
TSDolly: A program generator for TypeScript
Gabriela Araujo Britto

garaujobritto@gmail.com

Federal University of Pernambuco

Recife, PE, Brazil

Leopoldo Teixeira

lmt@cin.ufpe.br

Federal University of Pernambuco

Recife, PE, Brazil

Rohit Gheyi

rohit@dsc.ufcg.edu.br

Federal University of Campina Grande

Campina Grande, PB, Brazil

ABSTRACT

TypeScript is an increasingly popular open-source language that

builds on JavaScript by adding optional static type definitions. Its

ecosystem has many tools that require confidence in their correct-

ness whenmanipulating TypeScript programs. Tool developers com-

monly use tests for increasing confidence in a tool’s implementation

correctness. To test tool implementations, tool developers can man-

ually write TypeScript programs to be used as test inputs, but they

can miss problematic programs as there are many language features

to consider. In addition, a range of those tools have properties that

apply specifically to programs that compile successfully and satisfy

complex constraints. We therefore present a program generation

technique that allows generating successfully compiling TypeScript

programs, that optionally also satisfy tool-specific constraints not

captured by syntactic constraints alone.We evaluated our technique

by generating programs in the context of five automated TypeScript

refactoring implementation, and by running testswith the generated

programs as inputs. Themajority (97.45%) of the generated programs

compiled without errors, and all of the generated programs could

be refactored, meaning that they can indeed satisfy tool-specific

constraints to be used as test inputs.We tested the refactorings using

the generated programs as test inputs and we found and reported

a bug in a TypeScript refactoring, where the refactoring introduced

a compilation error to programs that previously had no errors.

CCS CONCEPTS

• Software and its engineering→ Source code generation.

KEYWORDS

refactoring, program generation, typescript

ACMReference Format:

Gabriela Araujo Britto, Leopoldo Teixeira, and Rohit Gheyi. 2021. TSDolly:

A program generator for TypeScript. In 25th Brazilian Symposium on Pro-

gramming Languages (SBLP’21), September 27-October 1, 2021, Joinville, Brazil.

ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3475061.3475079

1 INTRODUCTION

TypeScript is an open-source language which builds on JavaScript

by adding static type definitions [17].We can view it as an optionally

typed [4] superset of JavaScript. TypeScript recognizes JavaScript

code, extending it with optional type annotations and static type

checking, while maintaining JavaScript’s semantics. TypeScript is

SBLP’21, September 27-October 1, 2021, Joinville, Brazil

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

This is the author’s version of the work. It is posted here for your personal use. Not

for redistribution. The definitive Version of Record was published in 25th Brazilian

Symposium on Programming Languages (SBLP’21), September 27-October 1, 2021,

Joinville, Brazil, https://doi.org/10.1145/3475061.3475079.

becoming increasingly popular. In 2020, it was the fourthmost popu-

lar language on GitHub [13], and 78% of the respondents to the State

of JavaScript 2020 Survey had used it [15]. Moreover, the TypeScript

compiler is capable of detecting a considerable amount of JavaScript

bugs during compilation [6].

The TypeScript ecosystem has industrial and academic tools that

act on TypeScript programs, such as Stryker, a mutation testing

tool [16], rsc [18], a refinement type-checker for TypeScript, and

WebStorm [19], an IDE that provides TypeScript refactorings. The

TypeScript compiler itself acts on TypeScript programs, type check-

ing and emitting JavaScript code. The TypeScript project aims to

provide consistent tool support [17], so the TypeScript compiler also

handles most of code editor integration, including code completion

and its own automated refactoring implementations.

To evaluate the functionalities and properties of such tools, it is

important to have programs without compilation errors. Stryker, for

instance, considers that if a mutant (i.e. a modification of a program)

does not successfully compile, it is ignored [16]. Therefore, muta-

tions should only be applied to programswithout compilation errors,

otherwise the tool might generate mutants that also have compila-

tion errors andwill be ignored. Similarly, it makesmore sense for the

rsc refinement type-checker to be tested with TypeScript programs

that successfully compile, because we would like it to detect errors

that the TypeScript compiler does not already detect. If we consider

automated refactoring implementations for TypeScript, checking

if a refactoring preserves program behavior requires us to be able

to define a program’s behavior, which means this property is also

better suited for TypeScript programs that successfully compile.

A commonly used approach to increase confidence on the in-

tended behavior of tool implementations is testing, even though

tests cannot formally prove their correctness. To run tests, we typ-

ically need test inputs, which in this case, are compilable TypeScript

programs. A possible approach for tool developers is to manually

write programs to be used as test inputs. However, this can be a diffi-

cult task, since developers need to consider many language features

and the interaction of those features to decide what programs to use

for testing, relying on their intuition and previous experience.

To address this problem, techniques for automated program gen-

eration have been developed. Program generators have been suc-

cessfully used in the context of C and Java to test compilers and

refactoring implementations [3, 14, 20]. Some of the proposed pro-

gramgeneration approaches are basedon languagegrammars [3, 20],

and do not aim to generate programs that successfully compile or

that satisfy other arbitrary complex constraints. However, as men-

tioned, there are tools whose tests require compilable programs and

programs that satisfy certain properties not easily described based

on syntactic rules alone. Other approaches do aim to generate suc-

cessfully compiling programs [8, 10, 14], but they do not focus on

https://doi.org/10.1145/3475061.3475079
https://doi.org/10.1145/3475061.3475079

SBLP’21, September 27-October 1, 2021, Joinville, Brazil Gabriela Araujo Britto, Leopoldo Teixeira, and Rohit Gheyi

generating TypeScript programs [10, 14], or cannot generate pro-

grams that satisfy arbitrary, developer-defined constraints [8], so

they are not suited for testing tools targeting TypeScript.

