
Information and Software Technology 132 (2021) 106496

A
0

I
R
M
a

b

c

d

e

A

K
M
R
T

1

s
i
m
i
s
m
o

t
e
r

(
b

h
R

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

dentifying method-level mutation subsumption relations using Z3✩

ohit Gheyi a,∗, Márcio Ribeiro b, Beatriz Souza a, Marcio Guimarães b, Leo Fernandes c,
arcelo d’Amorim d, Vander Alves e, Leopoldo Teixeira d, Baldoino Fonseca b

Department of Computing and Systems, UFCG, Campina Grande-PB, Brazil
Computing Institute, UFAL, Maceió-AL, Brazil
IFAL, Maceió-AL, Brazil
Informatics Center, Universidade Federal de Pernambuco, Recife-PE, Brazil
Computer Science Department, UnB, Brasília-DF, Brazil

R T I C L E I N F O

eywords:
utation analysis
edundant mutants
heorem proving

A B S T R A C T

Context: Mutation analysis is a popular but costly approach to assess the quality of test suites. One recent
promising direction in reducing costs of mutation analysis is to identify redundant mutations, i.e., mutations
that are subsumed by some other mutations. A previous approach found redundant mutants manually through
truth tables but it cannot be applied to all mutations. Another work derives them using automatic test suite
generators but it is a time consuming task to generate mutants and tests, and to execute tests.
Objective: This article proposes an approach to discover redundant mutants by proving subsumption relations
among method-level mutation operators using weak mutation testing.
Method: We conceive and encode a theory of subsumption relations in the Z3 theorem prover for 37 mutation
targets (mutations of an expression or statement).
Results: We automatically identify and prove a number of subsumption relations using Z3, and reduce the
number of mutations in a number of mutation targets. To evaluate our approach, we modified MuJava to
include the results of 24 mutation targets and evaluate our approach in 125 classes of 5 large open source
popular projects used in prior work. Our approach correctly discards mutations in 75.93% of the cases, and
reduces the number of mutations by 71.38%.
Conclusions: Our approach offers a good balance between the effort required to derive subsumption relations
and the effectiveness for the targets considered in our evaluation in the context of strong mutation testing.
. Introduction

Mutation analysis is a popular technique to assess quality of test
uites [1–3]. The technique introduces variations in code and checks
f those variations are observable through test execution. Applying a
utation to a program yields a mutant. A mutant is said to be killed

f a test case in the test suite fails on a given mutant; a mutant is
aid to survive otherwise. The intuition is that a test suite that kills
ore mutants is more adequate to detect defects when they actually

ccur [4].
Usually, the costs of using mutation analysis are high, mainly due to

he high number of generated mutants and the high computing time to
xecute the test suite against each mutant. However, some mutants are
edundant, that is, they may not be necessary for the effectiveness of
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mutation analysis and thus we may discard them [5]. We can speed
up execution time using multi-execution, parallel execution, and so
on. But reducing cost is still important. Redundant mutants do not
contribute to the test assessment process because they are killed when
other mutants are also killed [5,6]. Redundant mutants are always
subsumed by other mutants. The generation of these mutants increases
the total cost and does not help to improve effectiveness of the test
suite. Ammann et al. [7] empirically identified that a number of the
generated mutants are redundant. Also, Papadakis et al. [8] identified
that such redundant mutants inflate the mutation score and that a
number of recent research papers are vulnerable to threats to validity
due to the effect of these mutants.
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To identify redundant mutants, we can take subsumption relations
into account. Kaminski et al. [9] manually constructed subsumption
hierarchies with the support of truth tables produced by the out-
comes of mutants associated with the Relational Operator Replacement
(ROR) mutation operator. This operator generates seven different mu-
tations, but Kaminski et al. [9] identified that only three mutations
are sufficient to cover all input domains, yielding a reduction of 57%
of redundant mutants. Just et al. [10] expanded this idea with two
more mutation operators. Both works use truth tables to infer logical
relationships across the operations. Although the idea is promising,
we cannot apply it for non-logical operators. For instance, a binary
expression with two numeric variables a + b has a very large set of
input possibilities, which turns the manual and logical approach more
difficult. Guimarães et al. [11] proposed an approach to yield dynamic
subsumption relations among method-level mutants by using automatic
test suite generators, such as Randoop [12] and EvoSuite [13] in the
context of strong mutation testing. However, the approach is time
consuming since it needs to generate mutants, compile them, generate
test suites, and execute them.

In this article, we propose an approach consisting of six steps to
discover subsumption relations among method-level mutations using
theorem proving in the context of weak mutation testing [14]. We
encode a theory of subsumption relations in Z3 and use its theorem
prover [15] to automatically identify redundant mutations (Section 4).
We consider most of the method-level mutation operators available
in the MuJava tool [16,17]. We reduce the number of mutations in a
number of mutation targets (mutations of an expression or statement).
A mutation target is a language expression or statement in which
it is possible to apply a set of mutations of one or more mutation
operators [11].

To evaluate our approach, we modify MuJava to include the results
of 24 mutation targets and evaluate our approach in 125 classes of 5
real projects. Our approach achieves an effectiveness (the percentage
of mutants correctly discarded by our technique) of 75.93% and a
reduction rate (the percentage of mutants discarded by our technique)
of 71.38%. We achieve a good cost-benefit ratio between the effort
required to derive the mutation subsumption relations and the effec-
tiveness for the targets considered in our evaluation in the context of
strong mutation testing. Moreover, we show that the random sampling
strategy requires a sampling rate greater than 60% to achieve a similar
effectiveness of our approach. So, our reduction mutation strategy is
not considered harmful.

We organize this article as follows. We explain mutant subsumption
relations in Section 2, and present a motivating example in Section 3.
Section 4 describes our approach to identify subsumption relations
using Z3. Section 5 presents the evaluation of our approach. Finally,
we relate our approach to others (Section 6), and present concluding
remarks (Section 7).

2. Mutation subsumption relations

Mutation analysis uses mutation operators to introduce faults in the
program to create mutants deliberately [1]. In this context, there is a
wide variety of mutation operators. Each mutation operator can imple-
ment a set of mutations. In this work, we follow the same definition
for ‘‘mutation’’ of previous work [18]: a mutation refers to a syntactic
change (e.g., 𝚊&&𝚋 ↦ 𝚊 ∥ 𝚋).

Subsumption relations identify redundancy in sets of mutations and
hence can be used to optimize approaches to both mutant and test
generation [19]. The subsumed mutants do not need to be generated,
and test generation methods can target subsuming mutants.

We now define the kills relation.

Definition 1. Consider a program p. We apply a mutation M to p and
ield one or more mutants. Let m be one of them. Both p and m always
erminate when running any test case. We define the kills(p,m)
unction that yields all test cases that have different return values in p
2

nd m. u
For example, consider the p = x+y program. Suppose we apply a
utation M converting the arithmetic operator + to the arithmetic op-

rator -. We yield the m = x-y mutant. In this example, kills(p,m)
ields a non empty set of test cases. A test case assigns values to all
ariables in p. It contains the following test case t=(x=1,y=1) that
ields different values in p (2) and m (0).

