
Evolving Delta-Oriented Product Lines: A Case Study on
Feature Interaction, Safe and Partially Safe Evolution

Leomar Camargo, Luisa Fantin, Gabriel Lobão
Thiago Figueiredo, Rodrigo Bonifácio

Computer Science Department, University of Brasília
Brasília, Brazil

Karine Gomes
Leopoldo Teixeira

Informatics Center, Federal University of Pernambuco
Recife, Brazil

ABSTRACT

Software product line engineering is a well-known approach for
building a set of configurable systems for a specific domain, and dif-
ferent techniques have been used to manage product line variability,
including source-code preprocessing, aspect-oriented programming
(AOP), and delta-oriented programming (DOP). Although existing
studies have explored the design and evolution of product lines
using techniques such as source-code preprocessing and AOP, little
is known about the practical implications of using DOP to bootstrap
and evolve software product lines. In this paper we address this
issue, reporting our experience of using DeltaJ to implement two
product lines (Reminder-PL and Iris-PL). This experience covers
different scenarios of evolution (such as the inclusion of mandatory,
optional, and alternative features) that indeed led to several feature
interactions. Altogether, this work brings several contributions,
including evidence that existing templates for safe and partially
safe evolution of product lines can also help developers to evolve
delta-oriented SPLs—although we revealed the need for two addi-
tional templates for safe evolution. Also, we present a description of
the feature interactions that appeared during the evolution of both
product lines and how we modularized these interactions using
DOP constructs.

CCS CONCEPTS

• Software and its engineering→ Softwaremaintenance tools;
Software evolution; •General and reference→ Empirical stud-
ies.

KEYWORDS

Delta-Oriented Programming, Software Product Lines (SPLs), Safe
and Partially Safe Evolution of SPLs, Feature Interaction

ACM Reference Format:

Leomar Camargo, Luisa Fantin, Gabriel Lobão, Thiago Figueiredo, Rodrigo
Bonifácio, Karine Gomes, and Leopoldo Teixeira. 2021. Evolving Delta-
Oriented Product Lines: A Case Study on Feature Interaction, Safe and
Partially Safe Evolution. In Brazilian Symposium on Software Engineering
(SBES ’21), September 27-October 1, 2021, Joinville, Brazil. ACM, New York,
NY, USA, 10 pages. https://doi.org/10.1145/3474624.3474645

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SBES ’21, September 27-October 1, 2021, Joinville, Brazil
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9061-3/21/09. . . $15.00
https://doi.org/10.1145/3474624.3474645

1 INTRODUCTION

Software product lines (SPLs) are an efficient way of developing sets
of software products with similar functionality and behaviors [30].
This approach can increase developers’ productivity while reduc-
ing costs and development time—due to the possibility of reusing a
common set of assets [14]. Nonetheless, SPLs also require mainte-
nance effort, which might involve bug fixes and introducing new
features and functionalities. As a result, SPLs constantly evolve by
adding, removing, or changing features and SPL assets. This can
be a costly and tedious process that might introduce defects and
unintended modifications to the behavior and functionalities of a
variety of products—nullifying previous productivity gain, cost and
time savings [28].

Some introduced defects might be particularly difficult to detect
because they are present only in certain products, involving specific
feature interactions. This might require a large number of tests to
discover and fix the problem. As the number of products increase,
testing all product variants becomes increasingly expensive and
unproductive [36]. In order to mitigate this problem, previous stud-
ies have proposed template catalogs for the safe and partially safe
evolution of SPLs [10, 12, 28, 32]. Although these catalogs have been
validated using compositional and annotative SPLs, it is still un-
clear whether or not these catalogs suffice to guide developers using
transformational techniques such as Delta-Oriented Programming
(DOP) [33]—a prominent approach for managing SPL variability.
Besides that, to the best of our knowledge, there is no discussion in
the literature about how to modularize feature interactions using
DOP. In this paper we seek to address these issues by discussing an
experience report on using existing safe and partially safe evolution
catalogs to evolve two DOP product lines and showing recurrent
patterns of code we used to modularize feature interactions using
delta-oriented constructs.

The rationale for this research is two fold. First, regarding SPL
evolution, it is important to characterize how changes were per-
formed into existing projects, and how they relate to safe and
partially safe evolution notions. This characterization might re-
sult in developing better tools to assist developers in performing
such changes and assist SPL developers in the challenging task
of evolving product lines. Our work provides evidence that some
SPL evolution operations can be expressed as templates, regardless
of the variability implementation mechanism. Although we give
evidence that the catalogs could also be used for transformational
techniques (DOP), we revealed the need for additional templates in
this work and presented a mapping of the SPL concepts used in the
catalogs into the DeltaJ constructs.

Second, existing literature about DOP claims that it is possible
to modularize every feature in an independent delta-module. Our

https://doi.org/10.1145/3474624.3474645
https://doi.org/10.1145/3474624.3474645

SBES ’21, September 27-October 1, 2021, Joinville, Brazil Camargo, et al.

experience suggests the contrary, and as we discuss in this paper,
it was often necessary to use a delta-module to modularize feature
interactions in our case studies. For this reason, here we also report
recurrent code idioms that emerged in our case studies. The code id-
ioms could be reused by other researchers and developers interested
in DOP. In summary, our work makes the following contributions:

• We provide new evidence that existing catalogs for safe (and
partially safe) evolution of SPLs can assist developers during
the evolution of delta-oriented product lines.

• We describe how to manage feature interactions using DOP
constructs using a set of scenarios. In addition, we suggest
a few code idioms to modularize feature-interactions using
DOP.

• We implement two full-fledged delta-oriented SPLs (Reminder-
PL and Iris-PL) and make these product lines available for
further studies. 1, 2

2 BACKGROUND

In this section, we provide an overview of foundational concepts
for understanding our work. For our purposes, an SPL is formally
represented as three elements: Feature Model (FM), which describes
the variability of an SPL; Asset Mapping (AM), representing the
SPL core assets; and Configuration Knowledge (CK), which maps
feature expressions to functions that might select or transform core
assets [12]. Feature expressions are boolean formulae denoting
presence conditions among features. That is, a CK entry might be
in the form (f1 ∧ (f2 ∨ f3)) 7→ select(n1), stating that if a product
is configured with the feature f1 and either f2 or f3 (or both), we
must select the asset named n1 during the build process.

2.1 Delta-oriented Programming

Delta-oriented Programming is a transformational technique for
variability management in SPLs [33]. Although it follows the same
principle of gradual development from Feature-oriented Program-
ming [31], its design weakens a specific FOP constraint. That is,
besides operations for adding and modifying modules, DOP also
supports operations for removing existing modules. In this way,
DOP corresponds to a more expressive and flexible approach for
SPL development when compared to FOP.

In its earlier versions, DOP ensured a separation between the
core module and a set of delta modules. The core module could be
understood as a valid SPL instance implementation, according to the
FM constraints. This instance should contain at least the mandatory
features and a minimum set of optional features, according to some
design considerations. Delta modules specify which changes should
be applied to the coremodule to implement new products, by adding,
changing, or removing classes, attributes, or methods.

The core ideas of DOP have been used to manage variability
not only at the source code level [1, 15, 38], but also in different
artifact types [24, 26]. Here we use a specific implementation of
DOP for Java (DeltaJ 1.5 [23]), to report the design, implementation,
and evolution of two SPLs: an Android product line application
(Reminder-PL) and a standalone Java e-mail client (Iris-PL).