In this work, we present a program generation technique that

allows generating successfully compiling TypeScript programs, that

optionally also satisfy complex, user-defined constraints (Section 3),

not captured by syntactic rules. Our technique adapts JDolly [14],

a tool that generates compilable Java programs that also satisfy

additional constraints required for testing. We implement a tool

called TSDolly, which specifies a subset of the TypeScript language

(Section 3.1) as a foundation for generating TypeScript programs.

We write this specification using Alloy [2], a declarative modeling

language based on the concepts of sets and relations. Moreover, we

can add additional constraints in the specification, to further guide

program generation. For instance, we can ensure that all generated

programs must have at least one class with more than one field.

TSDollyuses theAlloyAnalyzer, amodel checker andfinder tool,

to generate instances (i.e. bindings of variables to values) that satisfy

a specification (Section 3.2). Our specification describes TypeScript

programs, so those instances are Alloy’s encoding of TypeScript

programs.TSDolly then transforms those instances into TypeScript

programs (Section 3.3), which can be fed as test inputs to other tools.

We evaluated TSDolly under two dimensions. First, we evaluate

whether it generates programs that successfully compile. We do so

by considering five refactoring implementations provided by the

TypeScript compiler (Section 4.2.1), generating programs that satisfy

the preconditions of such refactorings (Section 4.2.2). For each refac-

toring, we generated between 250,000 and 546,000 different Alloy

instances that encode programs (Section 4.3), and a sample of those

instances were transformed into TypeScript programs. More than

97.45% of the generated programs compiled without error.

We also evaluated whether these programs could be usefully fed

as inputs to test the refactoring implementations (Section 4.2.3). We

applied the refactorings to the generated programs, and found that

all of them could be refactored (Section 4.3). We also found and re-

ported a bug in one of those refactoring implementations, which

was later fixed by the TypeScript compiler team.

2 MOTIVATING EXAMPLE

Refactoring is the process ofmodifying codewith the goal of improv-

ing its internal structure without altering its external behavior [5],

improving code readability and organization and making it easier to

maintain. To aid the programmer in the process of applying common

refactorings, many IDEs provide refactoring implementations that

automate this process. However, refactoring developers must be

careful that their refactoring implementation is correct with respect

to behavior preservation: a refactoring should not change the pro-

gram’s behavior, otherwise it could introduce bugs into the program.

A common approach to increase confidence in their refactoring

implementation correctness is to use testing [12, 14]. To test refac-

torings, refactoring developers need to use programs as test inputs.

Additionally, to test if a refactoring preserves program behavior, de-

velopers need compilable programs, because the notion of program

behavior is typically notwell-defined for programswith compilation

errors as they might have undefined behavior.

To test automated TypeScript refactoring implementations, refac-

toring developers can manually write programs to be used as test

input, relying on their intuition and experience when selecting pro-

grams. However, they might miss programs that could reveal bugs

in refactoring implementations. With that in mind, it is important

to have a complementary, systematic approach for generating Type-

Script programs for testing refactorings.

There are 152 reported and confirmed unique bugs in the refac-

torings provided by the TypeScript compiler, 40 of which have not

yet been fixed,
1
and there might be additional, unreported bugs. As

an example, consider the “Extract Symbol” refactoring provided by

the TypeScript compiler, which encompasses the “Extract function”,

“Extract method”, and “Extract variable” refactorings [5]. This refac-

toring can extract an expression (a piece of code) into a new variable,

function or method, and this new variable, function, or method can

then be used in the place of the extracted expression. If we apply

the refactoring to line 2 (highlighted in blue) of Listing 2.1, we ex-

tract that expression into the global new_function. In the resulting
program, shown in Listing 2.2, when new_function is called in line
2, normal_arg is passed as an argument, preserving the original

behavior of the program. However, applying the “Extract Symbol”

refactoring to line 3 (highlighted in orange) of Listing 2.1 results in

Listing 2.3,which does not have the same behavior: the newprogram

prints undefined and "that", whereas the original program prints

"this" and "that".

1 function test_extract(this: any, normal_arg: string) {
2 console.log(normal_arg);
3 console.log(this);
4 }
5 test_extract.call("this", "that");

Listing 2.1: TypeScript program example.

1 function test_extract(this: any, normal_arg: string) {
2 new_function(normal_arg);
3 console.log(this);
4 }
5 function new_function(normal_arg: string) {
6 console.log(normal_arg);
7 }
8 test_extract.call("this", "that");

Listing 2.2: Result from refactoring line 2 (highlighted in

blue) of program in Listing 2.1.

This happens because this is a special, implicit function argu-

ment. When a function or method is called, this is implicitly bound

to an object at run time according to a set of rules. TypeScript, how-

ever, allows a first parameter called this in function declarations,
solely to declare its expected type, and the parameter is erased when

compiling to JavaScript. We can explicitly bind this by using the
callmethod (all JavaScript/TypeScript functions are objects), as in

1
According to the TypeScript GitHub repository’s list of issues, as queried in May 20,

2021.

TSDolly: A program generator for TypeScript SBLP’21, September 27-October 1, 2021, Joinville, Brazil

the last line of the example programs. test_extract.call("thi ⌋
s", "that")means calling test_extractwith this bound to the
string "this", and "that" as the regular normal_arg argument.

In the second refactored program (Listing 2.3), when we call new ⌋
_function in line 3, the this in new_function does not refer to the
same object as the this in test_extract. In the original program,

test_extract.call("this", "that")meanswe are calling tes ⌋
t_extractwith this bound to "this", and normal_arg as "that",
but in Listing 2.3, when we call new_function() in test_extr ⌋
act’s body, we do not explicitly set new_function’s this. As per
JavaScript rules, new_function’s this is undefined,2 instead of the
string "this", so behavior is not preserved.

1 function test_extract(this: any, normal_arg: string) {
2 console.log(normal_arg);
3 new_function();
4 }
5 function new_function() {
6 console.log(this);
7 }
8 test_extract.call("this", "that");

Listing 2.3: Result from refactoring line 3 (highlighted in

orange) of program in Listing 2.1.