We define the subsumption relation in Definition 2.

efinition 2. Consider a program p and two distinct mutations, M1
and M2, that are applied on the same mutation target. We say that M2
subsumes M1 iff for all targets tgt in p and all mutants m1 and m2
generated from M1 and M2, respectively, on tgt:

1. kills(p,m2) ≠ ∅
2. kills(p,m2) ⊆ kills(p,m1)

The first condition of Definition 2 guarantees that m2 is not an
quivalent mutant [20]. The program and the mutant have at least
ne test case that yields different values. In the second condition of
efinition 2, the set of test cases that kills m2 is a subset of the set of

est cases that kill m1. Notice that we can have more test cases that kill
1 but cannot kill m2. In this way, it is easier to kill m1 than m2. So,
e say that m2 subsumes m1. We do not need to generate m1 during
utation testing. Studying mutation subsumption relation can help us

uild more efficient mutation testing tools, significantly improving the
pplicability of mutation testing in industry by helping to minimize one
f the challenges [21].

. Motivating example

Consider a binary expression with a relational operator
𝚎𝚡𝚙⟨𝚘𝚙⟩𝚛𝚎𝚡𝚙, where lexp and rexp indicate expressions or literals
nd <op> is a relational operator (==, !=, >, >=, <, or <=). The
elational Operator Replacement (ROR) mutation operator performs
even mutations, replacing the original operator ⟨𝚘𝚙⟩ with each of the
ther five relational operators and replacing the entire expression with
rue and false. Thus, for the binary expression a > b, the ROR
perator performs the following seven mutations [11]:

1. a > b ↦ a == b;
2. a > b ↦ a != b;
3. a > b ↦ a >= b;
4. a > b ↦ a < b;
5. a > b ↦ a <= b;
6. a > b ↦ true;
7. a > b ↦ false.

However, some mutations may not be necessary for the effectiveness
f mutation analysis and are actually useless. An equivalent mutant is
yntactically different from the original program but has the same se-
antics [20]. In this work, we focus on redundant mutants. To identify

hem, we rely on subsumption relations, as defined in Section 2.
For instance, consider the binary expression a > b and two mutants:
>= b and a <= b. Notice that both mutants are not equivalent to the

riginal binary expression using weak mutation testing. If a is different
rom b in a test case, we kill a <= b but we cannot kill a >= b. If a is
qual to b in a test case, we kill both mutants. Since (i) all test cases that
ill a >= b also kill a <= b, and (ii) there are some test cases that kill
<= b but cannot kill a >= b, we conclude that ROR (>=) subsumes

OR (<=) for the mutation target a > b. As a consequence, we must
ot apply ROR (<=) in this mutation target if we apply ROR (>=)
sing weak mutation testing, hence reducing the number of redundant
utants.

Previous works manually found redundant mutants through the
ruth table [9,10]. Although the idea is promising, it can only be
pplied for logical and relational operators. Guimarães et al. [11]

sed automatic test generation to identify subsumption relations using
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Table 1
It presents the mutation targets, method-level mutations that each operator is able to create in the corresponding target, a minimal set of mutations for each target identified in
our approach, and the size of a minimal set of mutations compared to the original one. OP1: select CDL, ODL, or VDL. We use the following variables. exp: unary expression,
uch as identifiers, variables, literals; lexp and rexp: unary expressions, or binary expression; lhs: identifiers, or variables used in statements; rhs: unary expressions, or binary

expression used in statements.
Mutation target Mutation operators Minimal set of mutations Size

lexp + rexp (for Z+) AORB (2), VDL (2), CDL (2), ODL (2) AORB(*) 12.5%

lexp + rexp (for Z) AORB (2), VDL (2), CDL (2), ODL (2) All 100%

lexp - rexp (for Z+) AORB (2), VDL (2), CDL (2), ODL (2) OP1(lexp) 12.5%

lexp - rexp (for Z) AORB (2), VDL (2), CDL (2), ODL (2) All 100%

lexp * rexp (for Z+) AORB (2), VDL (2), CDL (2), ODL (2) AORB(+), OP1(lexp), OP1(rexp) 87.5%

lexp * rexp (for Z) AORB (2), VDL (2), CDL (2), ODL (2) All 100%

lexp ˆ rexp (bool) COR (4), ROR(2), COI (3), VDL (2), CDL (2), ODL (2) COR(False), COR(||) 13.3%

lexp && rexp COR (4), ROR(2), COI (3), VDL (2), CDL (2), ODL (2) OP1(lexp), OP1(rexp), ROR(==), COR(False) 26.7%

lexp || rexp COR (4), ROR(2), COI (3), VDL (2), CDL (2), ODL (2) OP1(lexp), OP1(rexp), ROR(!=), COR(True) 26.7%

lexp == rexp (bool) ROR (1), COI (3), VDL (2), CDL (2), ODL (2) OP1(lexp), OP1(rexp) 20%

lexp != rexp (bool) ROR (1), COI (3), VDL (2), CDL (2), ODL (2) OP1(lexp), OP1(rexp) 20%

lexp == rexp ROR (7), COI (1) ROR(False), ROR(>=), ROR(<=) 37.5%

lexp != rexp ROR (7), COI (1) ROR(<), ROR(True), ROR(>) 37.5%

lexp > rexp ROR (7), COI (1) ROR(False), ROR(!=), ROR(>=) 37.5%

lexp >= rexp ROR (7), COI (1) ROR(True), ROR(==), ROR(>) 37.5%

lexp < rexp ROR (7), COI (1) ROR(False), ROR(!=), ROR(<=) 37.5%

lexp <= rexp ROR (7), COI (1) ROR(True), ROR(==), ROR(<) 37.5%

lexp != rexp (obj) ROR (7), COI (1) ROR(True), ROR(>), ROR(<) 37.5%

lexp & rexp LOR (2), VDL (2), CDL (2), ODL (2) OP1(lexp), OP1(rexp) 25%

lexp | rexp LOR (2), VDL (2), CDL (2), ODL (2) OP1(lexp), OP1(rexp), LOR( ˆ ) 37.5%

lexp ˆ rexp LOR (2), SOR (2), CDL (2), ODL (2) LOR(|) 12.5%

lexp >> rexp LOR (3), SOR (1), VDL (2), CDL (2), ODL (2) OP1(lexp), OP1(rexp), LOR( ˆ ), LOR(|), LOR(&), SOR(<<) 60%

lexp << rexp LOR (3), SOR (1), VDL (2), CDL (2), ODL (2) LOR( ˆ ), LOR(&), SOR(≫) 30%