1https://github.com/Reminder-App
2https://github.com/iris-email-client

Listing 1 shows a simplified version of the DeltaJ configuration
file for Reminder-PL, one of the SPLs we use in our research. This
file maps SPL concepts to DeltaJ implementation constructs.

1 SPL ReminderPL {

2 Features = {Reminder, ReminderCategory, StaticCategory,

3 ManagedCategory, Priority}

3

4 Deltas = {dBase, dStaticCategory, dManagedCategory, dPriority,

5 dStaticCategoryPriority}

5

6 Constraints {

7 Reminder & ReminderCategory | Priority;

8 ReminderCategory & (StaticCategory ^ ManagedCategory);

9 }

9

10 Partitions {

11 {dBase} when (Reminder);

12 {dStaticCategory} when (StaticCategory);

13 {dManagedCategory} when (ManagedCategory);

14 {dPriority} when (Priority);

15 {dStaticCategoryPriority} when (StaticCategory & Priority);

16 }

16

17 Products {

18 Prod1 = {Reminder, ReminderCategory, StaticCategory, Priority};

19 Prod2 = {Reminder, ReminderCategory, ManagedCategory};

20 }

21 }

Listing 1: Example of a DeltaJ configuration file.

Considering a DeltaJ configuration file for a product line (such
as that we present in Listing 1), we associate the feature model
(FM) to the Features and Constraints sections. The first section
(Features) determines the set of all features in the SPL—in the
example, we have five features: Reminder, ReminderCategory, Static-
Category,ManagedCategory, and Priority. The Constraints section
states the feature model constraints by means of propositional for-
mulae. Line 7 in the Constraints section states that Reminder and
ReminderCategory are mandatory, while Priority is an optional fea-
ture, and line 8 states that ReminderCategory requires the selection
of either StaticCategory or ManagedCategory, but not both.

The Deltas section lists the names of the delta modules used
to implement the SPL features. As such, it corresponds to the AM
(asset mapping) element of the formal SPL definition. Finally, the
Partitions section contains the mapping between features and
delta modules, and thus corresponds to the CK element. In the
example, the Reminder feature requires the dBase delta module, the
StaticCategory feature requires the dStaticCategory delta module,
and so on. Finally, the Products section lists the products that one
might be interested in building from the SPL. Listing 1 illustrates
just two products, although other products could be generated from
this DeltaJ definition.

2.2 Safe Evolution

Like any software system, SPLs also evolve. However, evolution
must be taken into account carefully in SPLs, as simple changes
can impact the behavior of several products. This issue motivated
previous research to investigate new methods to help developers
minimize the impact of SPL evolution [27, 29]. For instance, the con-
cept of Safe Evolution of SPLs argues in favor of behavior preserving
transformations that might help to “safely evolve” an SPL [12]. Safe
evolution here means that, after evolving the SPL, we should be able
to produce at least the same set of products of the previous version.
Previous works proposed templates for SPL transformations that

Evolving Delta-Oriented Product Lines: A Case Study on
Feature Interaction, Safe and Partially Safe Evolution SBES ’21, September 27-October 1, 2021, Joinville, Brazil

reportedly guarantee safe evolution [12, 28, 35], giving orientation
on how to safely evolve an SPL.

Figure 1: Add New Optional Feature template.

Figure 1 presents the Add New Optional Feature transfor-
mation template [12, 28]. The safe evolution templates consist of
a left-hand side (SPL before the transformation) and a right-hand
side (SPL after the transformation). In both sides, it shows frag-
ments of the SPL elements (i.e., FM, AM, and CK). For instance, in
the left-hand side of Figure 1, we show a feature model fragment
with a sole feature P ; a fragment of an asset mapping, mapping the
name n to the artifact a; and a configuration knowledge fragment
relating the feature expression e to the artifact name n. In the right-
hand side, we enrich the feature model with an optional feature
O and introduce a new mapping (n’ 7→ a’) and a new entry in the
configuration knowledge (feature expression e’ relating to n’).

The template in Figure 1 establishes that we can safely add a
new optional feature O to an SPL that matches the left-hand side,
together with a new asset a’, if this asset is only included when we
select the new feature. This motivates the restriction of establishing
that the feature expression e’ evaluates to true when O is selected
(e ′ ⇒ O). This guarantees that products without the new feature
correspond exactly to their original counterparts. The template
also requires that we cannot have a feature named O in the FM
nor another asset name n’ in the AM on the original SPL, and
that the resulting SPL is well-formed. Safe evolution is guaranteed
because the resulting SPL generates all products that it had before
plus the new products that contain feature O, and we improve the
resulting SPL quality by increasing its configurability. The template
formalization allows associating more than one asset to the new
optional feature in the CK.

2.3 Partially Safe Evolution

Making safe modifications allows developers to evolve SPLs with
basic guarantees that existing products would not be affected by
the evolution scenario. However, during the life cycle of a software
project, often we need to remove features, fix bugs, or change the
implementation. These kinds of changes affect the behavior of
existing products and thus are not covered by the safe evolution
notion. Therefore, Partially Safe Evolution [32] considers changes
that preserve the behavior of some, but not all existing products.
Sampaio et al. also suggested transformation templates that abstract
common scenarios that impact existing instances of an SPL [32].
Here, we leverage existing catalogs to report on both safe and
partially safe evolution of delta-oriented product lines [28, 32, 35].

3 STUDY SETTINGS

The objective of this study is to (a) explore the use of existing tem-
plates to guide the safe and partially safe evolution of delta-oriented
SPLs; and to (b) report our experience on evolving andmodularizing
feature interactions in delta-oriented SPLs. We conduct our investi-
gation using two SPLs: Reminder-PL and Iris-PL (see Section 3.1).
Altogether, we seek to answer the following research questions.

• (RQ1) How existing safe and partially safe evolution tem-
plates have been used to support the evolution of Reminder-
PL and Iris-PL?

• (RQ2) Which code idioms have been used to modularize
feature interactions during the evolution of Reminder-PL
and Iris-PL?

The first research question aims to characterize the evolution of
delta-oriented SPLs using existing safe and partially safe evolution
templates. Exploring this research question allows us to understand
if these templates are useful to assist developers on evolving SPLs
that use transformational techniques, such as DOP. For RQ2, the
purpose is to analyze the feature interactions among delta-oriented
SPLs. This allows us to understand which idioms one might use to
modularize feature interactions using delta-oriented constructs.

3.1 Case Studies

We answer our research questions using two SPLs (Reminder-PL
and Iris-PL), which were extracted from individual products and
then evolved according to a set of evolution scenarios. All data
related to this study, including the SPL artifacts, can be found in
our online appendix.3

3.1.1 Reminder-PL. Reminder App is a mobile application devel-
oped for Android devices using Java 1.5 and the Android SDK 16 (or
Android 4.1). We first developed a full-fledged Android application
in cooperation with an industrial partner. That is, the original ver-
sion of the app was not designed with the purpose of conducting
research neither in DOP nor in SPLs.

In its original version, Reminder App supports the management
of reminders (registration, editing, viewing, and deletion), allowing
a reminder to be shared in Google Calendar. During the process
of registering a reminder, it is possible to define a Priority (“No
Priority”, “Important”, or “Urgent”) and a Category (“Personal”,
“Work”, or “College”) for the reminder. It is also possible to add, edit,
and delete reminder categories.

