Software and Systems Modeling
https://doi.org/10.1007/s10270-021-00906-w

REGULAR PAPER O‘)

Check for
updates

Guiding the evolution of product-line configurations

Michael Nieke' - Gabriela Sampaio? - Thomas Thiim3 - Christoph Seidl* - Leopoldo Teixeira® - Ina Schaefer!

Received: 29 September 2020 / Revised: 7 May 2021 / Accepted: 14 June 2021
© The Author(s) 2021

Abstract

A product line is an approach for systematically managing configuration options of customizable systems, usually by means of
features. Products are generated for configurations consisting of selected features. Product-line evolution can lead to unintended
changes to product behavior. We illustrate that updating configurations after product-line evolution requires decisions of both,
domain engineers responsible for product-line evolution as well as application engineers responsible for configurations.
The challenge is that domain and application engineers might not be able to interact with each other. We propose a formal
foundation and a methodology that enables domain engineers to guide application engineers through configuration evolution
by sharing knowledge on product-line evolution and by defining automatic update operations for configurations. As an effect,
we enable knowledge transfer between those engineers without the need for interactions. We evaluate our methodology on
four large-scale industrial product lines. The results of the qualitative evaluation indicate that our method is flexible enough
for real-world product-line evolution. The quantitative evaluation indicates that we detect product behavior changes for up to
55.3% of the configurations which would not have been detected using existing methods.

Keywords Product line - Product-line evolution - Guided feature configuration evolution - Product behavior preservation

1 Introduction

Configurable software allows customization of software
products to fit user requirements. For instance, cars and their

Communicated by Hong Mei.

B Michael Nieke
micni @itu.dk

Gabriela Sampaio
g.sampaiol7@imperial.ac.uk

Thomas Thiim
thomas.thuem @uni-ulm.de

Christoph Seidl
chse@itu.dk

Leopoldo Teixeira
Imt@cin.ufpe.br

Ina Schaefer

i.schaefer@tu-bs.de

TU Braunschweig, Brunswick, Germany

Imperial College London, London, United Kingdom
Ulm University, Ulm, Germany

ITU Copenhagen, Copenhagen, Denmark

Federal University of Pernambuco, Recife, Brazil

Published online: 04 July 2021

software can be configured by customers through a web con-
figurator of the car manufacturer [1] and the Linux kernel
can be custom-tailored by selecting from more than 21,000
configuration options [2]. A product line is a concept for
managing configurable software systems and their configu-
ration options in terms of features [3—6]. A configuration of a
product line is a set of selected features. The set of available
features is captured using a feature model [5]. Features are
associated with reusable artifacts or parts thereof by Boolean
formulas in a feature-artifact mapping (e.g., through pre-
processor statements in C++ code). Using these artifacts, a
product can be generated automatically for a given config-
uration [4,7]. In the product-line life cycle, two main roles
are involved: domain engineers specify feature models and
feature-artifact mappings [3]; application engineers define
configurations to generate products.

Product-line evolution is a well-acknowledged field and
current field of research [8—11]. Similar to all other soft-
ware systems, evolution of product lines is ubiquitous due to
changed or new requirements. In the process of product-line
evolution, domain engineers may change the feature model,
artifacts, and the feature-artifact mapping [12]. This can lead
to unintended changes to product behavior [13]. For instance,
if a feature A is merged into another feature B, configurations

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-021-00906-w&domain=pdf

M. Nieke et al.

selecting only B and not A represent different product behav-
ior before and after evolution. Previous research identified the
need of practitioners to know how changes impact existing
configurations and that it is pivotal to know whether a system
operates as expected after evolution [14,15]. Thus, configu-
ration evolution must be in line with product-line evolution.
Up to now, application engineers are left with the task of
manually detecting and fixing problems with their configu-
rations used in the field, which is time consuming and error
prone [16].

When trying to update configurations to new product-line
versions, domain engineers and application engineers face
problems in sharing their knowledge with each other: first,
with long product-release cycles, the time span between evo-
lution of product lines and configurations can exceed months
or years so that detailed knowledge of the evolution may be
lost; second, domain and application engineers may not know
each other, which creates a communication barrier [17]. For
instance, a developer of the Linux kernel (domain engineer)
does not generally know all end-users (application engi-
neers), their specific configurations, or requirements which
led them to a specific feature selection. Hence, a domain
engineer in isolation cannot give direct advice to application
engineers on how to update their configurations after evolu-
tion.