exp AOIS (4), AOIU (1), LOI (1) AOIU(-exp) 16.7%

+exp AODU (1), LOI (1), ODL (1) LOI(∼exp) 33.3%

-exp AODU (1), LOI (1), ODL (1) AODU(exp) 33.3%

++exp AORS (1), AODS (1), LOI (1), ODL (1) AODS(exp), LOI(∼exp) 50%

exp++ AORS (1), AODS (1), LOI (1), ODL (1) LOI(∼exp) 25%

--exp AORS (1), AODS (1), LOI (1), ODL (1) AODS(exp), LOI(∼exp) 50%

exp-- AORS (1), AODS (1), LOI (1), ODL (1) LOI(∼exp) 25%

!exp COD (1), ODL (1) COD(exp) 50%

∼exp AODU (1), LOD (1), ODL (1) LOD(exp) 33.3%

lhs += rhs (for Z+) ASRS (2), ODL (1), SDL (1) ASRS(*=) 25%

lhs -= rhs (for Z+) ASRS (2), ODL (1), SDL (1) ODL(lhs=rhs) 25%

lhs *= rhs (for Z+) ASRS (2), ODL (1), SDL (1) ODL(lhs=rhs), ASRS(+=), SDL 75%

lhs <<= rhs ASRS (1), ODL (1), SDL (1) ASRS(≫=) 33.3%

lhs >>= rhs ASRS (1), ODL (1), SDL (1) All 100%

lhs &= rhs ASRS (2), ODL (1), SDL (1) ODL(lhs=rhs), SDL 50%

lhs | = rhs ASRS (2), ODL (1), SDL (1) ODL(lhs=rhs), ASRS(^=), SDL 75%

lhs ^= rhs ASRS (2), ODL (1), SDL (1) ASRS(|=) 33.3%
strong mutation testing. However, we cannot have full confidence in
the results derived using automatic test suite generators for some types
of variables, such as integer numbers. Moreover, it is a time consuming
approach to derive the subsumption relations using automatic test suite
generators. In this work, we focus on proposing an approach to auto-
matically derive sound method-level mutation subsumption relations in
a theorem prover using weak mutation testing.

4. Encoding and proving subsumption relations

In this section, we propose a technique to prove subsumption rela-
tions using weak mutation testing. We focus on code fragments. We use
the Z3 [15] API for Python, which has a theorem prover. We consider
most MuJava method-level mutation operators [17], such as operators
that mutate arithmetic, relational, and logical expressions, and variable
3

assignment statements. We do not focus on the object-oriented ones,
i.e., the class-level mutation operators.

Table 1 illustrates a number of method-level mutation targets (code
fragments) in which MuJava is able to apply a set of mutations from
one or more mutation operators. Consider the first column of the table.
The first row of the table focuses on the mutation target lexp + rexp
(for Z+), where lexp and rexp are positive integer expressions. In
the second row of Table 1, lexp and rexp are integer expressions.
For other mutation targets, we also consider boolean expressions or
objects in other targets. In the second column of the table, we present
the mutation operators that can be applied to each mutation target. We
can apply four mutation operators in MuJava to the mutation target
presented in the first row of the table: AORB, VDL, CDL, and ODL.

Table 2 describes the mutation operators considered in our work [22].
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The mutation operators can generate eight mutants, two for each op-
eration. We provide the number of possible mutations (in parentheses)
that such operator can apply into the target. So, we have in the second
column of Table 1: AORB (2), VDL (2), CDL (2), ODL (2). By using our
technique explained in Section 4.2, we yield a minimal set of mutations
presented in the third column of Table 1. For the mutation target
lexp + rexp (for Z+), we only have one mutation: AORB using the
operator *. The other seven mutants presented in the second column
of Table 1 are redundant or equivalent. Since the redundant mutants
do not contribute to the test assessment process because they are killed
when other mutants are also killed [5,6], our technique detects and
removes them. So, we define a minimal set of mutations. We may
have more than one minimal sets, but all of them have the same set
cardinality. A developer can select any of them. Finally, the last column
of Table 1 indicates the size of a minimal set of mutations compared to
the original one. Since our minimal set for this mutation target contains
one out of eight mutations, the size is 12.5%.

This section is organized as follows. Section 4.1 presents some
auxiliary functions. Section 4.2 defines the main steps of our technique.
Section 4.3 encodes our technique in Z3. Finally, we present our lessons
learned in Section 4.4.

4.1. Auxiliary functions

Listing 1 specifies how to prove a theorem using the Z3 Python API.
It can yield three answers: the theorem is valid, invalid, or it does not
know the answer. The command Solver creates a general purpose
solver in Z3 [15]. Constraints can be added using the add function.
The Solver.check method solves the constraints. The result is sat
satisfiable) if a solution was found. The result is unsat (unsatisfiable)
f no solution exists. Finally, a solver may fail to solve a system of
onstraints and unknown is returned.

Listing 1: Proving a theorem in Z3.
def prove ( theorem ) :

s = Solver ( )
s . add ( Not ( theorem ) )
r = s . check ( )
i f r == unsat :
return 1 # theorem i s va l id

e l i f r == unknown :
return 2 # Z3 doesn ’ t know the answer

else :
return 0 # theorem i s i nva l i d

Listing 2 presents two functions checking whether constraints are
atisfiable (isSat) or unsatisfiable (isUnsat).

Listing 2: Checking constraints in Z3.
def check ( f ) :

s = Solver ( )
s . add ( f )
r = s . check ( )
i f r == unknown :
print ( ‘ ‘ unexpected unknown r e s u l t for ’ ’ , f )

return r

def i s S a t ( f ) :
return check ( f ) == sa t

def i sUnsat ( f ) :
return check ( f ) == unsat
4

Before specifying the subsumption relation, we encode the kills
function in Listing 3. It defines a formula stating that p and m have
different values.

Listing 3: The function kills.
def k i l l s (p , m) :
return p != m

The subsumption function presented in Listing 4 checks whether
mutation subsumes another one, when considering the input program
. We may add some conditions (conds) when checking a theorem,
uch as restricting that all integer numbers are positive. The first part
f Definition 2 states that kills(p,m2) ≠ ∅. To encode it in Z3, we
efine the isNonEmpty function, which tries to find a test case for
ills(p, m). To check the second condition presented in Section 2,
e define the isSubset function, which checks whether there is
o test case that is valid for kills(p, m2) but it is not valid for
ills(p, m1).

Listing 4: Defining a theorem in Z3.
def isNonEmpty (p , cond , m) :
return i s S a t (And( cond , k i l l s (p , m) ) )

def i s Subse t (p , cond , m1, m2) :
return i sUnsat (And( cond , k i l l s (p , m2) ,

Not ( k i l l s (p , m1) ) ) )

def subsumption (p ,m1,m2, conds ) :
t1 = isNonEmpty (p , conds , m2)
t2 = i sSubse t (p , conds , m1, m2)
i f t1 == 1 and t2 == 1:
return (m2,m1) # m2 subsumes m1

else :
return None

To make it easier to compare all mutations, we define the identi-
fySubsumptions function (see Listing 5) that compares all possible
combinations to identify whether a mutation subsumes another one.
muts represents a list of mutants.

Listing 5: Identifying all subsumption relations in Z3.
def ident i fySubsumptions (p , muts , conds ) :

r e s u l t = []
for i in range ( len ( muts ) ) :
for j in range ( len ( muts ) ) :
i f i != j :

s = subsumption (p , muts [ i ] , muts [ j ] , conds )
i f ( s i s not None ) :

r e s u l t . append ( s )
return r e s u l t

Moreover, we also declare the keepNonEquivalentMutants
unction that keeps only non-equivalent mutants (see Listing 6). In this
ay, we discard equivalent mutants from our analysis, hence satisfying

he first condition of Definition 2.

Listing 6: Identifying equivalent mutants in Z3.
def keepNonEquivalentMutants (p , muts ) :
return [m for m in muts i f prove (p==m)!=1]

Finally, we define the keepNonRedundantMutants function
hat keeps only non redundant mutants (see Listing 7). A mutant
s duplicated to another mutant when both of them have the same
emantics. In this way, we discard redundant mutants.
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Table 2
Description of mutation operators.