We chose Reminder App for several reasons. First, we had de-
veloped the first official releases of this application. Second, this
application presents several opportunities for introducing variabil-
ity (for instance, the support for Google Calendar could be made
optional). Third, to the best of our knowledge, there are no reports
on implementing Android SPLs using delta-oriented constructs.

The process we use for transforming Reminder App into a SPL
involved three distinct phases:

• Domain engineering: where we decided the variability space
for Reminder-PL.

• Converting Reminder App into an SPL: where we reduced
the number of implemented features to generate a set of core
modules using DeltaJ. The “core modules” should not be

3https://github.com/leomarcamargo/sbes-2021-package

SBES ’21, September 27-October 1, 2021, Joinville, Brazil Camargo, et al.

affected by introducing new features in the next releases,
and consists of the first release of Reminder-PL.

• New features development: where we used an incremental
approach to evolve Reminder-PL, particularly introducing
new features and refactoring the design to minimize code
duplication.

Figure 2 shows the Reminder-PL FM. We can see that four re-
leases were implemented during the SPL evolution process. The
final implementation generates up to 60 valid products—the total
number of configurations possible according to the restrictions in
the FM. Table 1 presents some figures corresponding to the size of
Reminder-PL in DOP considering the number of components and
LOC. For components, we consider Java classes (in the case of the
Base release), delta modules, and XML files used to implement the
GUI of the app.

base v1 v2 v3 v4

Components 72 41 53 72 77
LOC 3427 2629 4198 6314 7425

Table 1: Metrics regarding the size of Reminder-PL.

3.1.2 Iris-PL. Unlike Reminder App, the Iris E-mail Client was
initially designed to conduct research on feature interaction and
SPL engineering using DOP. We first implemented a version of Iris
using Java, in order to build a resilient architecture around object-
oriented design patterns. The rationale was to have an architecture
that would facilitate introducing new e-mail client commands—on
top of an initial command line interface. After that, we migrated all
features of this first version to DeltaJ, and started to implement
new releases, adding new optional, alternative, and OR features
using delta-oriented constructs. This SPL supports many functional-
ities often found in email clients, including sending, receiving, and
forwarding messages; message tagging; message encryption; per-
sistence; and searching mechanisms. We decided to implement this
SPL because configurable email clients have been well discussed
in the literature, and seminal works use email clients to illustrate
feature interaction problems [8, 19]. Figure 3 shows the Iris-PL FM
and Table 2 presents some metrics regarding the size of Iris-PL.
First in the base implementation (Java) and then in the different
DOP releases (v1 – v4). The table also shows the number of com-
ponents (Java classes or delta modules) and lines of code (LOC) in
each release.

base v1 v2 v3 v4

Components 71 23 27 39 43
LOC 2782 4230 4372 5185 5533

Table 2: Metrics regarding the size of Iris-PL.

3.2 Analyzing The Use of Existing Templates to

Characterize Safe Evolution

To answer RQ1, we consider the evolution history of each SPL
release, with the intent to ascertain if the existing safe and partially

1Reminder: ManageReminder1 GUI1 ReminderSchedule

2[ReminderCategory]2 [Search]3 [GoogleCalendar]3

3[ReminderPriotity]3;
4ManageReminder: Create Edit View Delete Done;

5ReminderSchedule: FixedDate1 | DateRange3 | DateRepeat4;
6ReminderCategory: ManagedCategory | StaticCategory;
6
7DateRepeat IMPLIES ~GoogleCalendar;

Figure 2: Reminder-PL feature-model using a grammar no-

tation [9]. In this notation, features in brackets are optional,
and alternatives to a feature appears using a | symbol. The

numbers in each feature represent the release in which the

feature was implemented.

1Iris: Services1 UI1 Persistence1 [AddressBook]1 [Tagging]1

2[Search]2 [Security]3 [Category]4;
3Services: SendMessage ReceiveMessage;
4UI: Console | GUI;
5Persistence: Relational | NonRelational;
6Search: SimpleSearch | AdvancedSearch;
7Security: Sign ∨ Verify ∨ Encrypt ∨ Decrypt;
7
8Sign IMPLIES Verify and Verify IMPLIES Sign;
9Encrypt IMPLIES Decrypt and Decrypt IMPLIES Encrypt;
10SimpleSearch IMPLIES Relational;
11AdvancedSearch IMPLIES NonRelational;

Figure 3: Iris-PL feature-model using a grammar nota-

tion [9]. The numbers in each feature represent the release

in which the feature was implemented.

safe evolution templates could characterize and help the evolution
scenarios of the DOP implementations of Reminder-PL and Iris-PL.
We analyze the commits to identify the evolution scenarios that
match existing templates. Altogether, here we report the results of
an assessment of 43 commits from Reminder-PL, and 115 commits
from Iris-PL—these numbers correspond to all commits for both
projects. This task was carried out by two authors that contributed
to the Reminder-PL development and one author that contributed
to the Iris-PL. Table 3 shows the total number of analyzed commits
in each SPL release.

SPL v1 v2 v3 v4

Reminder-PL 11 11 15 6
Iris-PL 79 21 13 2

Table 3: Amount of commits by release.

In our context, we consider that an evolution scenario (such as
including a new feature or a bug fix) might involve a set of commits.
We use the Repodriller4 tool to collect information from each
commit, and we analyze the content of each commit to manually
group them. Working in pairs and inspecting the decisions in group,
we associate the commits to the evolution scenarios that form a
release. We then investigate, considering all evolution scenarios, the

4https://github.com/mauricioaniche/repodriller

https://github.com/mauricioaniche/repodriller

Evolving Delta-Oriented Product Lines: A Case Study on
Feature Interaction, Safe and Partially Safe Evolution SBES ’21, September 27-October 1, 2021, Joinville, Brazil

impact on the SPL assets (i.e., FM, AM, CK), so that we could char-
acterize a given scenario according to an existing safe or partially
safe evolution template.

3.3 Understanding Feature Interaction Patterns

in DOP Product Lines

For our purposes, a feature interaction occurs whenever the selec-
tion of a feature changes the behavior of another feature, as pre-
viously defined [6]. Here we only consider feature interactions in-
volving at least a non-mandatory feature (a1), which might change
either the behavior of a mandatory feature (m1) or another non-
mandatory feature (a2). In the first case, which we call Type (a),
we identify the occurrence of a feature interaction between a1 and
m1 whenever an alternative feature a1 requires a delta module
delta1, the mandatory featurem1 requires a delta module delta2
that declares a class c1, and delta1 needs to modify the c1 class.

In the second case, namely Type (b), we identify the occurrence of
a feature interaction between two non-mandatory features a1 and
a2 whenever we have an entry on the CK (more precisely, an entry
on partition clause of a DeltaJ product line definition) stating that
a product with both features (a1 ∧ a2) must include a specific delta
module delta1. This scenario usually occurs when it is necessary
to have the two features present in a given product configuration,
where the individual deltas of each feature are not sufficient for
the resulting product. We manually analyzed the source code of
all Reminder-PL and Iris-PL releases to compute the occurrences
of both types of interactions. The next step was to identify which
idioms have been used to modularize the source code needed to
handle the feature interactions.

4 RESULTS AND DISCUSSION

In this section, we present and discuss the results of our investiga-
tion, that aims to answer our research questions RQ1 (How existing
safe and partially safe evolution templates have been used to support
the evolution of Reminder-PL and Iris-PL?) and RQ2 (Which code
idioms have been used to modularize feature interactions during the
evolution of Reminder-PL and Iris-PL?).