When this bug was reported, the existing tests did not catch this

case, caused by the special nature of this. This illustrates the need
for a systematic, automated technique for generating complex Type-

Script programs suited to be used as test inputs for TypeScript tools,

which can address corner cases that might be difficult to tackle with

manually written test inputs. We therefore propose a program gen-

eration technique that allows generating TypeScript programs that

satisfy complex constraints.

3 TSDOLLY

TSDolly
3
is a tool that implements our technique for automated

TypeScript program generation. It uses Alloy [9], a declarative spec-

ification language, to model a subset of the TypeScript language. We

also use the Alloy Analyzer tool [9] to generate all programs up to a

certain size that satisfy this TypeScript specification and additional

constraints thatmight be useful for generating programswith partic-

ular characteristics. The TypeScript programs we generate can then

be used as test inputs for testing TypeScript language tools, such as

automated refactoring implementations, compilers, and other tools

that require complex program inputs.

Figure 1 shows the main steps of TSDolly. It receives as input

a TypeScript language specification file, and optionally, predicates

to further constraint program generation, and a number called skip,

which determines howmany Alloy instances we want to sample for

generating TypeScript programs. In step 1 (instance generation), TS-

Dolly uses the Alloy Analyzer API to generate Alloy instances from

a TypeScript specification and additional predicates. In step 2 (build-

ing TypeScript programs), TSDolly transforms those instances into

TypeScript programs using the TypeScript compiler API. The skip

value is used in this step to select a sample of instances to ensure

TSDolly runs under time constraints.

2
In JavaScript’s strict mode. In non-strict mode, this defaults to the global object.

Figure 1: TSDolly architecture.

3.1 TypeScript specification in Alloy

We use Alloy, a language and analyzer used for software model-

ing [1, 2, 9]. The Alloy language is declarative and based on the

concept of atoms, which are primitive entities of a specification, and

relations between sets of atoms, where a relation is a set of atom

tuples. Programs generated by TSDolly are modeled by a specifica-

tion of a subset of the TypeScript language. In this specification, we

model the tree structure that corresponds to the TypeScript AST. To

specify an AST node, we use Alloy’s signatures: a signature defines

a set of atoms and relations involving those atoms, so we declare one

signature for each AST node type included in our specification. We

prioritized modeling language features that are relevant for the tests

we performed to evaluate TSDolly, as described in Section 4.

For instance, the FunctionDecl signature in Listing 3.1 specifies
a function declaration node. It extends an abstract signature De ⌋
claration, which encompasses all top-level declarations, that is,

functions or classes. A function declaration has exactly one identi-
fier, one code block, and the parameters relation establishes that it
has zero or more parameters. Wemodel parameter lists with Alloy

sets [9], resulting in a simple and efficient specification, without

harming the compilation rate, as discussed in Section 4. This is sim-

ilar to the TypeScript AST, where a function declaration node has

a list of parameter nodes as children.

1 sig FunctionDecl extends Declaration {
2 name: one FunctionIdentifier,
3 parameters: set ParameterDecl,
4 body: one Block
5 }

Listing 3.1: Alloy specification of function declarations.

Wefocusedongeneratingprogramsthatcompileunder thestrictest

type checking rules enforced by the TypeScript compiler. We avoid

syntax errors by modeling TypeScript ASTs, and to avoid most se-

mantic errors, we specify constraints that approximate semantic

rules enforced by the TypeScript compiler. Those are declared using

Alloy’s facts, which establish properties that are always true and

must always be satisfied. For instance, Listing 3.2 illustrates the fact

that any function being called in the generated program should have

been declared.

We can also use predicates to further guide program generation

by specifying additional constraints that generated programs must

3
TSDolly’s implementation can be found in https://github.com/gabritto/tsdolly/

https://github.com/gabritto/tsdolly/

SBLP’21, September 27-October 1, 2021, Joinville, Brazil Gabriela Araujo Britto, Leopoldo Teixeira, and Rohit Gheyi

1 fact FunctionCalledExists {
2 all c: FunctionCall | some f: FunctionDecl | c.name = f.name
3 }

Listing 3.2: Alloy fact stating that functions called in the

programmust exist.

satisfy. Unlike a fact, an Alloy predicate is a property of the model

that does not have to be true. Instead, a predicate is a property that

we can use when convenient. We can instruct Alloy to generate

instances that satisfy a certain predicate. For instance, in our eval-

uation (Section 4), we test automated refactoring implementations.

Therefore, we specify the refactoring preconditions as additional

constraints to generate programs that are suitable to be refactored.

Consider theConvertparameterstodestructuredobject refac-

toring, provided by the TypeScript compiler and illustrated in List-

ing 3.3. Its goal is to emulate the ability to use named parameters,

since TypeScript does not have builtin support for it. It transforms

the parameter list of the function into a single parameter object,

where each of the object’s property corresponds to an old parameter.

The function can then be calledwith an argument object, where each

property of this argument object corresponds to a named argument.

1 function getName(firstName: string, lastName: string) {
2 return firstName + " " + lastName;
3 }
4 getName("Barbara", "Liskov");

1 function getName({firstName: string, lastName: string}) {
2 return firstName + " " + lastName;
3 }
4 getName({firstName: "Barbara", lastName: "Liskov"});

Listing 3.3: “Convert parameters to destructured object”

refactoring example. At the top is the original program. At

the bottom is the result of applying the refactoring.

Listing 3.4 shows the ConvertParamsToDestructuredObject
predicate, which establishes the refactoring precondition. It states

that our program instance should have either a function or amethod

declaration atom with more than one parameter. Such predicates

can guide program generation towards a specific goal.