Operator Description

AORB Binary Arithmetic Operator Replacement
AORS Short-Cut Arithmetic Operator Replacement
AOIU Unary Arithmetic Operator Insertion
AOIS Short-Cut Arithmetic Operator Insertion
AODU Unary Arithmetic Operator Deletion
AODS Short-Cut Arithmetic Operator Deletion
ROR Relational Operator Replacement
COR Conditional Operator Replacement
COI Conditional Operator Insertion
COD Conditional Operator Deletion
SOR Shift Operator Replacement
LOR Logical Operator Replacement
LOI Logical Operator Insertion
LOD Logical Operator Delete
ASRS Short-Cut Assignment Operator Replacement
SDL Statement DeLetion
VDL Variable DeLetion
CDL Constant DeLetion
ODL Operator DeLetion

Listing 7: Detecting redundant mutants in Z3.
def redundantMutants (m1,m2) :
i f prove (m1==m2) == 1:
return True

else :
return Fa l se

def keepNonRedundantMutants ( muts ) :
non_redundant = []
for m1 in muts :
i f not any ( redundantMutants (m1, m2)
for m2 in non_redundant ) :
non_redundant . append (m1)

return non_redundant

.2. Steps

For each mutation target, the main steps of our approach are the
ollowing:

1. Declare variables and conditions;
2. Specify a program;
3. Specify a list of mutants;
4. Identify and remove equivalent mutants;
5. Identify and remove redundant mutants;
6. Identify subsumption relations.

nly Steps 4–6 do not change for all mutation targets.

.3. Encoding

Next we follow the steps presented in Section 4.2, use the auxiliary
unctions presented in Section 4.1, and identify some subsumption
elations for some mutation targets presented in Table 1 using weak
utation testing.

.3.1. Boolean expressions
Next we prove subsumption relations for boolean expressions. For

boolean expression lexp && rexp (the eighth row of Table 1), we
simplify it to x && y. We declare x and y as boolean variables in the
Z3 Python API (Step 1) as shown in Listing 8. We can declare other
types of variables in Z3 [15]: Int (integer numbers), Bool (boolean
variables), BitVec (bit-vector variables), Real (real numbers), and
5

so on. In our work, we use Bool, Int, and BitVec with 32 bits. For
the x && y target, we do not impose any condition (see first column of
Table 1). So, we declare conds=True in our example.

In Step 2, we specify our program. In Z3, we have the following
boolean operators: And, Or, Not, Implies (implication), If, and
o on. In our example, we use the declared variables and specify our
rogram in Z3: And(x,y) (see Listing 8).

After declaring variables and a program, we specify all mutants in
tep 3. According to Table 1, the binary expression representing the
nput program x and y can derive the following mutants using ODL,
DL, CDL, COR, and COI operators:

• True (COR true);
• False (COR false);
• x or y (COR ∥);
• x (VDL/CDL/ODL(rexp));
• y (VDL/CDL/ODL(lexp));
• not(x and y) (COI !());
• x == y (COR ==);
• x != y (COR !=);
• x xor y (COR ˆ);
• not(x) xor y (COR COI (!x && y));
• x xor not(y) (COR COI (x && !y)).

The last two of them are higher-order mutants derived from COR and
COI mutant operators [23]. We consider them to show how to encode
them in our approach. Next we manually specify them using the Z3
boolean operators (see Listing 8), but this process can be automated.

Listing 8: Identify Subsumption Relations for lexp && rexp
target.

Step 1
x = Bool ( ‘ x ’ )
y = Bool ( ‘ y ’ )
conds = True

Step 2
p = And(x , y )

Step 3
muts = [ True , False , Or ( x , y ) , x , y ,

Not (p ) , equals ( x , y ) ,
Not ( equals ( x , y ) ) , xor ( x , y ) ,
xor ( Not ( x ) , y ) , xor ( x , Not ( y ) ]

Step 4
muts = keepNonEquivalentMutants (p , muts )

Step 5
muts = keepNonRedundantMutants ( muts )

Step 6
subsumptions = ident i fySubsumptions (p , muts , conds )

Next we identify non-equivalent mutants in some targets using
the keepNonEquivalentMutants function (Step 4). For instance,
onsider the exp mutation target. Some mutants (exp++, and exp-
) are equivalent to the program exp in our encoding using weak
utation testing.

We can further reduce the number of mutations by checking
hether there are some mutants that are redundant to other ones in
tep 5. We can check this by calling the keepNonRedundantMu-
ants function passing the set of mutants yielded in Step 4. For the
exp && rexp, all four dominant nodes are not redundant. We find
ome redundant mutants for other targets, such as −−exp target. Con-

sider the following set of mutations: AODS(exp), AORS(exp++), and
ODL(exp). The three mutants are redundant. Since they are redun-
dant, for the −−exp target, we can select one of them (AODS(exp),
AORS(exp++), and ODL(exp)), instead of selecting all of them.

Finally, to identify all subsumption relations in Step 6, we have

to call the identifySubsumptions function passing p, muts, and
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Fig. 1. Mutation subsumption graph for the lexp && rexp mutation target. Mutations CDL/VDL/ODL(lexp), CDL/VDL/ODL(rexp), COR ==, and COR false dominate the other
mutations.
#

#

#

#

#

#

conds as parameters. Based on the output, our script automatically
derives the following subsumption graph presented in Fig. 1 for the
mutation target lexp && rexp. We create a node for each mutation,
and an arrow between two nodes, when a mutation subsumes another
one. For example, since COR ∥ subsumes COR true, we specify this
subsumption relation by including an arrow between the nodes. For
the lexp && rexp mutation target, our results indicate that we only
need to use the following ones: ODL lexp, VDL lexp, CDL lexp,
ODL rexp, VDL rexp, CDL rexp, COR ==, and COR false. These
nodes dominate the others since they do not have incoming arrows.
It is important to mention that ODL exp, and VDL exp or CDL exp
yield syntactic equivalent mutants when we are dealing with variables
or constants. We only need to select one of them. So, we only need to
use four mutations for the following target x and y.

We also automated the process of creating the graph presented in
Fig. 1 by using the graphviz Python library. Listing 9 declares the cre-
ateSubsRelationGraph function that receives the subsumptions
relations identified by identifySubsumptions, a list of mutations
and a dictionary specifying the names for each mutation.

Listing 9: Creating the subsumption relation graph.
def createSubRelat ionGraph ( subsumptions ,
muts , mutNames ) :

graph = Digraph ( ‘G ’ )
for m in muts :

graph . node (mutNames[ s t r (m) ] )
for s in subsumptions :

x = mutNames[ s t r ( s [0] ) ]
y = mutNames[ s t r ( s [1] ) ]
graph . edge (x , y )

return graph

It is important to mention that prove (see Listing 1) does not yield
unknown as a result in any of the results presented in Table 1. But this
scenario can happen for other mutation targets. When Z3 yields un-
known, we cannot identify subsumed relations. We recommend adding
some conditions (conds) to the variables to avoid unknown in prove.
This way, we may identify some useful subsumption relations for a
restricted domain. So, we have confidence in the results given by the
Z3 theorem prover. It takes a few seconds to prove all relations on a
MacBook Pro 2,3 GHz Intel Core i5 with 8 GB RAM memory.