4.1 Answers to Research Question (RQ1): Use

of the templates for safe and partially safe

evolution

We investigated whether or not developers might benefit from
existing catalogs of safe and partially safe evolution templates in
the process of evolving DOP SPLs. To this end, we reviewed the
contributions necessary to evolve both SPLs across the different
releases, andmapped such contributions to the templates, whenever
we found a correspondence.

4.1.1 Reminder-PL results. The main goal of the second release of
Reminder-PL (v2) was to introduce a new optional feature Category,
which supports two variants: Static Category and Managed Cate-
gory. The Managed Category feature allows Reminder-PL users
to define their own set of categories for classifying reminders. To
support this scenario, we applied a composition of two templates:
in the first, we introduced an optional feature Static Category using
the Add New Optional Feature template and then we created

an alternative group Category with two variants—using a new
template (Change Optional to Alternative Feature) that we
designed for this research. Listing 2 illustrates this evolution sce-
nario (consider that the Reminder feature represents all mandatory
features of Reminder-PL).

1SPL ReminderPL {

2Features = {Reminder, StaticCategory, ReminderCategory,

3ManagedCategory}

4Deltas = {dReminder, dStaticCategory, dManagedCategory}

5Constraints {

6Reminder | ReminderCategory & (StaticCategory ∧ ManagedCategory);

7}

8Partitions {

9{dReminder} when (Reminder);

10{dStaticCategory} when (StaticCategory);

11{dManageReminder} when (ManagerReminder);

12}

13Products {

14// ...

15}

16}

Listing 2: Adding Manage Category feature.

When inserting the Managed Category feature, it was necessary
to add an abstract feature Reminder Category to group its respective
alternative features. In addition, the Static Category feature, which
was previously an optional feature, became an alternative feature
from this point of evolution. After analyzing the safe and partially
safe evolution template catalogs, we did not identify a template
that described the change from an optional feature to an alternative
feature and therefore we proposed a new template, as described in
Figure 4.

e'	⇒	M
names(e') ⊆ names(FM)

M

P n a
...

e' n
... ...

n a
...

e n
... ...

M

P	is	new	and	is	an	optional	feature

Figure 4: Change Optional to Alternative Feature

template.

Considering this template, it is possible to transform an optional
feature M in an alternative feature by associating this feature to a
new feature expression e’ only if the constraint that says selecting
e’ implies selecting M is satisfied. The second constraint states that
this transformation is only possible if the new expression e’ only
contain feature names that already belong to the FM. Finally, the
last constraint says that P must be an optional feature whose name
does not exist in the FM.

Regarding the third release of Reminder-PL (v3), its main goal
was to introduce four additional features, including the Date Range
feature that allows the registration of a reminder with a start and
an end date. In the previous release, a reminder could only be
created for a specific day. This inclusion caused a change in the
initial schedule structure of the application, so that the Fixed Date

SBES ’21, September 27-October 1, 2021, Joinville, Brazil Camargo, et al.

feature—that was previously mandatory—became an alternative
feature, with Reminder Schedule as an abstract (and mandatory)
feature and Fixed Date and Date Range as its alternatives. For this
evolution scenario, we used a new template (Change Mandatory
to Alternative Feature) that we represent in Figure 5. This
evolution is similar to the one presented in Listing 2, even though
it uses different features.

e'	⇒	M
names(e') ⊆ names(FM)

M

P n a
...

e' n
... ...

n a
...

e n
... ...

M

P	is	new	and	is	a	mandatory	feature

Figure 5: Change Mandatory to Alternative Feature

template.

In the new template Change Mandatory to Alternative
Feature (Figure 5), a mandatory feature M is converted into an
alternative feature by associating this feature to a new feature ex-
pression e’—that is, selecting e’ implies in selecting M. Similarly
to the new template in Figure 4, this transformation is only pos-
sible if the new expression e’ uses names from the FM. The last
constraint regarding this template is that the new feature P must be
mandatory. In addition, three new optional features were included
in Reminder-PL v3, following the Add New Optional Feature
template. These optional features include new options for customiz-
ing the application, such as adding priority to reminders (Reminder
Priority feature) and sharing reminders using the Google calendar
service (Google Calendar feature). We also fixed bugs in this release
and improved the implementation of a feature using the Change
Asset template. One of the bug fixes was related to the Manage
Category feature.

Finally, the goal of the last release (v4) of Reminder-PL was
to introduce an alternative feature (Date Range), in addition to
fixing some bugs in the SPL. However, we could not classify the
introduction of Date Range feature as safe—as we explain in Section
4.1.3. However, the bug fixes present in two commits followed the
Change Asset template.

4.1.2 Iris-PL results. We also identified at least one template (either
safe or partially safe) in each release of Iris-PL. The initial commits
of the first release deal with the transformation of the Java single-
sytem into a delta-oriented product line. This process does not fit in
the safe evolution notion, which can only relate an existing SPLwith
its evolved version. This is why the existing templates do not cover
the scenario of extracting SPLs from a single product. Therefore,
from the moment this transformation was completed, we were able
to analyze the SPL evolution according to each scenario. In Iris-PL
we identified sets of commits that relate to more than one feature
at the same time. For these cases, we computed the templates that

characterized a given evolution scenario as a transaction that might
involve different commits.

After transforming the original system into an SPL, the second
release of Iris-PL introduces three features, two optional features
(Address Book and Tagging) and an alternative: Lucene DB, which
was later renamed to Non Relational, following the Add New Op-
tional Feature and Add New Alternative Feature templates.
In the third release, the goal was to introduce security-related
features—decryption and encryption of messages while sending
and receiving messages. For this, an optional feature, containing a
group of or-features, has been added to the SPL, following the Add
New Optional Feature and Add New OR Feature templates.
Listing 3 illustrates this scenario. Consider the Service feature as
corresponding to all mandatory features of Iris-PL.

1SPL IrisPL {

2Features = {Service, Security, Encrypt, Decrypt, Sign, Verify}

3Deltas = {dService, dEncrypt, dDecrypt, dSign, dVerify}

4Constraints {

5Service | Security & (Encrypt ∨ Decrypt ∨ Sign ∨ Verify);

6(Encrypt IMPLIES Decrypt) & (Decrypt IMPLIES Encrypt);

7(Verify IMPLIES Sign) & (Sign IMPLIES Verify);

8}

9Partitions {

10{dService} when (Service);

11{dEncrypt} when (Security & Encript);

12{dDecrypt} when (Security & Decrypt);

13{dSign} when (Security & Sign);

14{dVerify} when (Security & Verify);

15}

16Products {

17// ...

18}

19}

Listing 3: Adding Security feature.

In addition, the third release includes bugfixes and improvements
for the Address Book feature—introduced in the first release of the
SPL. Finally, the last release of Iris-PL, which has only two commits,
aimed to introduce the optional feature Category, following the
definitions in the Add New Optional Feature template.

4.1.3 Unsafe scenarios. The first release of Reminder-PL aimed to
implement the base version of the SPL, composed of seven manda-
tory features that generate a single product without any variability.
However, even with the inclusion of new mandatory features dur-
ing the implementation of the release, it is not possible to guarantee,
as defined in the Add NewMandatory Feature template, that the
evolution has been safely carried out. This is because the insertion
of any of the mandatory features would change the behavior of the
only existing product.