Application engineers can know when evolution was per-
formed, by means of patches or changelogs. Nonetheless,
they still lack information regarding the why and how, that is,
the rationale for the particular changes that were performed.
This makes it difficult to decide on how to change their con-
figurations, especially if multiple evolution steps have been
performed. Leaving application engineers with the task of
updating their configurations is bad practice and often leads
to misconfiguration [18,19]. Previous research provides auto-
mated fixes for invalid configurations [16,19-21]. However,
these approaches fix configurations only on a syntactical level
but not on a semantical level, which may inadvertently alter
product behavior. Apart from the lack of product behavior
consideration, these approaches assume that engineers in iso-
lation are able to choose a suitable fix. In summary, neither
domain engineers nor application engineers are able to adapt
configurations without each other.

Apart from lack of communication mechanisms, the num-
ber of application engineers typically is significantly higher
than domain engineers, which leads to a high communication
overhead or makes it even impossible for domain engineers
to communicate with each application engineer [17]. For
instance, thousands of application engineers configure the
Linux kernel and hundreds of domain engineers develop
it. To update configurations, the domain engineers would
need to communicate with each application engineer. More-
over, industry reports that, for some systems, configuration
logic changes almost every week [14]. One of our indus-

@ Springer

try partners reports even 200 changes in a year. Without
automating the communication between domain and appli-
cation engineers, updating configurations requires massive
communication efforts which quickly become infeasible.

In this paper, we present guided configuration evolution,
a methodology to provide guidance for updating configu-
rations to a new product-line version. Our main goal is to
automate the process of updating configurations semanti-
cally as far as possible. We acknowledge the deficits in the
individual engineer’s knowledge and barriers for communi-
cation and provide a concept to encode necessary information
in a machine and human-processable format. To this end,
domain engineers define guidance in the form of instructions
for application engineers on how to update configurations to
best cope with product-line evolution—ideally maintaining
product behavior fully automatically.

We propose a formal foundation and a general methodol-
ogy allowing domain engineers to define guidance thatis used
by application engineers to update their configurations. Guid-
ance defined by a domain engineer consists of a rationale for
product-line evolution and concrete update suggestions for
configurations that can be applied automatically. Optimally,
product behavior is preserved after evolution but, even if this
cannot be achieved, application engineers are made aware
and can make an informed decision on how to adapt config-
urations. Guidance is defined once by a domain engineer for
each evolution step and can be reused by an unlimited number
of application engineers. In addition, domain engineers do
not have to define guidance for each individual configuration,
but can define it symbolically for large sets of configurations.
While existing work considers individual engineers to be able
to update configurations [16,19-22], we identify the commu-
nication barrier between domain and application engineers
as a central challenge. With our methodology this commu-
nication barrier does not become a problem. We argue that
the first step to overcome this barrier is to focus on product
behavior instead of configuration validity. To enable reuse,
our methodology allows to define templates for guidance
of typical evolution scenarios independent of their specific
application context.

We illustrate the use of the methodology by means of
three exemplary pre-defined evolution templates which spec-
ify how the set of features and the feature-artifact mapping
evolve. We perform three evaluations: First, we formally
prove that we are able to preserve product behavior of
configurations for typical evolution scenarios using our
methodology. Second, in a qualitative evaluation, we analyze
whether it is feasible to apply and adapt our methodology.
Third, in a quantitative evaluation, we analyze the percent-
age of configurations to which we can (a) apply guidance
automatically, (b) preserve product behavior, and (c) detect
unnoticed changes to product behavior. The quantitative
evaluation is split into two parts: first, we use real-world

Guiding the evolution of product-line configurations

{AudioCD} [Cassette}

RN

Product-Line O Optional N
. § A .
Artifacts ® Mandatory Yoy - iesel
~@~ Or Group SN =L
O~ Alternative Group! TYso

Formalization

Diesel

Feature-Artifact Mapping M

Engine — EnginelfDef,
GPS — car.gps,
(GPS v Glonass) — car.positioning,

#if Engine

#endif

__________________ A 5 |
Plugin
= car.gps Plugin

- _

— — — —P»car.positioning

Reusable Artifacts |

EnginelfDef i

car.positioning

car.gps

Fig.1 Artifacts of an exemplary car product line and their formalization of the running example

feature-model evolution and evaluate the domain engineer’s
perspective; second, we use two real-world feature mod-
els with existing configurations and evaluate the application
engineer’s perspective. In summary, we make the following
contributions:

1. We propose a formal foundation for domain engineers to
express evolutionary changes to configurations.

2. We define a methodology with a prototypical tool. Guy-
Dance! enabling domain engineers to guide application
engineers in updating configurations.

3. We provide three example evolution templates to support
domain engineers, which illustrate the methodology and
the formalism.

4. We formally prove soundness of the templates by estab-
lishing behavior preservation for subsets of configura-
tions.>

5. We qualitatively evaluate feasibility of guided configura-
tion evolution.

6. We quantitatively evaluate guidance by analyzing evolu-
tion of real-world product lines and existing configura-
tions.