3.2 Instance generation

We use the Alloy Analyzer tool to generate instances that satisfy our

TypeScript specification and additional constraints. Alloy Analyzer

is a model finder: it finds a binding of the variables to values (i.e. an

instance) that satisfies the specification [2], if it exists. Alloy Ana-

lyzer exhaustively searches for instances in a finite search space. It

1 pred ConvertParamsToDestructuredObject {
2 (some f: FunctionDecl | #f.parameters

> 1) or (some m: MethodDecl | #m.parameters > 1)↩→

3 }

Listing 3.4: Predicate with the necessary conditions of the

“Convert parameters to destructured object” refactoring.

finds all instances satisfying a specification, but only up to a certain

size, denoted by signature scopes. A scope is a number that indicates

the upper bound size of the instances Alloy Analyzer can generate.

The scope describes howmany atoms of a given signature there can

be in an instance. A scope of twomeans, in our case, that an instance

can only have at most two declarations: two functions, two classes,

one function and one class, and so on.

To generate instances for our TypeScript specification, we run

the Alloy Analyzer through the Alloy API. These instances repre-

sent TypeScript programs that TSDolly later converts into actual

TypeScript programs. Figure 2 shows an instance generated byAlloy

in this step. The instance generation step starts by taking as argu-

ments the TypeScript specification and additional constraints. Then,

TSDolly calls the Alloy API to find all instances, up to a certain size,

that satisfy our specification and constraints. As a result, the Alloy

API returns an iterator that contains the desired instances.

Figure 2: An Alloy instance representing a TypeScript

program. The program has a function declaration with two

parameters, and its body has an access expression of the first

parameter. Type annotations are omitted for conciseness.

We use Java to implement the instance generation step, since the

Alloy API is also implemented in Java. In the following step we use

TypeScript, because, similarly, we want to use the TypeScript com-

pilerAPI. Thismeanswemust communicate the instances generated

in this step, implemented in Java, to the next step, implemented in

TypeScript. To that end, as we iterate through the Alloy instances,

we serialize them into JSON strings, written into a file, which is used

by the next TSDolly step.

3.3 Building TypeScript programs

Given an Alloy instance, we convert it into an actual TypeScript pro-

gram that can be used as test input by TypeScript tools. We start this

step by reading the serialized instances produced by the previous

step. We use the JSON.parse method from JavaScript’s standard

TSDolly: A program generator for TypeScript SBLP’21, September 27-October 1, 2021, Joinville, Brazil

library to parse the strings into TypeScript objects. Each object is a

representation of an Alloy instance generated in step 1.

We then build a TypeScript AST from each object, following the

AST structures used by the TypeScript compiler. An Alloy instance

object has a tree shape, since the TypeScript specification written in

Alloy describes TypeScript ASTs. More precisely, an Alloy instance

object corresponds to the root node of a TypeScript AST, and its

properties corresponds to pointers to its children nodes. The same

applies for each object pointed to by the Alloy instance object’s

properties, and, recursively, to each object in the tree rooted at the

Alloy instance object: each one corresponds to an AST node. We

convert an instance object into an AST by doing a tree traversal and

building the corresponding AST node for each visited object, using

the TypeScript compiler API. The complexity of this task is reduced

by the fact that our specification follows the AST structure used by

the TypeScript compiler. At the end of this process, we have the AST

for a TypeScript program. Listing 3.5 shows the TypeScript program

generated from the Alloy instance in Figure 2.

1 function fun(param0: number, param1: number) {
2 param0;
3 }

Listing3.5:Result of converting thegeneratedAlloy instance

in Figure 2 into a TypeScript program.

Due to the nature of programming language specifications and

the bounded-exhaustive instance generation, step 1 may generate

too many instances. If we try to further limit the bounds, we may

still get too many programs, or generating trivial programs that

might not catch bugs arising from the interaction among multiple

AST nodes. Thus, we apply a skip-based strategy for sampling Al-

loy instances. Among its arguments, TSDolly receives a positive

integer skip, which indicates howwe should sample instances. For a

skip value of 𝑛, the sampling strategy consists in taking contiguous

sequences of size 𝑛 of Alloy instances, and randomly selecting one

of them. The sampled instances are converted into TypeScript pro-

grams as previously described, and only those programs are used

by the next step. The remaining instances are ignored.

Using this skip-basedstrategyreducesexecutiontime(Section4.3).

It also avoids the generation of many similar programs, since the

Alloy Analyzer typically generates many similar, contiguous in-

stances. Previous uses of this technique [12] indicate that the risk

of missing bug-revealing instances is small and far outweighed by

the performance gains.

4 EVALUATION

TSDolly aims to generate TypeScript programs that compile suc-

cessfully and canbeused as test input forTypeScript tools. Therefore,

our evaluation is structured into twoparts.Wefirst evaluate the feasi-

bility of usingTSDolly, in terms of generating compilable programs.

We generate programs according to five refactoring implementa-

tions provided by the TypeScript compiler as our target application.

The second part of the evaluation addresses usefulness, using the

generated programs as inputs to test those refactoring implementa-

tions. In what follows, we discuss our research questions, the study

planning, and our results and discussion.

4.1 Research Questions

We first evaluate the program generation aspect of TSDolly. We

do so with respect to its ability to generate successfully compiling

programs, as well as its performance, in the context of refactoring

implementations from the TypeScript compiler. We address the fol-

lowing research questions:

RQ1.What is thecompilationrateofTSDolly-generatedprograms?We

measure the number of Alloy instances generated in step 1; the num-

ber of instances thatwere sampled to be transformed into TypeScript

programs in step 2 and used as test inputs in RQ3; and the number of

TypeScript programs produced by step 2 that successfully compile.

Those metrics reflect our goal of generating programs that can be

used as test inputs for TypeScript tools.

RQ2.What is the average time needed for generating TypeScript pro-

grams with TSDolly? Wemeasured the execution time for all refac-

toring implementations used for generating programs.