The introduction of the Date Repeat feature, in the last release
of Reminder-PL, does not constitute a safe evolution scenario also,
due to a refactoring in the delta modules to extract common code
snippets among the Reminder Schedule features. This way, two
deltas that make up the Date Repeat implementation are present in
other features, such as Fixed Date and Date Repeat. The Add New
Alternative Feature template states that, for the evolution to be
considered safe, it is necessary to ensure that the new assets are
only present in products that contain the new added feature, which
is not the case in this scenario.

In Iris-PL, several transactions (groups of related commits) could
not be mapped to existing safe or partially safe evolution templates.
For instance, the first release had 18 transactions, and only 13 of

Evolving Delta-Oriented Product Lines: A Case Study on
Feature Interaction, Safe and Partially Safe Evolution SBES ’21, September 27-October 1, 2021, Joinville, Brazil

them had been mapped into either safe or partially safe evolution
scenarios. In the second and third releases, of the 7 groups of com-
mits, 4 of them could not be mapped to any existing template.

4.1.4 Summary of the Findings. Our results show that the exist-
ing safe and partially safe evolution templates in the literature,
which have been used to justify the evolution of annotative and
compositional SPLs, can also be used to characterize the evolution
of delta-oriented SPLs. Therefore, here we generalize the usage of
existing templates for safe and partially safe evolution for trans-
formational techniques [23, 33, 38]. Table 4 presents the templates
identified in Reminder-PL and Iris-PL, respectively, as well as the
number of occurrences in every analysed release.

SPL TEMPLATE SCENARIO TOTAL

Reminder-PL

Add New Optional Feature Safe 4
Add New Alternative Feature Safe 2

Remove Unused Assets Safe 1
Refine Asset Safe 1
Change Asset Partially Safe 4

Reminder-PL

Add New Optional Feature Safe 4
Add New Alternative Feature Safe 2

Refine Asset Safe 4
Change Order Safe 1

Feature Renaming Safe 1
Asset Name Renaming Safe 1
Add New OR Feature Safe 1

Change Asset Partially Safe 7

Table 4: Occurrences of templates identified in Reminder-

PL and Iris-PL.

Some of the results of other studies that have investigated and
characterized safe and partially save evolution scenarios show sim-
ilarities with the results presented here. For instance, templates
such as Add New Optional Feature and Add New Alternative
Feature, which were the most frequent in both of the analysed
SPLs, were also identified in five other analysed SPLs in a study
which aimed to identify and analyze concrete safe evolution sce-
narios [28]. In the same study, an analysis showed that the Refine
Asset template had the most occurrences between the templates,
contrasting with the number of occurrences in this study, which
was inferior to the templates for adding features.

Regarding partially safe evolution, two other works [18, 32]
showed that the Change Asset template had the higher number
of occurrences, which was also observed in our results. This result
is not a surprise, since it is unlikely that an evolution scenario
consisting of only changing assets will not occur during the SPL’s
evolution process, since asset changes are essential for maintaining
the product line. Indeed, we notice a higher prevalence of safe
evolution scenarios, probably because our study mainly consists of
evolution scenarios that would be associated with establishing an
SPL from scratch. Therefore, we observe a higher number of new
features being added, in contrast with an established and mature
SPL, in which there might be more bug fixes and changes to existing
features, which would be associated with partially safe evolution.

4.2 Answers to Research Question (RQ2):

Idioms for modularizing feature

interactions

To understand the interactions between features of both SPLs, we
compute the occurrence of Type (a) and Type (b) feature interactions,

based on the definitions presented in Section 3.3. Subsequently,
we analyze these interactions in order to identify code idioms we
explored to cope with the feature interaction scenarios.

In general, we identified Type (a) feature interactions in all re-
leases of both SPLs. During the analysis, we realized that a single
delta module can contain one or more interactions—overall, the av-
erage interactions per delta module was 3.0 for Iris-PL and 6.72 for
Reminder-PL. Figure 6 summarizes the number of Type (a) feature
interactions we found in both SPLs.

We also identified Type (b) feature interactions in almost all re-
leases of both SPLs. In general, four interactions were found for
each release of both SPLs, except for the last release (v4), which
had a total of 5 interactions. It is important to note that this type
of feature interaction requires additional lines of code, since each
delta module contains common source code of the two features that
interact with each other— and it is hard to factor out the common
code to remove this kind of code duplication.

Figure 7 presents an example of Type (b) feature interaction. In the
example, an instance of the Reminder-PLwith the Google Calendar
feature must include a method to add a reminder to the calendar.
The code in blue must be included if the instance is also configured
either with the Fixed Date feature or Date Range feature; while the
code in green must be included only if the instance is configured
with the Date Range feature. In this way, the code snippets referring
to the Reminder Schedule feature are inserted in specific places of
the method. As a consequence, it is necessary to create a new delta
module to support the interaction between Reminder Schedule and
Google Calendar features.

We also analyzed the source code of each interaction, in order
to identify common code idioms we used to modularize feature
interactions. As such, we identified three recurring patterns.

• P1 Pattern — A modification to a given class is performed
so that the body of a method is modified to include an
original() statement and a new code block (body′).

1adds {

2public class C {

3void method(){

4body

5}

6}

7}

Listing 4: P1 - Before

1modifies C {

2modifies method() {

3original();

4body’

5}

6}

Listing 5: P1 - After

Figure 6: Summary of the Type (a) feature interactions in

both SPLs.

SBES ’21, September 27-October 1, 2021, Joinville, Brazil Camargo, et al.

Figure 7: Example that motivates the creation of new delta

modules to support the interaction of type (b).

• P2 Pattern — In this pattern, the structure of a class is mod-
ified, so that the body of a method is completely changed to
include a new block of code (body′).

1adds {

2public class C {

3void method() {

4body

5}

6}

7}

Listing 6: P2 - Before

1modifies C {

2modifies method() {

3body’

4}

5}

Listing 7: P2 - After

• P3 Pattern — Represents adding a class body declaration
(either a method or field) to a given class. When this occurs,
developers often include a new entry into the import list of
a module.

1adds {

2public class C {

3fields

4methods

5}

6}

Listing 8: P3 - Before

1modifies C {

2// adds new methods or fields

3adds ClassBodyDec;

4}

Listing 9: P3 - After

With these idioms, we better understand the structure of interac-
tions between features, since an interaction can occur at different
structural levels of a class in a delta module—from modifying a
method to adding a class body declaration. Figure 8 summarizes
the number of occurrences of each pattern. It is important to note
that each feature interaction might require the use of more than
one pattern.

To sum up, we found 39 feature interactions in both product
lines (Reminder-PL and Iris-PL), in their last release. We could

Figure 8: Patterns frequency in Reminder-PL and Iris-PL.

trace our implementations to deal with every feature interaction to
one of these three code idioms (patterns).

5 RELATEDWORK

In this section, we discuss related work, in the context of delta-
oriented programming, safe and partially safe evolution, and feature
interactions.