4.3.2. Integer expressions
Consider the lexp + rexp target (the second row of Table 1). In

Step 1, we declare integer variables x and y (see Listing 10). First,
we will not impose any condition to identify subsumption relations
(conds=True), since we do not have any constraint to this mutation
target. We declare the x + y program in Python using its arithmetic
operator. Then, we specify the following mutations (AORB (2), VDL
6

(2), CDL (2), ODL (2)). Since VDL, CDL, and ODL yield the same
result, we only declare one mutation for them. In this example, we have
four mutations:

• x * y (AORB(*));
• x - y (AORB(-));
• x (VDL/CDL/ODL(rexp));
• y (VDL/CDL/ODL(lexp)).

Listing 10: Identify Subsumption Relations for the lexp + rexp
target.

Step 1
x = In t ( ‘ x ’ )
y = In t ( ‘ y ’ )
conds = True

Step 2
p = x+y

Step 3
muts = [x∗y , x−y , x , y]

Step 4
muts = keepNonEquivalentMutants (p , muts )

Step 5
muts = keepNonRedundantMutants ( muts )

Step 6
subsumptions = ident i fySubsumptions (p , muts , conds )

We do not find equivalent and redundant mutants in Steps 4 and
5. Step 6 does not identify any subsumption relation for the lexp +
rexp target. For instance, for the test case x=2, y=2, we can kill
the AORB(-) mutation, but we cannot kill the AORB(*) mutation. On
the other hand, for the test case x=2, y=0, we can kill the AORB(*)
mutation, but we cannot kill the AORB(-) mutation. So, all muta-
tions are dominant (see Fig. 2) different from the result obtained by
Guimarães et al. [11]. All mutation targets containing integer numbers
have different subsumption graphs from Guimarães et al. [11].

However, in case there are some restrictions in the developers’
domain, we can reduce the number of generated mutants. For instance,
suppose that all numbers are positive (for Z+) in the developers’ domain
(see first row of Table 1). In Step 1, we can specify it (conds =
And(x>0,y>0)) using Z3 and Python operators. We can execute all
steps again, and now it yields the subsumption relation presented in
Fig. 3. In this setting, the AORB(*) mutation dominates all other
mutations for the lexp + rexp mutation target. Even considering this
condition, the subsumption graph is different from the result obtained
by Guimarães et al. [11], which has a limitation in their technique due
to limitations in using automatic test suite generators.
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Fig. 2. Mutation subsumption graph for the lexp + rexp mutation target. All mutations are dominant.
Fig. 3. Mutation subsumption graph for the lexp + rexp mutation target considering positive integer numbers (for Z+).
4.3.3. Expressions containing bitwise operators
For expressions using bits, we follow a similar approach. We declare

the variables x and y as a BitVec with 32 bits. Then we follow
the same steps. It is important to mention that all bitwise operators
presented in Table 1 (Mutation target column) have an equivalent
bitwise operator in Python.

4.3.4. Expressions containing assignment operators
For expressions containing assignment operators, consider the lhs

&= rhs target (see second to the last row of Table 1). The encoding
is equivalent to the one presented in Section 4.3.2. In Step 1, we
declare BitVec variables x and y containing 32 bits (see Listing 11).
We will not impose any condition to identify subsumption relations
(conds=True), since we do not have any constraint to this mutation
target. The only difference between encoding expressions and com-
mands is that we update the variable lhs. Since in our program and in
all mutants we only have one variable lhs being updated, we do not
need to specify it in our encoding. In summary, we encode commands
in the same way we encode expressions.

Listing 11: Identify Subsumption Relations for the lhs &= rhs
target.

Step 1
x = BitVec ( ‘ x ’ ,32)
y = BitVec ( ‘ y ’ ,32)
conds = True

Step 2
p = x&y

Step 3
muts = [y , x | y , x ^ y , x ]

Step 4
muts = keepNonEquivalentMutants (p , muts )

Step 5
muts = keepNonRedundantMutants ( muts )

Step 6
subsumptions = ident i fySubsumptions (p , muts , conds )

We declare the x &= y program in Python using its bitwise operator.
Then, we specify all mutations using the Python bitwise operators:

• y (ODL (lhs=rhs));
• x|y (ASRS(| =));
• xˆy, (ASRS(ˆ=));
• x (SDL).

For the Statement Deletion mutation operator (SDL), it always yields
x. Finally, we execute Steps 4–6 and it yields the subsumption relation
graph presented in Fig. 4.
7

Fig. 4. Mutation subsumption graph for the lhs &= rhs mutation target.

4.4. Lessons learned

Guimarães et al. [11] used automatic test generators to derive
subsumption relations using strong mutation testing. In this work, we
use theorem proving in the context of weak mutation testing. Since all
proofs are automatically done by the Z3 theorem prover, it is easier
and faster to derive the subsumption relations using the approach
presented here. In the approach proposed by Guimarães et al. [11],
we have to generate a number of mutants using MuJava, compile all
of them, generate a number of tests for them, and then analyze all
results. It is a time consuming activity. It takes hours to yield dynamic
subsumption relations. Moreover, we have to rely on good automatic
test suite generators. However, tests only improve confidence in the
previous results since we do not have a proof [24].

In the approach presented here, we only need to encode the program
and mutants (see Listing 8) to prove subsumption relations in few
seconds. Analyzing the values given by the Z3 theorem prover for
invalid theorems can help in this process to better understand why a
mutation does not subsume another one.

By using our approach, we find some differences in the dynamic
mutant subsumption graphs derived by Guimarães et al. [11] that
contain integer expressions. All mutation subsumption relation graphs
are different. We find that we cannot reduce the number of mutations
for targets containing integer numbers. Since Guimarães et al. [11] rely
on the test suite generators that do not consider all integer values, they
find some subsumption relations different from our work.

All mutant subsumption relation graphs, proof scripts, and repro-
ducibility instructions can be found in our notebook [25].

5. Evaluation

In our previous section, we analyze code fragments using weak
mutation testing to derive a minimal set of mutants (see Table 1).
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This section evaluates our subsumption relations in the context of
strong mutation testing by considering a complete program. Offutt
and Lee [26] evaluated the effectiveness versus the efficiency of weak
mutation testing. They found that weak mutation testing can be applied
in a manner that is almost as effective as strong mutation testing
and with significant computational savings. However the results using
weak mutation testing do not always hold for strong mutation testing.
For instance, Lindström and Márki [24] found that their subsumption
relations for ROR identified using weak mutation testing do not hold
for strong mutation testing.

To analyze to what extent our results hold for complete programs,
first we changeMuJava to include the results presented in Table 1 for 24
mutation targets. This tool is called MuJava-M [11]. Then we compare
the results forMuJava andMuJava-M for a number of mutants generated
from real projects in this section.

This section is organized as follows. First we present our research
questions in Section 5.1. Section 5.2 presents the experimental plan-
ning. Section 5.3 explains the experimental procedure. Section 5.4
shows our results. We compare our technique to random sampling in
Section 5.5. Finally, we discuss some threats to validity in Section 5.6.
All data, setups, scripts, and MuJava-M are available in our companion

ebsite [25].

.1. Research questions

To better structure our evaluation, we rely on the Goal, Question,
etrics methodology [27]. The goal of our experiment consists of

nalyzing our approach, implemented by MuJava-M, with the purpose
f evaluating the subsumption relations we found in Z3 with respect to
he number of mutants discarded (effort reduction), and the correctness
f this reduction (effectiveness) from the point of view of testers in
he context of applying mutation testing to Java open source programs
strong mutation testing).