In the second part of our evaluation, we evaluate whether TS-

Dolly generates useful programs to be fed as inputs to evaluate

TypeScript tools. We do so by testing refactoring implementations

with respect to evaluating if compilation behavior is preserved. We

address the following research question:

RQ3. Can TSDolly generate programs that are useful as test inputs

for TypeScript refactoring implementations? Wemeasure the number

of TypeScript programs that could be refactored at least once by

each target refactoring, i.e. the number of refactorable programs.We

registered the generated programs, the compilation errors, and test

failures. The number of refactorable programs tells us howmany of

the generated programs can be used as test inputs.

4.2 Study Planning

4.2.1 Subject selection. We generate TypeScript programs specif-

ically targeted at testing refactoring implementations. We use five

refactoring implementations, out of the nine implemented by the

TypeScript compiler version 3.9.5. Besides “Convert parameters to

destructured object” (Section 3.1), we also consider “Generate ‘get’

and ‘set’ accessors”, also known as “Encapsulate Field” [5, Chapter 6],

whichgeneratesgetter and settermethods (accessors) for a classfield;

“Convert to template string”, which converts a string concatenation

expression to a template literal; “Extract Symbol”, which extracts

certain expressions into a new symbol (similar to “Extract Variable”

and “Extract Function” [5, Chapter 6]); and “Move to a new file”,

which moves a top-level declaration to a new file.

We can add constraints to our specification to guide program

generation (Section 3.1). A test input for TypeScript refactoring im-

plementationsmust be able to be refactored by the refactoring under

test. In other words, the generated programs must satisfy the refac-

toring preconditions. To this end, we modeled the preconditions of

each of the five tested refactorings as Alloy predicates, and added

those predicates to our specification to generate programs suitable

to be refactored (seeRQ3).

4.2.2 Setup for program generation. To addressRQ1 andRQ2, we
generate TypeScript programs for testing refactorings. We ran TS-

Dollywith a set of parameters, someofwhichwerefixed throughout

all runs, while some changed.

Fixed parameters. The TypeScript specification we used was

fixed, containing both the syntactic and semantic rules of TypeScript

SBLP’21, September 27-October 1, 2021, Joinville, Brazil Gabriela Araujo Britto, Leopoldo Teixeira, and Rohit Gheyi

programs, and the refactoring preconditions. The scope, that is, the

upper bound size, of the generated Alloy instances, was also fixed

and always equal to two.We chose a scope of two because a scope of

one only generates trivial programs. In an instance generated with

scope one, there cannot be two classes where one extends the other,

but a scope larger than two generatedmillions of instances, far more

than we had the resources to process for testing.

Settings for the TypeScript compiler also remained the same. We

used the strictest level of type checking rules, and disabled code

emitting, using the compiler only for type checking and refactoring.

We ran the experiments on a computer running Microsoft Windows

10 Home, 16GB RAM, Intel Core i7-7700HQ@ 2.80Hz.

Variable parameters. We targeted a single refactoring at a time,

so we separately ran TSDolly for each of the five refactorings tested.

For each refactoring, we ran TSDolly twice, once with a skip value

of 25 and oncewith a skip value of 50. Choosing a skip value of 25 and

50 means that 4% (
1

25
) and 2% (

1

50
) of the Alloy instances generated

in step 1 were transformed into a TypeScript program.

Althoughwewouldhave liked toprocess all of thegeneratedAlloy

instances, we chose those values because we had limited resources

to run TSDolly. So we needed to sample the generated instances,

and we chose the specific values of 25 and 50 because the execution

time of TSDolly could then fit our time constraint. Moreover, the

value of 25 has been used in a previous study that used a program

generator (JDolly) also based on Alloy [11].

Since we ran TSDolly twice for each refactoring, changing only

the skip value, we were able to reuse the Alloy instances generated

in step 1, because this step depends only on the target refactoring

and not on the value of the skip argument. For each refactoring, we

first ran the instance generation (step 1) of TSDolly. The generated

instances were serialized and saved, and then read and used as input

when we ran step 2 (building TypeScript programs) of TSDolly’s

pipeline with skips of 25 and 50.

4.2.3 Testing TypeScript refactorings. To addressRQ3, we investi-
gate how useful TSDolly-generated programs are for testing Type-

Script refactoring implementations. Given a TypeScript program

generated for a specific refactoring, we first check whether this pro-

gram is refactorable. To test a refactoring, we apply it to the input

program, and then compare both program versions to check if be-

havior is preserved. In this evaluation, we only check if compilation

behavior is preserved, that is, if programs compiling without errors

still continue to do so after being refactored. We made this choice

because we had the TypeScript readily accessible to be used as a test

oracle for checking this property.

Weuse theTypeScript language serviceAPI, providedby theType-

Script compiler, to apply refactorings to the generated programs. For

each generated program,we first find out if the refactoring is applica-

ble to the program, and, if so, towhat programposition(s). The getA ⌋
pplicableRefactors function receives a program and a position in

that program and returns a list of refactorings that can be applied to

the specified position. To avoid calling this complex function for ev-

ery programposition,we use node predicates (i.e. functions that take

a TypeScript AST node and return true or false) to determine if we

should actually call it. For each refactoringunder test,wehave apred-

icate that returns true for all AST nodes where this refactoring is ap-

plicable. For instance, “Generate ‘get’ and ‘set’ accessors” can only be

applied to class field declarations, so this refactoring’s predicate only

returns true for suchnodes.Wetraverse theAST, calling thepredicate

on eachnode. If the predicate returns true,we callgetApplicableR ⌋
efactorswith the program and that node’s position in the program.

We then get a list of applicable refactorings and their respective

program positions. We ignore other refactorings besides the one

under test. We then call getEditsForRefactor for each program

position where the target refactoring is applicable. This function

receives a program, a position in that program, and a desired refactor-

ing, and returns the changes resulting from applying the refactoring

to that program position. After calling it for every applicable pro-

gramposition,we have a list of changes. Since applying a refactoring

to different program positions might result in the same changes, we

also remove duplicates from this list.