Delta-Oriented Programming. Since the initial papers intro-
ducing [33], studies have emerged with the purpose of investigating
the benefits of using delta-oriented constructs in SPL engineering.
Here we discuss a few works that focus on product line evolution.
The work of Diniz et al. [17] focused on assessing the stability
of delta-oriented SPLs through evolutionary scenarios based on
two implementation strategies: one that starts from a simple core
implementation and another that starts from a more complete im-
plementation of a core module (named complex core). According
to the authors, the simple core approach brings more benefits in
terms of stability when evolving delta-oriented SPLs. Another work,
by Hamza et al. [20], conducted a case study on the unanticipated
evolution of a SPL using two approaches: separate products versus
a common codebase approach based on a delta-oriented SPL. The
authors report that both approaches present strengths and weak-
nesses, and, according to the authors, DOP is not mature enough to
handle complex SPLs. In our work we reach a different conclusion,
that is, DeltaJ 1.5 does allow us to manage variability in SPLs an
order of magnitude more complex than the vending machine used
in their work [20]. Differently from this previous study, we were
not able to avoid all code duplication in DOP, particularly when
considering feature interactions. In addition to empirical assess-
ments, the delta-oriented community has proposed solutions for
testing DOP SPLs—as is the case with the work of Varshosaz et
al.[37] and Lachmann [25] that focused on introducing new test-
ing technologies for SPLs and the interaction between DOP and
test case prioritization. The work of Damiani and Lienhardt [16]
presented algorithms for refactoring delta-oriented SPLs to obtain
monotonicity. Instead, here we report how one can benefit from
using existing catalogs for safe and partially safe evolution of SPLs
that use delta-oriented constructs.

Evolving Delta-Oriented Product Lines: A Case Study on
Feature Interaction, Safe and Partially Safe Evolution SBES ’21, September 27-October 1, 2021, Joinville, Brazil

Safe evolution. Safe evolution is a notion based on the refine-
ment theory [12], which formalizes concepts informally presented
in previous works on SPL refactoring [3, 11]. As mentioned, safe
evolution is associated with evolution scenarios where the behavior
of all existing products is preserved. Based on this notion, some
works have investigated SPL evolution in this context, resulting in
one of the main applications of such notion and underlying the-
ory: providing support to developers in the form of templates that
abstract common and recurrent safe evolution scenarios [10, 28].

The refinement theory was formalized using proof assistants [2,
12, 35]. Teixeira et al. proposed a product line of theories to reason
about safe evolution [35]. Moreover, the work exploits and studies
similarities among the concrete languages that specify PL elements,
enabling to specify refinement templates at a higher abstraction
level using the PVS theorem prover. Alves et al. present a case
study on porting the PVS specification of the refinement theory
to Coq [2]. This study compares the proof assistants based on the
noted differences between the specifications and proofs of this
theory, providing some reflections on the tactics and strategies
used to compose the proof.

Partially safe evolution. Despite the fact that several changes
are covered by the safe evolution notion, some common evolution
scenarios remain uncovered, such as bug fixing or feature removal.
Thus, previous work has extended the refinement theory with the
proposal of the partially safe evolution notion [32], formalized by
the partial refinement definition. This notion, as we previously
mentioned, supports SPL changes preserving the behavior of only
a subset of products in the SPL. In this work, Sampaio et al. also
formalize partially safe templates from common scenarios (e.g.,
Change Asset) and provide compositionality properties for AM
and CK [32]. Other works take into consideration either safe and
partially safe evolution [18, 32]. Gomes et al. investigate around
2,000 commits from a SPL repository aiming to characterize the
frequency and occurrences of safe and partially safe evolution sce-
narios. This work also categorize commits not covered by templates
using characteristics of each SPL element (AM, FM, CK).

Feature Interactions. The feature interaction problem, both in
general and in the particular domain of SPLs, has been extensively
explored in the literature [4, 5, 13, 19, 21, 34]. For instance, Keck and
Kuehn present a survey on feature interactions in telecommunica-
tion systems [21] and Robert J. Hall details 27 feature interaction
scenarios in electronic mail systems [19].

Indeed, this seminal work by Robert J. Hall has inspired us in the
design of the Iris-PL, with the aim of identifying feature interaction
patterns using electronic mail systems. Apel et al. also use the work
of Robert J. Hall to explore a technique for detecting feature inter-
actions in SPLs [8]. Similarly, Apel et al. [7] proposed a new design
paradigm in which it was possible to identify feature interactions
using Alloy. In point of fact, different works on the literature focus
on designing new approaches for detecting feature interactions.
Soares et al. present a mapping study on this subject [34].

However, our goal here was not to identify unknown feature
interactions, but actually to understand how we could benefit from
delta-oriented constructs to modularize anticipated feature inter-
actions. Kim et al. [22] explored the same issue, investigating the
consequences of feature interactions in the context of annotation-
based approaches.

6 THREATS TO VALIDITY

Similar to other empirical studies, there are a couple of threats that
might limit the generalization of our study. As such, a possible
threat we envision relates to the implementation strategy of the
DOP SPLs, where a feature is subdivided into several modules. We
believe that implementing the SPLs using another strategy could
produce different results from those presented, perhaps resulting in
new templates for safe and partially safe evolution and new feature
interaction patterns. Another potential problem is the reliability of
the manual process of identifying the feature interaction patterns.
In this specific case, it may be that, for example, we have ignored
some code snippets during the process of identifying the standards,
and, in this way, the analysis could present different results from
those we presented. To mitigate this problem, we carefully reviewed
all delta modules in order to identify possible interactions.

In addition, the two SPLs we use in our investigation might not
be sufficiently representative for generalizing our results. There-
fore, the evolution scenarios for these SPLs might not reflect all
possible existing scenarios. Although our case studies are not toy-
ing examples, we agree that Reminder-PL and Iris-PL could not
be compared to other configurable systems already explored by
the research community (e.g., ArgoUML and Linux as a more ex-
treme case). Indeed, there are not many delta-oriented SPLs freely
available that we could use in a mining software repository effort.
Our decision here was to experiment with bootstrapping DOP SPLs
from existing products and then evolving these product lines. It
would be difficult to conduct this research in more complex product
lines. Finally, another possible limitation of our study is the choice
for DeltaJ. If we have considered other languages or tools, the
findings we presented in our paper could be different.

7 FINAL REMARKS

In this work, we implemented, evolved, and analyzed two delta-
oriented SPLs (Reminder-PL and Iris-PL) to better understand
the implications of using DOP for software product line engineer-
ing. For that, our analysis covered different evolution scenarios
(such as the inclusion of mandatory, optional, and alternative fea-
tures) and the feature interactions that occur in these scenarios.
The results showed that the safe and partially safe evolution tem-
plates [12, 28, 32] can be used by developers to guide the evolution
of delta-oriented SPLs—in addition to proposing two new templates.
We also presented three source code idioms we used to modularize
several feature interactions that aroused during our experience in
evolving SPLs developed in DOP. We hope that such a compre-
hensive experience and case studies could help practitioners and
researchers to better understand the implications of using DOP to
evolve SPLs.

ACKNOWLEDGMENTS

We want to thank the anonymous reviewers for their insightful
comments on previous versions of this paper and Fausto Carvalho
Marques Silva, Pedro Henrique Teixeira Costa, Alexandre Lucch-
esi, and Marcos César de Oliveira for their contributions to the
implementation of Iris-PL.

SBES ’21, September 27-October 1, 2021, Joinville, Brazil Camargo, et al.

REFERENCES

[1] Mustafa Al-Hajjaji, Sascha Lity, Remo Lachmann, Thomas Thüm, Ina Schaefer,
and Gunter Saake. 2017. Delta-Oriented Product Prioritization for Similarity-
Based Product-Line Testing. In 2nd IEEE/ACM International Workshop on Variabil-
ity and Complexity in Software Design, VACE@ICSE 2017, Buenos Aires, Argentina,
May 27, 2017. IEEE, USA, 34–40. https://doi.org/10.1109/VACE.2017.8

[2] Thayonara Alves, Leopoldo Teixeira, Vander Alves, and Thiago Castro. 2020.
Porting the Software Product Line Refinement Theory to the Coq Proof Assistant.
In Formal Methods: Foundations and Applications, Gustavo Carvalho and Volker
Stolz (Eds.). Springer International Publishing, Cham, 192–209.