This work is an extended and revised version of prior
work [23]. Contributions 5-6 are novel with respect to
prior work. In addition, we add illustrations and descriptions
regarding the general idea of guided configuration evolution
as well as the process for applying templates. Furthermore,
we extend the explanation on how to apply our method by
incorporating tools that classify product line changes, which

! https://gitlab.com/DarwinSPL/GuyDance.
2 https://gitlab.com/mnieke/guydance_proofs.

can be used to automatically apply or identify matching tem-
plates.

2 Behavior preservation

Given a configuration, the respective product generated
before and after product-line evolution may behave differ-
ently due to changes to artifacts that are mapped to the
selected features. In the following, we define our notion
of product behavior. To this end, we first introduce basic
product-line concepts by means of exemplary car product
line. The respective product-line artifacts, i.e., the feature
model, the reusable implementation artifacts, and the feature-
artifact mapping, are depicted in Fig. 1. We adapt existing
notions and formalisms for product lines [22,24]. We for-
malize a feature set F as the set of all features. For instance,
in our example, this is the Car root feature, two features
AudioCD and Cassette for entertainment functionality,
two features GPS and Glonass responsible for different
positioning services, and a feature Engine with two alter-
native manifestations in terms of the features Diesel and
Gasoline. We abstract from feature relations or other con-
straints, as our notion of product behavior is independent of
such relations and we do not tie our concepts to a particular
feature model representation. A configuration c is a set of
selected features such that ¢ C F. Each feature f ¢ c is
implicitly deselected.

To generate a product for a given configuration, it is nec-
essary to know which reusable artifacts have to be selected.
The set I contains all reusable artifacts. For instance, the
feature GPS can be realized using a plug-in car.gps. In

@ Springer

https://gitlab.com/DarwinSPL/GuyDance
https://gitlab.com/mnieke/guydance_proofs

M. Nieke et al.

a feature-artifact mapping, features are related to reusable
artifacts [5]. For instance, in the running example, a feature-
artifact mapping with preprocessor directives could look like:
#if Engine <code> #endif. We abstract from concrete imple-
mentation and feature-artifact mapping techniques, such as
programming languages or concepts. We consider a feature-
artifact mapping M : ac — P(I) as a function relating
features in terms of an application condition ac, being a
Boolean formula over features, and a set of mapped arti-
facts contained in P(I). For instance, a feature-artifact
mapping entry could look like: M(GPS V Glonass) =
{car.positioning}.

We consider a product line as a triple PL = (F, 1, M)
with the feature set F', the set of reusable artifacts 7, and the
feature-artifact mapping M. We assume that the artifacts in M
are present in /. Our methodology is deliberately oblivious
of configuration validity as its goal is to automate config-
uration updating as far as possible with a focus on product
behavior. Thus, configuration validity is out-of-scope and we
do not consider the constraints between features. A product
can be generated by composing all reusable artifacts that
are collected using the mapping and a configuration. In par-
ticular, we define a product of a configuration ¢ C F as
M]e = U, AM (ac) | ¢ = ac}. While product and configu-
ration are often used synonymously, we adopt the distinction
between those two elements from the literature and consider a
configuration as an implementation-agnostic set of features,
whereas a product comprises the implementation generated
for a configuration [25].

We denote all elements after evolution with a prime sym-
bol (e.g., the feature set after evolution is F’). We define
feature-set evolution using standard set operations. As con-
figurations are sets of selected features, we use common set
operations to formalize update operations. For instance, if the
feature GPS is deleted, we express this with F/ = F \ {GPS}
and its removal from a configuration ¢ with ¢’ = ¢ \ {GPS}.

To describe evolution of feature-artifact mapping, we
define a replace operator M [exp, — exp] that iterates over
all application conditions of M and replaces occurrences of
the feature expression exp, by the feature expression exp;.
In the running example, if Diesel should be replaced by
Engine in the feature-artifact mapping, we express this as
M’ = M[Diesel — Engine]. For simplicity and with-
out loss of generality, we assume that if a realization artifact
i € I is modified, this results in a new artifacti’ ¢ I,i’ € I'.
This makes our notation independent of concrete artifact lan-
guage and artifact evolution operation, as, if an artifact i was
changed, we consider it to be a new different artifact i’ after
evolution.

We formalize product behavior and its preservation. As,
in general, program behavior equality is undecidable [26],
we rely on a more conservative notion for comparison. As
approximation for product behavior, we use the definition of

@ Springer

SPL evolution by domain engineer

(F,I,M) | (F', 1", M")
1
l : Guidance G l
|
c ~ o

Configuration evolution by
J{ application engineer using Guidance G J{

Product behavior preservation if
[M]e = [M']

Fig.2 Commuting diagram of updating a configuration after product-
line evolution

aproduct, i.e., [M].. Product behavior of a configuration c is
preserved if we can find a configuration ¢’ that results in the
same set of artifacts. Thus, we exploit the fact that syntactic
equality preserves product behavior.