To test the refactoring, we first compile the input program and

collect possible compilation errors. Then, we apply each possible

refactoring change to the program, obtaining a set of new, refactored

programs.We also compile the refactored programs and collect their

compilation errors. We compare the compilation errors of the origi-

nal program and its refactored counterparts. If the original program

has no compilation errors, but a refactored program has errors, then

we consider the test failed; otherwise, the test passed.

4.3 Summary of the Results

Table 1 presents the results of the program generation metrics col-

lected in our experiments. Regarding RQ1, for each refactoring,

TSDolly generated between 250,000 and 546,000 different Alloy

instances. We sampled 4% and 2% (skip 25 and 50) of those instances

to be transformed into TypeScript programs and compiled. The per-

centage of successfully compiling programs was high, above 97.45%

for all refactorings, regardless of the skip value.

With respect toRQ2, Figure 3 shows time measurements from

running TSDolly, for a skip of 25. Results for a skip of 50 had similar

average times and proportional total times and thus are omitted for

conciseness. GeneratingAlloy instances (step 1 of TSDolly) took, on

average, less than twomilliseconds for each generated instance, and

a total time between three and elevenminutes across all refactorings.

Building TypeScript programs took, on average, close to one mil-

lisecond and a total time under one second. Meanwhile, compiling

the programs took, on average, between one and two seconds for

each program, and compiling all the programs took up to eleven

hours, dominating the execution time of TSDolly.

We alsomeasured the time it took to run the tests for each refactor-

ing (RQ3), using the generated programs as input. This includes the

time to apply the refactoring to the generated programs, compiling

the refactored programs, and checking if the refactoring introduced

any compilation error to previously compilable programs. The aver-

age time per test ranged between two and eleven seconds, whereas

total time, for a skip of 25, ranged between 6 and 52 hours.

Finally, consideringRQ3, Table 1 shows that all of the generated

programs could be refactored. We expected this as we included the

refactoring preconditions in our specification.Our specification de-

scribes a subset of TypeScript, so the generated programs did not

trigger preconditions that would prevent a refactoring from being

applied. When adding a new language feature to our specification,

TSDolly: A program generator for TypeScript SBLP’21, September 27-October 1, 2021, Joinville, Brazil

Table 1: Program generation metrics from TSDolly experiments. ‘Generated instances’ is the number of Alloy instances

generated in step 1. ‘Sampled’ is the number of Alloy instances sampled for steps 2 and 3. ‘Compilable’ is the number of

TypeScript programsproduced from the sampled instances that successfully compile. ‘Refactorable’ is the number of programs

produced from the sampled instances that are refactorable at least once by the target refactoring.

Refactoring Generated

instances

Sampled Compilable Refactorable

Skip 25 Skip 50 Skip 25 Skip 50 Skip 25 Skip 50

Convert

parameters to

destructured

object

315,310 12,612 (4%) 6,306 (2%) 12,379

(98.15%)

6,183 (98.05%) 12,612 (100%) 6,306 (100%)

Convert to

template

string

239,399 9,576 (4%) 4,788 (2%) 9,491

(99.11%)

4,748 (99.16%) 9,576 (100%) 4,788 (100%)

Generate ‘get’

and ‘set’

accessors

546,968 21,879 (4%) 10,939 (2%) 21,342 (97.55%) 10,660 (97.45%) 21,879 (100%) 10,939 (100%)

Extract

Symbol

406,096 16,244 (4%) 8,122 (2%) 15,854 (97.60%) 7,935 (97.70%) 16,244 (100%) 8,122 (100%)

Move to

a new file

499,038 19,962 (4%) 9,981 (2%) 19,522 (97.80%) 9,755 (97.74%) 19,962 (100%) 9,981 (100%)

0 0.5 1 1.5 2

Avg. execution time - Milliseconds

0 0.5 1 1.5 2

Convert

parameters to

destructured

object

Convert to

template

string

Generate

‘get’ and ‘set’

accessors

Extract

Symbol

Move to a

new file

2.08

2.16

1.86

1.47

1.89

0.98

0.83

0.88

1.02

0.98

0.84

0.78

1.09

0.98

1.39

Avg. execution time - Seconds

Seconds

Compile program - Skip 25

Milliseconds

Build program - Skip 25

Instance generation

Figure 3: Average time for generating an instance (step 1),

building a program (step 2), and compiling a program.

we can adjust the refactoring preconditions to account for the new

feature so that most of the generated programs can be refactored.

4.4 Discussion

In this section, we discuss the results of our evaluation.

Compilationerrors. The compilation rate is inferior to the refac-

torable programs rate, because the refactoring implementations al-

low refactoring programs with compilation errors, if they satisfy

the preconditions. Our specification does not include all type check-

ing rules. We focused on adding only enough rules to reach a high

compilation rate, prioritizing the simplicity of the specification. Nev-

ertheless, we inspected the compilation errors to understand why

some programs do not compile. We identified two kinds of errors.

The first kind occurswhen class B extends class A, overrides one of
A’s methods, but the type of the overriding method is not assignable

to the type of the overridden method. The compiler considers the

parameter order when checking type assignability. We model pa-

rameter lists with sets, so we cannot fully express assignability rules.

The other kind occurs when the type of an argument of a method

or function call is not assignable to the declared type of the corre-

sponding parameter. Our specification does not include constructors

yet, so it cannot initialize object fields. To avoid the compiler emitting

non-initialized field errors for non-optional fields, we constrain all

fields to be declared as optional. This error arises in generated pro-

gramswhen an object’s field is used as an argument, since the field is

optional and the argument is not, making their types incompatible.

These two kinds of compilation errors could be eliminated by

extending or modifying our TypeScript specification. Still, the vast

majority of the generated programs are compilable, so the choice for

simplicity did not compromise our program generation goals.