[3] Vander Alves, Rohit Gheyi, Tiago Massoni, Uirá Kulesza, Paulo Borba, and Carlos
Lucena. 2006. Refactoring Product Lines. In Proceedings of the 5th International
Conference on Generative Programming and Component Engineering (GPCE ’06).
ACM, New York, NY, USA, 201–210. https://doi.org/10.1145/1173706.1173737

[4] Daniel Amyot, Leïla Charfi, Nicolas Gorse, Tom Gray, Luigi Logrippo, Jacques
Sincennes, Bernard Stepien, and TomWare. 2000. Feature Description and Feature
Interaction Analysis with Use Case Maps and LOTOS.. In Feature Interactions in
Telecommunications and Software Systems. IOS Press, Ottawa, CA, 274–289.

[5] Sven Apel, Sergiy Kolesnikov, Norbert Siegmund, Christian Kästner, and Brady
Garvin. 2013. Exploring Feature Interactions in the Wild: The New Feature-
Interaction Challenge. In Proceedings of the 5th International Workshop on Feature-
Oriented Software Development (FOSD ’13). Association for ComputingMachinery,
New York, NY, USA, 1–8. https://doi.org/10.1145/2528265.2528267

[6] Sven Apel, Wolfgang Scholz, Christian Lengauer, and Christian Kästner. 2010.
Detecting Dependences and Interactions in Feature-Oriented Design. In IEEE
21st International Symposium on Software Reliability Engineering, ISSRE 2010,
San Jose, CA, USA, 1-4 November 2010. IEEE Computer Society, USA, 161–170.
https://doi.org/10.1109/ISSRE.2010.11

[7] Sven Apel, Wolfgang Scholz, Christian Lengauer, and Christian Kästner. 2010.
Detecting Dependences and Interactions in Feature-Oriented Design. In IEEE
21st International Symposium on Software Reliability Engineering, ISSRE 2010,
San Jose, CA, USA, 1-4 November 2010. IEEE Computer Society, USA, 161–170.
https://doi.org/10.1109/ISSRE.2010.11

[8] Sven Apel, Hendrik Speidel, Philipp Wendler, Alexander von Rhein, and Dirk
Beyer. 2011. Detection of feature interactions using feature-aware verification.
In 26th IEEE/ACM International Conference on Automated Software Engineering
(ASE 2011), Lawrence, KS, USA, November 6-10, 2011, Perry Alexander, Corina S.
Pasareanu, and John G. Hosking (Eds.). IEEE Computer Society, USA, 372–375.

[9] Don S. Batory. 2005. Feature Models, Grammars, and Propositional Formulas. In
Software Product Lines, 9th International Conference, SPLC 2005, Rennes, France,
September 26-29, 2005, Proceedings, J. Henk Obbink and Klaus Pohl (Eds.). Lecture
Notes in Computer Science, Vol. 3714. Springer, Switzerland, 7–20. https://doi.
org/10.1007/11554844_3

[10] Fernando Benbassat, Paulo Borba, and Leopoldo Teixeira. 2016. Safe Evolution of
Software Product Lines: Feature Extraction Scenarios. In 2016 X Brazilian Sympo-
sium on Software Components, Architectures and Reuse, SBCARS 2016, Maringá,
Brazil, September 19-20, 2016. IEEE Computer Society, USA, 11–20.

[11] Paulo Borba. 2011. An Introduction to Software Product Line Refactoring. In
Proceedings of the 3rd International Summer School Conference on Generative and
Transformational Techniques in Software Engineering III (GTTSE’09). Springer-
Verlag, Berlin, Heidelberg, 1–26. http://dl.acm.org/citation.cfm?id=1949925.
1949927

[12] Paulo Borba, Leopoldo Teixeira, and Rohit Gheyi. 2012. A theory of software
product line refinement. Theoretical Computer Science 455 (oct 2012), 2–30.
https://doi.org/10.1016/j.tcs.2012.01.031

[13] E.J. Cameron and H. Velthuijsen. 1993. Feature interactions in telecommuni-
cations systems. IEEE Communications Magazine 31, 8 (1993), 18–23. https:
//doi.org/10.1109/35.229532

[14] P. Clements and L. Northrop. 2002. Software Product Lines: Practices and Patterns.
Addison-Wesley, USA.

[15] Ferruccio Damiani and Michael Lienhardt. 2016. On Type Checking Delta-
Oriented Product Lines. In Integrated Formal Methods - 12th International Confer-
ence, IFM 2016, Reykjavik, Iceland, June 1-5, 2016, Proceedings, Erika Ábrahám and
Marieke Huisman (Eds.). Lecture Notes in Computer Science, Vol. 9681. Springer,
Switzerland, 47–62. https://doi.org/10.1007/978-3-319-33693-0_4

[16] Ferruccio Damiani and Michael Lienhardt. 2016. Refactoring Delta-Oriented
Product Lines to achieve Monotonicity. In Proceedings 7th International Work-
shop on Formal Methods and Analysis in Software Product Line Engineering, FM-
SPLE@ETAPS 2016, Eindhoven, The Netherlands, April 3, 2016 (EPTCS), Julia Rubin
and Thomas Thüm (Eds.), Vol. 206. 2–16. https://doi.org/10.4204/EPTCS.206.2

[17] João P. Diniz, Gustavo Vale, Felipe Nunes Gaia, and Eduardo Figueiredo. 2017.
Evaluating Delta-Oriented Programming for Evolving Software Product Lines. In
2nd IEEE/ACM International Workshop on Variability and Complexity in Software
Design, VACE@ICSE 2017, Buenos Aires, Argentina, May 27, 2017. IEEE, 27–33.
https://doi.org/10.1109/VACE.2017.7

[18] Karine Gomes, Leopoldo Teixeira, Thayonara Alves, Márcio Ribeiro, and Rohit
Gheyi. 2019. Characterizing safe and partially safe evolution scenarios in product
lines. In Proceedings of the 13th International Workshop on Variability Modelling

of Software-Intensive Systems - VAMOS '19. ACM Press.
[19] Robert J Hall. 2005. Fundamental nonmodularity in electronic mail. Automated

Software Engineering 12, 1 (2005), 41–79.
[20] Mostafa Hamza, Robert J. Walker, and Maged Elaasar. 2017. Unanticipated Evo-

lution in Software Product Lines versus Independent Products: A Case Study. In
Proceedings of the 21st International Systems and Software Product Line Conference
- Volume B (SPLC ’17). Association for Computing Machinery, New York, NY,
USA, 97–104. https://doi.org/10.1145/3109729.3109739

[21] D.O. Keck and P.J. Kuehn. 1998. The feature and service interaction problem in
telecommunications systems: a survey. IEEE Transactions on Software Engineering
24, 10 (1998), 779–796. https://doi.org/10.1109/32.729680

[22] Chang Hwan Peter Kim, Christian Kästner, and Don S. Batory. 2008. On the
modularity of feature interactions. In Generative Programming and Component
Engineering, 7th International Conference, GPCE 2008, Nashville, TN, USA, October
19-23, 2008, Proceedings, Yannis Smaragdakis and Jeremy G. Siek (Eds.). ACM,
23–34. https://doi.org/10.1145/1449913.1449919