To achieve this goal, we address the following research questions:

Q1: How many mutants are subsumed (effort reduction)?

To answer this question, we count the number of mutants generated
y MuJava and MuJava-M for each mutation target. Notice that answer-
ng RQ1 is important because it allows us to estimate the amount of
omputational effort saved. The subsumption relations we embedded
n MuJava-M must be effective. They should not discard important
utants that would be in a minimal set. To better understand this point,
e formulate the following complementary research question:

Q2: How many mutants are incorrectly discarded from a minimal set
(effectiveness)?

To answer RQ2, we rely on the definition of minimal test set [7].
ccording to Amman et al. [7], a minimal test set necessary to kill a
inimal mutants set must also kill all the mutants in the full mutants

et. Thus, we generate this minimal test set and execute against the full
utants set. If a mutant from the full mutants set survives, this means

hat we incorrectly discarded this mutant. We compute the frequency
f these cases.

.2. Planning

We use five large open source programs to carry out our evaluation.
able 3 illustrates the studied programs, i.e., joda-time, commons-math,
ommons-lang, h2, and javassist. These programs vary in size and appli-
ation domain. joda-time is a time manipulation library. commons-math
s a library of mathematics and statistics components. commons-lang is
package of Java utility classes for the classes that are in java.lang’s

ierarchy. h2 is a Java SQL-based database. javassist is class library for
diting bytecodes. We performed the evaluation on Intel Core i5-7400
ith 8 GB of RAM equipped with Linux 3.10.0 operating system. We
8

Table 3
Programs used in our evaluation.

Project Version Lines of Code (LOC)

joda-time 2.10.1 28,790
commons-math 3.6.1 100,364
commons-lang 3.6 27,267
h2 1.4.199 134,234
javassist 3.20 35,249

used MuJava and MuJava-M command-line version. In both cases, all
method-level mutation operators were enabled.

After generating mutants with each tool, we need to calculate the
incorrectly discarded mutants by MuJava-M. Thus, we need to execute a
minimal test set – necessary to kill the MuJava-M mutants – against the
mutants generated by MuJava. To find out the minimal test set, we rely
on Evosuite’s [13] Regression test suite generation (EvosuiteR) version
1.0.6. EvosuiteR is a specialization of Evosuite that tries to generate one
test revealing the difference between two versions of a Java class. For
instance, given two Java classes with a small syntactic difference in
code, say a mutant, EvosuiteR tries to find a test case that exposes this
behavioral difference between the two files. We set up 60 s as the time
limit to EvosuiteR generate tests. We used the default values for the
other parameters.

In case the mutant survives the test generated by EvosuiteR, we try to
discard equivalent mutant. Equivalent mutants contribute negatively to
the confidence assessment of the reduction applied. Unfortunately, de-
tecting equivalent mutants is a well-known undecidable problem [28].
To minimize this problem, we avoid some equivalent mutants by using
the Trivial Compiler Equivalence (TCE) [29]. TCE is a sound tool be-
cause it checks whether the bytecodes of the original program and the
mutant are the same. This eliminates the possibility of false positives.
However, TCE cannot identify equivalent mutants that have different
bytecodes, which may yield false negatives.

In summary, to answer RQ1 and RQ2 the plan is the following:
generate the mutants with MuJava and MuJava-M, then generate the
minimal tests set with EvosuiteR, execute the test generated against
the MuJava mutants, detect equivalence with TCE, and calculate the
surviving mutants. Because it is a computationally costly experiment,
we leave the programs running for seven days for each subject. Conse-
quently, the number of randomly selected files of each subject varied.
In total, we evaluate 125 class files (see Table 4).

5.3. Procedure

We explain how we proceed to answer the research questions RQ1
and RQ2. A Java class is the MuJava unity of work, thus we need to
generate the mutants for the whole class. Applying all possible mutants
to all files in a large program is clearly infeasible. This way we ran-
domly selected a set of Java class files for each subject. With the classes
selected, we executed MuJava and MuJava-M against these classes to
generate the full set and a minimal set of mutants, respectively. We
enabled all method-level mutation operators in both tools.

Next, we added the mutants of MuJava and MuJava-M grouped by
target. For instance, for each target 𝑡 in a given class file, MuJava
generated the full set 𝑀 = {𝑚1, 𝑚2, 𝑚3, 𝑚4} containing all mutants,
and MuJava-M generated a minimal set �̄� = {𝑚1, 𝑚2} containing only
the sufficient mutants according to the subsumption relations found
previously by our approach (Section 4).

We now proceed to create a minimal test set. As explained, a
minimal test set necessary to kill the minimal mutants set must also kill
the full mutants set [7]. Thus, we use EvosuiteR to create a test case for
each mutant in a minimal set (�̄�). We provide the original program
and a mutant from �̄� , and EvosuiteR generates a test containing only
one test case to kill the mutant. We repeat this process for all mutants
in �̄� . At the end, we group the generated tests to create a minimal test

̄ ̄
suite 𝑇 for a minimal set of mutants 𝑀 .
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Table 4
Number of mutants per subject.

Project Classes MuJava MuJava-M

joda-time 38 2755 666
commons-math 34 1282 368
commons-lang 22 1737 537
h2 11 231 63
javassist 20 893 216

Total 125 6898 1850

To validate if the mutants of �̄� indeed represent a minimal mutants
set for the target, we execute �̄� against 𝑀 . In case all mutants of 𝑀
get killed, we confirm that �̄� is a reliable representation of 𝑀 . But if a
mutant of 𝑀 survives, it represents a fail in our approach. For example,
if only the 𝑚1, 𝑚2, and 𝑚3 mutants of 𝑀 are killed by suite �̄� , only 75%
of the mutants in the full set were killed. This means that 𝑚4 is a useful
mutant and should not be discarded from a minimal set. An exception
occurs when 𝑚4 is an equivalent mutant. In this case 𝑚4 is useless to
he mutation test. This way, we executed TCE against the mutants of

that survived to �̄� . If TCE identifies a mutant as equivalent, we
ake this mutant out of the analysis. If TCE does not mark a mutant
s equivalent, then we understand that this mutant represents an error
n our reduction and it should be part of the minimal mutant set.

To understand if our approach has eliminated important mutants,
e verified the number of mutants not generated by MuJava-M that

hould be part of a minimal set. We also manually verified a subset of
hese incorrectly deleted mutants.

To automate the process described before, we create a script that
xecutes all steps. In some exceptional scenarios we discard the target.
elow we list these scenarios:

• If EvosuiteR cannot identify a test case to distinguish the original
program and a mutant in a limit of 60 s, we did not proceed with
the analysis of the target.

• We execute the minimal test suite against the original program
to confirm they are passing. We repeat this process three times to
reduce the presence of flaky tests [30]. In case we identify flaky
tests, or the test suite does not pass in the original program, we
do not proceed with the analysis of the target.

.4. Results

Next we answer our research questions.

.4.1. RQ1: How many mutants are subsumed (effort reduction)?
Table 4 presents the number of mutants generated by MuJava and
uJava-M for each subject. In particular, we analyzed 1,403 occur-

ences of mutation targets in 125 classes. MuJava generated 6,898
utants, which gives an average of 4.92 mutants per target. MuJava-
, in its turn, generated 1,850 mutants for the same set of mutation

argets, i.e., an average of 1.32 mutants per target. This way, MuJava-M
chieved an average reduction of 71.38% in the number of generated
utants when compared to the original version of MuJava.