SBLP’21, September 27-October 1, 2021, Joinville, Brazil Gabriela Araujo Britto, Leopoldo Teixeira, and Rohit Gheyi

1 class ClassIdentifier_0 {
2 private Field_1?: string;
3 }

1 class ClassIdentifier_0 {
2 private _Field_1?: string;
3 public get Field_1(): string {
4 return this._Field_1;
5 }
6 }

Listing 4.1: “Generate ‘get’ and ‘set’ accessors” refactoring

bug. Top shows original program. Bottom shows program

after refactoring, where line 4 triggers a compilation error.

Performance. Figure 3 shows that using a sampling strategy is

justified. Instance generation and program building take minutes.

The value of the skip argument, which determines the sample size,

canbe adjusted according to resource constraints so that theduration

of compilation and tests is compatible with those constraints.

Usefulness of generated programs. There were no uncaught

exceptions when calling the TypeScript refactoring API, meaning

that checking the availability of refactorings and applying refactor-

ings did not crash for the generated programs.

Bug found.Our tests uncovered a bug in the “Generate ‘get’ and

‘set’ accessors” refactoring, which introduced compilation errors to

previously compilable programs. The compilation error was intro-

ducedwhen the refactoringwas applied to a fieldmarked as optional

and generated a getter function with an inappropriate return type.

Listing 4.1 shows an example. Field_1 is annotated with type

string andmarked as optional (questionmark). Because this field is

optional, itmight not be set to any string, and its valuewill beundef ⌋
ined, so, to the TypeScript compiler, this field’s type is a union of the

string and undefined types. Applying the refactoring generates
the Field_1 getter function, whose return type should be the same

as the field’s type, but instead is string. The compiler yields an error

with the message “Type ‘string | undefined’ is not assignable to type

‘string”’. We reported this behavior to the TypeScript team,
4
they

confirmed it was a bug, and it has since then been fixed.

5 RELATEDWORK

Our work is heavily inspired by JDolly [14], a tool that generates

Java programs using an Alloy specification of Java and the Alloy

Analyzer to generate instances that are then transformed into Java

programs that were used to test refactoring implementations in pop-

ular IDEs [11, 14]. This technique has also been adapted to generate

C programs through CDolly [12]. Our work differs from JDolly in

thatwe focus on generating compilable TypeScript programs instead

of Java programs, and had to adapt the technique to this language.

Kreutzer et al. [10] propose a language-agnostic technique that

takes semantic rules into consideration to generate programs. Users

specify syntactic and semantic rules of a language using a language

based on attribute grammars. Their goal is broader, since they are

interested in evaluating compilers.We take a focused approach aswe

4
Bug report: https://github.com/microsoft/TypeScript/issues/40994.

model a subset of the TypeScript language and so far, we only evalu-

ated TSDolly in the context of testing refactoring implementations.

CodeAlchemist [8] is a fuzz testing tool that generates JavaScript

programs that avoid semantics errors. It combines fragments fromex-

isting JavaScript programs following specific rules to avoid semantic

errors,using thesemantics-awareassembly technique. It successfully

found bugs in JavaScript engines. CodeAlchemist uses a seed-based

fuzzing approach, so the quality of the generated programs depends

on seed selection, and it focuses on generating semantically valid

JavaScript. In contrast, our approach allows us to encode arbitrary

constraints in our specification, in addition to semantic validity. We

exhaustively generate programs that satisfy such constraints up

to a given bound, not relying on seed programs, and use random

sampling to select which generated programs to use for testing.

Gligoric et al. [7]usedeight open-sourceprojects to test JavaandC

refactorings fromEclipse, successfully finding newbugs. Using exist-

ing programs avoids the need for a program generator, and any bugs

found have the benefit of occurring in real programs.However, using

real programs can increase the time, space, andhuman costs of check-

ing correctness, especially in large programs. A further complication

is the diversity of tools and standards in the TypeScript ecosystem.

Wemayneed tobemindful ofwhat environment aproject targets (e.g.

browsers or the Node.js runtime), the language version, etc., but we

can control such aspects by using generated programs as test inputs.

6 CONCLUSIONS

In this work, we propose TSDolly, a TypeScript program gener-

ator, that generates programs that are compilable and that can be

used as test inputs to evaluate TypeScript-related tools. We evaluate

TSDolly togenerateprograms focusedonfive refactoring implemen-

tations from the TypeScript compiler. The majority of the generated

programs (97.45%) compile without errors, and all of them can be

refactored by the refactorings under test. By combining our program

generation technique with the TypeScript compiler as a test oracle

for checking compilation behavior preservation,wewere able to find

a bug in one of the refactoring implementations, which we reported,

and it has since then been fixed. This provides initial evidence that

TSDolly can be used to automatically generate programs that com-

pile and are useful for evaluating TypeScript tools, complementing

the use of other techniques such as manually writing tests. As future

work, wewould like to includemore language features into our spec-

ification and evaluate it with different tools and more refactorings.

ACKNOWLEDGMENTS

We acknowledge support by FACEPE (APQ-0570-1.03/14), CNPq

(426005/2018-0 and 311442/2019-6), CAPES (117875 and 175956), and

FAPEAL (60030.0000000462/2020). This work is partially supported

by INES 2.0,FACEPE grants PRONEXAPQ-0388-1.03/14 and APQ-

0399-1.03/17, and CNPq grant 465614/2014-0.

https://github.com/microsoft/TypeScript/issues/40994

TSDolly: A program generator for TypeScript SBLP’21, September 27-October 1, 2021, Joinville, Brazil

REFERENCES

[1] Alloy API [n.d.]. Alloy API documentation. URL: http://alloytools.org/

documentation/alloy-api/index.html. Accessed: 21 May 2021.

[2] Alloy tools [n.d.]. Alloy tools. URL: https://alloytools.org. Accessed: 21 May 2021.