[23] Jonathan Koscielny, Sönke Holthusen, Ina Schaefer, Sandro Schulze, Lorenzo
Bettini, and Ferruccio Damiani. 2014. DeltaJ 1.5. In Proceedings of the 2014
International Conference on Principles and Practices of Programming on the Java
platform Virtual machines, Languages, and Tools - PPPJ '14. ACM Press. https:
//doi.org/10.1145/2647508.2647512

[24] Remo Lachmann, Sascha Lity, Sabrina Lischke, Simon Beddig, Sandro Schulze, and
Ina Schaefer. 2015. Delta-oriented test case prioritization for integration testing
of software product lines. In Proceedings of the 19th International Conference on
Software Product Line - SPLC '15. ACM Press. https://doi.org/10.1145/2791060.
2791073

[25] Remo Lachmann, Sascha Lity, Sabrina Lischke, Simon Beddig, Sandro Schulze, and
Ina Schaefer. 2015. Delta-Oriented Test Case Prioritization for Integration Testing
of Software Product Lines. In Proceedings of the 19th International Conference on
Software Product Line (SPLC ’15). Association for Computing Machinery, New
York, NY, USA, 81–90. https://doi.org/10.1145/2791060.2791073

[26] Sascha Lity, Matthias Kowal, and Ina Schaefer. 2016. Higher-order delta model-
ing for software product line evolution. In Proceedings of the 7th International
Workshop on Feature-Oriented Software Development - FOSD 2016. ACM Press.
https://doi.org/10.1145/3001867.3001872

[27] Rafael Lotufo, Steven She, Thorsten Berger, Krzysztof Czarnecki, and Andrzej
Wąsowski. 2010. Evolution of the Linux Kernel Variability Model. In Proceedings
of the 14th International Conference on Software Product Lines: Going Beyond
(SPLC’10). Springer-Verlag, Berlin, Heidelberg, 136–150.

[28] L. Neves, P. Borba, V. Alves, L. Turnes, L. Teixeira, D. Sena, and U. Kulesza. 2015.
Safe evolution templates for software product lines. Journal of Systems and
Software 106 (aug 2015), 42–58.

[29] Leonardo Passos, Leopoldo Teixeira, Nicolas Dintzner, Sven Apel, Andrzej Wa-
sowski, Krzysztof Czarnecki, Paulo Borba, and Jianmei Guo. 2016. Coevolution of
variability models and related software artifacts. Empirical Software Engineering
21, 4 (01 Aug 2016), 1744–1793. https://doi.org/10.1007/s10664-015-9364-x

[30] Klaus Pohl, Günter Böckle, and Frank J. van der Linden. 2005. Software Product
Line Engineering: Foundations, Principles and Techniques. Springer-Verlag New
York, Inc., Secaucus, NJ, USA.

[31] Christian Prehofer. 1997. Feature-oriented programming: A fresh look at objects.
In European Conference on Object-Oriented Programming. Springer, 419–443.

[32] Gabriela Sampaio, Paulo Borba, and Leopoldo Teixeira. 2019. Partially safe
evolution of software product lines. Journal of Systems and Software 155 (2019),
17 – 42. https://doi.org/10.1016/j.jss.2019.04.051

[33] Ina Schaefer, Lorenzo Bettini, Ferruccio Damiani, and Nico Tanzarella. 2010.
Delta-oriented Programming of Software Product Lines. In Proceedings of the
14th International Conference on Software Product Lines: Going Beyond (SPLC’10).
Springer-Verlag, Berlin, Heidelberg, 77–91.

[34] Larissa Rocha Soares, Pierre-Yves Schobbens, Ivan do Carmo Machado, and
Eduardo Santana de Almeida. 2018. Feature interaction in software product line
engineering: A systematic mapping study. Information and Software Technology
98 (2018), 44–58.

[35] Leopoldo Teixeira, Vander Alves, Paulo Borba, and Rohit Gheyi. 2015. A Product
Line of Theories for Reasoning about Safe Evolution of Product Lines. In Pro-
ceedings of the 19th International Conference on Software Product Line (SPLC ’15).
Association for Computing Machinery, New York, NY, USA, 161–170.

[36] Thomas Thüm, Sven Apel, Christian Kästner, Ina Schaefer, and Gunter Saake.
2014. A Classification and Survey of Analysis Strategies for Software Product
Lines. ACM Comput. Surv. 47, 1, Article 6 (June 2014), 45 pages.

[37] Mahsa Varshosaz, Harsh Beohar, and Mohammad Reza Mousavi. 2015. Delta-
Oriented FSM-Based Testing. In Formal Methods and Software Engineering,
Michael Butler, Sylvain Conchon, and Fatiha Zaïdi (Eds.). Springer International
Publishing, Cham, 366–381.

[38] Tim Winkelmann, Jonathan Koscielny, Christoph Seidl, Sven Schuster, Ferruccio
Damiani, and Ina Schaefer. 2016. Parametric DeltaJ 1.5: Propagating Feature
Attributes into Implementation Artifacts. In Gemeinsamer Tagungsband der Work-
shops der Tagung Software Engineering 2016 (SE 2016), Wien, 23.-26. Februar 2016
(CEUR Workshop Proceedings), Vol. 1559. CEUR-WS.org, 40–54.

https://doi.org/10.1109/VACE.2017.8
https://doi.org/10.1145/1173706.1173737
https://doi.org/10.1145/2528265.2528267
https://doi.org/10.1109/ISSRE.2010.11
https://doi.org/10.1109/ISSRE.2010.11
https://doi.org/10.1007/11554844_3
https://doi.org/10.1007/11554844_3
http://dl.acm.org/citation.cfm?id=1949925.1949927
http://dl.acm.org/citation.cfm?id=1949925.1949927
https://doi.org/10.1016/j.tcs.2012.01.031
https://doi.org/10.1109/35.229532
https://doi.org/10.1109/35.229532
https://doi.org/10.1007/978-3-319-33693-0_4
https://doi.org/10.4204/EPTCS.206.2
https://doi.org/10.1109/VACE.2017.7
https://doi.org/10.1145/3109729.3109739
https://doi.org/10.1109/32.729680
https://doi.org/10.1145/1449913.1449919
https://doi.org/10.1145/2647508.2647512
https://doi.org/10.1145/2647508.2647512
https://doi.org/10.1145/2791060.2791073
https://doi.org/10.1145/2791060.2791073
https://doi.org/10.1145/2791060.2791073
https://doi.org/10.1145/3001867.3001872
https://doi.org/10.1007/s10664-015-9364-x
https://doi.org/10.1016/j.jss.2019.04.051

	Abstract
	1 Introduction
	2 Background
	2.1 Delta-oriented Programming
	2.2 Safe Evolution
	2.3 Partially Safe Evolution

	3 Study Settings
	3.1 Case Studies
	3.2 Analyzing The Use of Existing Templates to Characterize Safe Evolution
	3.3 Understanding Feature Interaction Patterns in DOP Product Lines

	4 Results and Discussion
	4.1 Answers to Research Question (RQ1): Use of the templates for safe and partially safe evolution
	4.2 Answers to Research Question (RQ2): Idioms for modularizing feature interactions

	5 Related Work
	6 Threats to Validity
	7 Final Remarks
	Acknowledgments
	References

