Law 1 in TaRGeT SPL to simplify the feature expression.

In the second scenario, the developers merged the TC 3 and TC 4 feature
expressions into a single item with the TC 3 ∨ TC 4 expression, associated to
the same asset. This improved CK readability, avoiding duplicated asset names.
Figure 5 illustrates this transformation, with the CK models and part of the
FM. We apply Law 3 from left to right to justify safe evolution.

In the third and fourth scenarios, developers merged duplicated feature
expressions, to improve CK maintainability, reducing its size and removing dupli-
cated feature expressions. Figure 6 presents the third scenario. They merged five
items with the repeated Interruption expression into just one item and their
associated assets. Similarly, Fig. 7 depicts the fourth transformation where they
replaced repetitions of Company 1 and Company 2. In both cases, we can use
Law 2 from left to right to justify safe evolution. Additionally, in the fourth sce-
nario, the developer team changed the order of the transformations, as presented
in Law 5, to apply the previous transformation.
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Fig. 5. Usage of Law 3 in TaRGeT SPL to remove assets duplication.
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InterruptionHTMLGenerator.java

selectAndMove CommonAspect.aj
DuplicatedInterruptionIdError.java
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Fig. 6. Usage of Law 2 in TaRGeT SPL to remove duplicated expression.

The commits in TaRGeT consisted of many changes to different assets,
instead of commits performed often, with small and localized changes. Therefore,
it is possible that other scenarios where only the CK changed were not captured
by the SPL version history. A manual analysis of 500 commits from the highly
configurable system Soletta identified that 122 commits (24.4%) only change the
Makefile [17], which would be analogous to the CK, for Kconfig-based systems.
Moreover, 241 out of the 500 commits change the CK in conjunction with FM or
code. Therefore, it is possible that changes to the CK are followed by changes to
other SPL elements, and could benefit from the transformations proposed here.

7 Related Work

Several approaches [19,20,24,35] focus on refactoring a single product into a
SPL. Kolb et al. [20] discuss a case study in refactoring legacy code compo-
nents into a product line implementation. They define a systematic process for
refactoring products to obtain product lines assets. There is no discussion about
feature models and configuration knowledge. Moreover, behavior preservation
is only checked by testing. Similarly, Kästner et al. [19] focus only on trans-
forming code assets, implicitly relying on refinement notions for aspect-oriented
programs [10]. As discussed elsewhere [7] these are not adequate for justifying
SPL refinement. Trujillo et al. [35] go beyond code assets, but do not explicitly
consider CK transformations. They also do not consider behavior preservation;
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Fig. 7. Usage of Laws 2 and 5 in TaRGeT SPL to remove duplicated expressions.

they indeed use the term “refinement”, but in the different sense of overriding
or adding extra behavior to assets. Moreover, all of these works focus on whole
SPL evolution, while in this work, we focus on CK changes.

Liu et al. [24] also focus on the process of decomposing a legacy application
into features, but go further than the previously cited approaches by proposing
a refactoring theory that explains how a feature can be automatically associated
to a code asset and related derivative assets, which contain feature declarations
appropriate for different product configurations. Contrasting with our CK model,
this theory assumes an implicit notion of CK based on the idea of derivatives.
So it does not consider explicit CK transformations as we do here. In this work,
we focus on refinements at a different level—models instead of programs.

Alves et al. extend the traditional notion of refactoring to SPLs [1]. Besides
traditional program refactoring, they refactor FMs in order to improve config-
urability. They present and evaluate a set of sound FM refactorings in a real case
study in the mobile domain. In an extension of this work, Gheyi et al. propose
a sound, complete and minimal catalog of algebraic laws for FMs [16]. More-
over, they mechanized a theory for FMs in PVS, which we reuse in our theory
for CK models in PVS. Nevertheless, these notions are not concerned with CK
transformations, they only consider FM transformations.

An informal discussion of the CK semantics discussed here first appeared in
a product line refactoring tutorial [7]. Besides talking about SPL and popula-
tion refactoring, this tutorial illustrates different kinds of refactoring transforma-
tion templates that can be useful for deriving and evolving SPLs, including CK
transformations. Later, the refinement theory was formalized [8], making clear
the interface between the theory and languages used to describe SPL artifacts.
Our work is complementary, since we use the CK language that instantiates the
interface proposed, proposing individual CK transformations that adhere to the
SPL refinement notion. Sampaio et al. extends the theory with a partial refine-
ment notion, which formalizes the concept of partially safe evolution [28]—that
is, evolution scenarios where only a subset of products from the original SPL
has their behavior preserved. To use such notion we would need to propose
transformations that are not behavior-preserving.
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Recent works investigating the evolution characteristics of highly configurable
systems show that evolving only the mapping between features and assets is not
uncommon [12,17,21]. Kröher et al. evaluates the intensity of variability-related
changes in the Linux kernel [21]. They measured how often changes occur in FM,
AM, and CK, and how do those changes relate to variability information inside
these artifacts. Our work could use theirs as input to identify potential instances
where only the CK has been changed and investigate the use of the laws, if we
adapted our model to comply with the one used by the Linux kernel. A tool
with the same purpose is FEVER [12], which allows analysing Kconfig-based
systems to extract feature-oriented change information. It is used in the work
of Gomes et al. [17] to classifying evolution scenarios into safe or partially safe.
Moreover, Gomes et al. also manually evaluated 500 commits from a system,
showing that in 122 cases, only the CK has been changed by a commit. Again,
this information provides evidence that changing only the CK is not uncommon.

8 Conclusions

In this work, we propose a set of laws for transforming CK models, that justify
safe SPL evolution. We ensure this using the SPL refinement theory [8]. We
propose a weaker equivalence notion and its associated compositionality result.
We can apply these laws to fix problems such as duplicated assets and dead
feature expressions. We use PVS to specify and prove soundness of the proposed
laws. Therefore, developers do not need to reason based on semantics in order to
refactor a CK, as the catalog can be directly applied. Thus, since SPL refinement
is a pre-order, we can compose them with laws for FMs [16] and other SPL
refinement templates [26] to derive elaborate transformations with the guarantee
that we do not change behavior of existing products in the SPL.

As future work, we intend to investigate the completeness and minimality
of our laws, proposing a CK normalization algorithm. Even though we did not
achieve this result, we observed from our preliminary results, that the laws could
justify safe evolution scenarios of a real SPL. We also intend to adapt our model
and laws to consider KBuild notation, so we can evaluate it in other highly con-
figurable systems that have been previously investigated in the context of safe
and partially safe evolution [17,28]. Moreover, we also intend to implement auto-
mated tool support for checking the conditions to apply the laws in this context.
As the transformations precisely specify the mechanics and preconditions, their
soundness is specially useful for correctly implementing the transformations and
avoiding typical problems with current program refactoring tools [31]. Finally,
the theory we present in this work formalizes part of the concepts and processes
from tools [9,24] and practical experience [1,19,20,35] on SPL refactoring.
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