[3] GergöBarany. 2018. Liveness-DrivenRandomProgramGeneration. InLogic-Based

Program Synthesis and Transformation, Fabio Fioravanti and John P. Gallagher

(Eds.). Springer International Publishing, Cham, 112–127.

[4] Gilad Bracha. 2004. Pluggable type systems. InOOPSLA’04Workshop on Revival

of Dynamic Languages.

[5] Martin Fowler. 2018. Refactoring: improving the design of existing code.

Addison-Wesley Professional.

[6] Zheng Gao, Christian Bird, and Earl T Barr. 2017. To Type or Not to

Type: Quantifying Detectable Bugs in JavaScript. In 2017 IEEE/ACM 39th

International Conference on Software Engineering (ICSE). IEEE, 758–769.

https://doi.org/10.1109/ICSE.2017.75

[7] Milos Gligoric, Farnaz Behrang, Yilong Li, Jeffrey Overbey, Munawar Hafiz, and

DarkoMarinov. 2013. Systematic Testing of Refactoring Engines on Real Software

Projects. In ECOOP 2013 – Object-Oriented Programming, Giuseppe Castagna (Ed.).

Springer Berlin Heidelberg, Berlin, Heidelberg, 629–653.

[8] HyungSeok Han, DongHyeon Oh, and Sang Kil Cha. 2019. CodeAlchemist:

Semantics-Aware Code Generation to Find Vulnerabilities in JavaScript Engines.

In 26th Annual Network and Distributed System Security Symposium, NDSS 2019,

San Diego, California, USA, February 24-27, 2019. The Internet Society.

[9] Daniel Jackson. 2012. Software Abstractions - Logic, Language, and Analysis,

Revised Edition. The MIT Press (2012).

[10] P. Kreutzer, S. Kraus, and M. Philippsen. 2020. Language-Agnostic Gen-

eration of Compilable Test Programs. In 2020 IEEE 13th International

Conference on Software Testing, Validation and Verification (ICST). 39–50.

https://doi.org/10.1109/ICST46399.2020.00015

[11] M.Mongiovi, R.Gheyi, G. Soares,M. Ribeiro, P. Borba, andL. Teixeira. 2018. Detect-

ing Overly Strong Preconditions in Refactoring Engines. IEEE Transactions on Soft-

ware Engineering 44, 5 (2018), 429–452. https://doi.org/10.1109/TSE.2017.2693982

[12] Melina Mongiovi, Gustavo Mendes, Rohit Gheyi, Gustavo Soares, and Márcio

Ribeiro. 2014. Scaling Testing of Refactoring Engines. In 30th IEEE Inter-

national Conference on Software Maintenance and Evolution, Victoria, BC,

Canada, September 29 - October 3, 2014. IEEE Computer Society, 371–380.

https://doi.org/10.1109/ICSME.2014.59

[13] octoverse2020 [n.d.]. The State of the Octoverse | The State of the Octoverse

explores a year of changewithnewdeepdives into developer productivity, security,

and howwe build communities on GitHub. URL: https://octoverse.github.com/.

Accessed: 7 May 2021.

[14] G. Soares, R. Gheyi, and T. Massoni. 2013. Automated Behavioral Testing of

Refactoring Engines. IEEE Transactions on Software Engineering 39, 2 (2013),

147–162. https://doi.org/10.1109/TSE.2012.19

[15] stateofjs2020 [n.d.]. State of JS 2020: JavaScript Flavors. URL: https://2020.

stateofjs.com/en-US/technologies/javascript-flavors/. Accessed: 7 May 2021.

[16] Stryker [n.d.]. Stryker Mutator. URL: https://stryker-mutator.io. Accessed: 21

May 2021.

[17] TypeScript [n.d.]. TypeScript. URL: https://www.typescriptlang.org/. Accessed:

21 May 2021.

[18] Panagiotis Vekris, Benjamin Cosman, and Ranjit Jhala. 2016. Refinement

Types for TypeScript. In Proceedings of the 37th ACM SIGPLAN Conference on

Programming Language Design and Implementation (Santa Barbara, CA, USA)

(PLDI ’16). Association for Computing Machinery, New York, NY, USA, 310–325.

https://doi.org/10.1145/2908080.2908110

[19] WebStorm [n.d.]. WebStorm: The Smartest JavaScript IDE by JetBrains. URL:

https://www.jetbrains.com/webstorm. Accessed: 21 May 2021.

[20] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and

Understanding Bugs in C Compilers. In Proceedings of the 32nd ACM SIGPLAN

Conference on Programming Language Design and Implementation (San Jose,

California, USA) (PLDI ’11). Association for Computing Machinery, New York,

NY, USA, 283–294. https://doi.org/10.1145/1993498.1993532

http://alloytools.org/documentation/alloy-api/index.html
http://alloytools.org/documentation/alloy-api/index.html
https://alloytools.org
https://doi.org/10.1109/ICSE.2017.75
https://doi.org/10.1109/ICST46399.2020.00015
https://doi.org/10.1109/TSE.2017.2693982
https://doi.org/10.1109/ICSME.2014.59
https://octoverse.github.com/
https://doi.org/10.1109/TSE.2012.19
https://2020.stateofjs.com/en-US/technologies/javascript-flavors/
https://2020.stateofjs.com/en-US/technologies/javascript-flavors/
https://stryker-mutator.io
https://www.typescriptlang.org/
https://doi.org/10.1145/2908080.2908110
https://www.jetbrains.com/webstorm
https://doi.org/10.1145/1993498.1993532

	Abstract
	1 Introduction
	2 Motivating example
	3 TSDolly
	3.1 TypeScript specification in Alloy
	3.2 Instance generation
	3.3 Building TypeScript programs

	4 Evaluation
	4.1 Research Questions
	4.2 Study Planning
	4.3 Summary of the Results
	4.4 Discussion

	5 Related Work
	6 Conclusions
	Acknowledgments
	References