Table 5 illustrates the occurrences of 18 mutation targets we ana-
yzed in the 125 classes. The most common target is exp. We identified
,089 exp occurrences. The effort reduction rate is 75.80% on average
or this target, respectively.

We achieve significant reductions when considering the total num-
er of generated mutants (see column ‘‘Reduction’’ in Table 5). How-
ver, we may have discarded important mutants for the mutation
nalysis. In this sense, to better understand to what extent our reduc-
ions are indeed focusing only on redundant mutants, we now answer
9

Q2.
able 5
eneral results for some targets.
Mutation Target Occurrences Projects Reduction Effectiveness

lexp > rexp 19 4 62.50% 100.00%
lexp >= rexp 26 4 62.50% 100.00%
lexp < rexp 35 4 62.50% 100.00%
lexp <= rexp 16 3 62.20% 100.00%
lexp == rexp 34 2 62.50% 100.00%
lexp != rexp 14 4 62.50% 100.00%
lexp && rexp 13 2 55.56% 100.00%
lexp || rexp 25 4 55.56% 100.00%
lexp & rexp 33 2 64.32% 100.00%
lexp | rexp 6 1 40.00% 100.00%
lexp ˆ rexp 6 1 83.33% 100.00%
exp 1089 5 75.80% 47.20%
!exp 27 4 50.00% 100.00%
-exp 38 4 58.70% 92.68%
∼exp 13 2 58.06% 100.00%
exp++ 4 3 71.43% 100.00%
exp-- 4 2 83.33% 66.67%
lhs ^= rhs 1 1 66.67% 50.00%

5.4.2. RQ2: How many mutants are incorrectly discarded from a minimal
set (effectiveness)?

Table 5 also presents numbers with respect to the effectiveness of
MuJava-M, i.e., we check whether the mutants discarded by our tool
were indeed discarded correctly. Column ‘‘Effectiveness’’ presents these
results. This percentage represents the number of mutants generated by
MuJava that were killed by the minimal test set. In the ideal scenario,
the minimal test set should kill all MuJava mutants.

According to Table 5, we achieve 100% of effectiveness in 14
targets. On the other hand, we achieved only 47.20% of effectiveness
for the exp target (the one more common in the subjects we studied,
i.e., 1,089 occurrences). Notice that exp is a very generic constructor
that can be, for example, a variable that stores the index of an array,
i.e., arr[i].

There are some reasons why the results presented in Table 1 for
mutation targets in isolation do not hold for some projects (Table 5).
There are scenarios in which we infect the program state but the
infection is not propagated [31]. So we cannot kill the mutants. The
changes are not observable for users. It is an internal change. This
is a limitation of weak mutation testing [14]. However, we also have
limitations in the procedure presented in Section 5.3. There are some
challenges in using automatic test suite generators [32,33]. These
challenges negatively impact on the effectiveness of our approach. For
instance, they may not generate some input values to kill some mutants.
So, the test suite generator cannot infect the program state [31]. There
are some limitations in the automatic test suite generators related to
defining oracles [32]. We have scenarios in which the program state
is infected, the infection is propagated, but we cannot reveal it since
we do not have a good oracle. The automatic test suite generators
may generate flaky (unstable) tests [32]. As future work, we intend
to manually analyze our sample, and also consider projects with test
suites created by developers.

Next, we discuss an error when defining a minimal set for an
instance of the target lhs ^= rhs [11]. This target occurred only
once in the subjects studied (see Table 5). Listing 12 presents a code
snippet of the BooleanUtils class of the project commons-lang. At
Line 5 of the xor method there is the following statement: result
^= element. This statement applies an exclusive disjunction logic
operation among all elements of the array. The minimal mutation set
for this target is made up of just one mutation: ASRS(|=) as presented
in Table 1. However, the minimal test set did not kill the ASRS(&=)
mutation.
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Fig. 5. Comparing our approach to random sampling strategy.

Listing 12: Code snippet from commons-lang project.
public s t a t i c boolean xor ( f ina l boolean . . . array ) {

. . .
boolean r e s u l t = fa l se ;
for ( f ina l boolean element : array ) {

r e s u l t ^= element ;
}
return r e s u l t ;

}

Lindström and Márki [24] suggested that the subsumption relations
annot hold when the mutated statements are re-executed (in the
ontext of strong mutation [1]). If the mutated instruction is executed
ore than once by any test execution, we cannot determine the future

tate of the program. Notice that the mutation target is inside the for
oop (see Listing 12). Since our subsumption relations were obtained
sing weak mutation testing, they are not sufficient to represent the
utation within a repeating context.

In summary, we show that our approach to identify subsumption
elations in Z3 using weak mutation testing (see Section 4) has a good
alance between the effort (sampling rate of 28.62%) required to derive
hem and the effectiveness (75.93%) for the targets considered in our
valuation in the context of strong mutation testing.

.5. Random sampling

Gopinath et al. [34] compared the effectiveness of some mutation
eduction strategies to random sampling. In their evaluation, none of
he mutation reduction strategies evaluated produced an effectiveness
dvantage larger than 5% in comparison with random sampling. In
ummary, they argue that mutation reduction strategies are considered
armful. In this section, we compare our approach to random sampling.

We consider the programs presented in Table 3 and targets pre-
ented in Table 5 to evaluate the random sampling strategy. The
aseline minimal set of mutants is defined by joining a minimal set
f mutants identified by our approach, and the set of nonequivalent
utants not killed by our approach. For each target, we randomly

elect the mutant set and count the number of mutants in the baseline
inimal set of mutants. To avoid bias, we repeat this process 100 times

nd yield the median value.
We use 10 sampling rates from 0 to 100%. Fig. 5 presents our

esults. The random sampling approach yields an average effectiveness
10

f 75% in correctly identifying the baseline minimal set of mutants
when it uses a sampling rate of 60%. Our approach presented in
Section 4 yields an effectiveness of 75.93% when it uses a sampling rate
of 28.62%. This way, different from the results obtained by Gopinath
et al. [34] in their study, using the random sampling strategy is not a
good approach compared to ours. Our reduction mutation strategy is
not considered harmful.

5.6. Threats to validity

The set of projects we used represents a threat to external validity.
Also, we did not evaluate all files of all projects. To increase diversity,
we consider projects of different sizes and domains. As another threat
to external validity, we focused only on method-level operators of only
one tool, i.e., MuJava for Java. In some cases MuJava generates mutants
hat do not compile or fails to generate some mutants, representing a
hreat to internal validity.

We only considered in this study mutation targets that did not
enerate flaky tests and that EvosuiteR could generate the minimal test

sets. This represents a threat to internal validity. This decision was
necessary to assess the effectiveness of the reductions. The minimal
test sets also poses a threat to internal validity. This is because com-
puting minimal mutant sets for all possible test sets is computationally
hard [7]. Thus, the EvosuiteR can generate the test set which is minimal
but not minimum [7].

The mutants that survived the minimal test sets also represents
a threat. Despite running TCE to identify equivalent mutants, TCE
cannot detect all equivalent mutants due to the undecidability of the
Equivalent Mutant Problem [20].

Some targets did not appear frequently in our evaluation. For in-
stance, the mutation target lhs ^= rhs, occurred only once. So, the
effectiveness of a minimal set defined for some targets may not hold
for general cases. We intend to perform other studies to evaluate these
targets.

6. Related work

There are some strategies to reduce costs for mutation analysis in
the literature [35]. Kaminski et al. [9] defined the mutant subsumption
graphs for six targets: lexp > rexp, lexp >= rexp, lexp < rexp,
lexp <= rexp, lexp == rexp, and lexp != rexp. We yield the
same minimal set for them. Moreover, we encode more targets, pre-
sented in Table 1, using the Z3 theorem prover. Using a similar strategy,
Just et al. [10] presented sufficient sets of non-redundant mutations for
the COR and UOI operators. These subsumption hierarchies are defined
by manually analyzing the combinations of all possible input situations.
However, in several other cases, analyzing all possible combinations
is prohibitive due to the high costs. Our approach encodes a theory
in Z3 and uses the Z3 theorem prover to automatically deduce the
subsumption relations.

Guimarães et al. [11] proposed an approach to identify subsumption
relations using automatic test suite generators in the context of strong
mutation testing. In contrast, we propose an approach that is simpler
to derive subsumption relations. Indeed, we do not need to generate
and compile a number of mutants. We do not need to automatically
generate tests, nor execute them. Instead by using our theory, we have
to encode the program and mutation operators. Then the Z3 theorem
prover automatically proved a number of subsumption relations for
weak mutation testing.

Just and Schweiggert [18] presented a study that analyzes the effect
of redundant mutants on mutation analysis efficiency, mutation score,
and mutation coverage ratio. They show that the mutants generated
by COR, ROR, and UOI have a mean ratio of 45% of the total mutants
generated. Using the sufficient set of non-redundant mutations for these
operators, the number of mutants was reduced by 27% overall. Just and
Schweiggert also show that redundant mutants worsen the accuracy of
the mutation score.
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Papadakis and Malevris [8] showed that random selection of subsets
containing 10%–60% of the generated mutants reduces the ability to
detect failures by 26%–6%, respectively. Offutt et al. [36] presented an
empirical approach to define an appropriate set of selective mutation
operators. The idea was to randomly select a subset of mutation opera-
tors [37,38]. Perez et al. [39] explored Evolutionary Mutation Testing
to reduce the number of mutants to be executed. Namin et al. [40]
formulated the selective mutation problem as a statistical problem.
They applied linear statistical approaches to identify a subset of 28
mutation operators for C. Some techniques used clustering algorithms
o reduce the number of mutants by selecting only a subset of mutants
rom each cluster [41,42]. Other strategies [43,44] for reducing costs
ses the idea of higher order mutants (mutants with more than one
yntactic change), which subsume the behavior of two or more mutants
ith only one syntactic change, also known as first order mutants. We

how how to encode two higher order mutants in our approach.
However, in another study, Gopinath et al. [34] found no differ-

nces in effectiveness between selective mutation and random selec-
ion. The main challenge in reducing the mutants set is not losing useful
nformation. We show that our approach has a better effectiveness
han the random sampling strategy for the same sampling rate. Just
t al. [45] stated that existing approaches to selective mutation do not
ake program context into account, and this is fundamental to avoid
osing useful information.

The high cost of mutation testing creates an entry barrier to its use
n the software industry, but the effectiveness of mutation testing in
ssessing the quality of the test suite makes it attractive. Therefore,
here is an incentive to carry out cost-saving studies and alternative
ays to use mutation, such as the approach used by Google, where
nly one mutant per target is chosen by a software engineer manually
uring the code quality inspection [46].

In our work, we propose to use subsumption relationships to reduce
osts for mutation testing. Our approach is related to the selective
utation strategy, as we use the subsumption relationships found to

elect the most representative mutants among all generated mutants.
oreover, we encode a theory of subsumption relations in Z3, and

se its theorem prover to identify a number of subsumption relations.
e focus on identifying subsumption relations using weak mutation

esting. We have to be careful when leveraging our results for strong
utation testing. Lindström and Márki [24] studied the subsumption

elations between ROR mutants. They showed that ROR fault hierar-
chies identified using weak mutation testing do not hold for strong
mutation testing. The problem may be mitigated by avoiding loop
structures. We evaluate our approach in the context of strong mutation
testing in Section 5, and show that our approach has a good balance
between the effort required to derive the mutant subsumption relations
and the effectiveness for the targets considered in our evaluation.

Previous approaches focused on proposing approaches to detect
equivalent mutants [20,47]. Baldwin and Sayward used compiler op-
timizations [48] to detect equivalent mutants by checking whether
the original program and the optimized program are identical. Kintis
et al. [29] proposed the Trivial Compiler Equivalence for C and Java,
and mutation tools (Milu and MuJava).

Offut and Pan [49,50] developed a technique to detect equiva-
lent mutants based on mathematical constraints that introduce a set
of strategies to formulate the killing conditions of the mutants. If
these conditions are not feasible, the mutant is equivalent. Voas and
McGraw [31] and Hierons et al. [51] suggested to use program slic-
ing to help with equivalence identification. These approaches suffer
from inherent limitations in the scalability of constraint handling and
slicing technology. Grun et al. [52] and Shuller and Zeller [53,54] pro-
posed that changes in coverage can be used to detect non-equivalents
mutants. Shuler et al. [55] used invariants violation as a way to
classify killable mutants. In our approach, we defined the function
keepNonEquivalentMutants and used the Z3 theorem prover to
11

identify equivalent mutants using weak mutation testing. A
7. Conclusion

In this work, we automatically identify and prove a number of
subsumption relations for method-level mutations using the Z3 theorem
prover. Developers only need to specify the types and mutations in
our encoding to identify subsumption relations (see Listing 8). In few
seconds, the Z3 theorem prover automatically proves a number of
subsumption relations for 37 mutation targets. We reduce the number
of mutations in a number of mutation targets containing integer and
boolean expressions. We show some examples on how to encode them
and identify subsumption relations. We can extend our theory to con-
sider other types of expressions. To evaluate our approach, we extend
MuJava with some of our results and evaluate it in 125 classes of 5 real
projects. Our tool achieves an effectiveness of 75.93% and a sampling
rate of 28.62% in the context of strong mutation testing. Moreover, we
show that our approach is better than the random sampling strategy.

The results may help to build better mutation testing tools that
will allow to reduce the mutation testing costs. We recommend the
community to follow a similar approach presented here before propos-
ing new mutations. We must propose new mutations that subsume
the previous ones. In this way, developers can use a minimal set of
mutations, hence reducing mutation testing costs. Overall, our work
leverages lightweight formal methods to mutant analysis, resulting in
effective gains for developers.

As future work, we intend to prove more subsumption relations by
considering real numbers, other language constructs and mutations,
and encoding more higher order mutants. It will require to encode
the Java semantics of some constructions, such as classes and fields.
We may encode the Java Featherweight semantics in Z3 [56] or in
other systems in which we can interactively perform the proofs, such as
PVS [57]. In this case, we may address some proofs that cannot be done
(when prove yields unknown) using the Z3 theorem prover. Finally,
the expressions and commands considered in this work for Java have a
similar semantics in other languages, such as Python and C#. We intend
to check whether the subsumption relations found also hold for other
languages in the context.
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