Definition 1 Foraproductline (F, I, M)evolvedto (F’, I', M),

configurationsc¢ € P(F),andc’ € P(F’), the productbehav-
ior of ¢’ preserves the product behavior of ¢, if

[M]e = [M]e

For instance, if feature GPS is mapped to igpg, fea-
ture Glonass is mapped to icionass and configuration
¢ = {GPS, Glonass} is used for product generation, the
product behavior of ¢ is defined by [M] . = {igps, iclonass}-
During evolution, Glonass is merged into GPS and GPS is
mapped to ig1onass- By removing Glonass from c result-
ing in ¢/ = {GPS}, ¢ preserves the product behavior of ¢
(i~e-’ [[Mﬂc = [[M/]]c’ = {iGPS9 iGlonass})-

To preserve product behavior of a configuration, this con-
figuration may need to be updated (e.g., ¢’ = ¢\ {Glonass} in
the example above). We identify configuration subsets that
need to be updated by adapting the filter operator | of Sam-
paio et al. [22]. For a feature set F' and a feature expression
exp, F 1 exp yields the set of configurations of F that sat-
isfy exp. For instance, in the running example, if AudioCD
and Cassette are deleted, all configurations that select any
of these features need to be updated, i.e., the configurations
yielded by F | AudioCD V Cassette.

3 Guided configuration evolution

Individual knowledge of neither domain engineers nor appli-
cation engineers is sufficient to update configurations after
product-line evolution. For instance, in the running example,
domain engineers might not know the requirements of config-
urations that selected the Casset te feature and application
engineers need to know that this feature was deleted. We pro-
vide a methodology to support domain engineers in guiding
application engineers on updating their configurations.

Guiding the evolution of product-line configurations

Table 1 Guidance for a Delete Feature operation

Operation: delete feature f with realization artifacts (r)

Configuration subsets Update operations Preserves behavior Update Rationale Type
(x1) Deletey : c € F | = fo (S1) ¢ =c(op1,1) Yes (b1.1) Not affected. Can be left as-is (r1,1) Autom (#1)
(x2) Delete; :c € F 1 fo (S2) ¢ =c\ {fo} (op2.1) No (by.1) fo Not available anymore. (r7,1) Semi-autom(t,)

In such guidance, domain engineers formulate instruc-
tions for application engineers to update configurations
in accordance with performed product-line evolution in a
machine-processable manner. Ideally, these instructions can
be applied fully automatically and preserve a configuration’s
meaning in terms of product behavior— even if a different set
of features has to be selected. However, in some cases, prod-
uct behavior cannot be preserved by a new configuration and
application engineers need to decide which of the suggested
configuration update operations to perform to find a configu-
ration that best suits their use case. Application engineers can
use guidance at a time of their choice and independently of
domain engineers to update configurations that are relevant to
them. Figure 2 shows the general idea of our contribution. For
aproductline PL = (F, I, M), application engineers derive
a configuration ¢ and a product represented by [M].. After
domain engineers change the product line to P L', they define
guidance for application engineers to update configuration to
¢’ and corresponding product [M']./, which can be derived
from P L’. Depending on the intent of the evolution operation,
the defined guidance may preserve product behavior. How-
ever, in all cases, domain engineers have to specify whether
product behavior is preserved by applying the provided guid-
ance. In particular, we conservatively assume that product
behavior is not preserved if resulting products use different
implementation artifacts than before evolution (cf. Sect. 2).

3.1 Structure of configuration evolution guidance

Configuration evolution guidance consists of the essence
of product-line evolution, configuration update suggestions,
and statements of product behavior preservation. Table 1
shows an example of guidance for a Delete Feature evo-
lution operation. For easier reference, we added identifiers
in brackets in the table, which we refer to in the text. First,
the rationale of the product-line evolution itself is defined in
natural language (i.e., r in Table 1). This helps application
engineers to understand the overall scope and reasons for
changes that were performed. In the example of Table 1, it is
stated that the feature fj is deleted together with all artifacts
that are mapped to it.

Second, domain engineers have to define a set of guid-
ance elements (i.e., X'). Each guidance element (x; € X =
(S;,U;, t;), visualized as row in Table 1), is defined for a

subset of configurations (S;) for which it is applicable. As a
result, domain engineers must not define an update operation
for each individual configuration but can define one update
operation for a large subset of configurations. In the example,
the guidance element x| contains S which defines the sub-
set of all configurations not selecting the deleted feature. The
guidance element x; contains S> which defines the subset of
configurations that select fj.

Domain engineers define a set of configuration update
operations ({4;) for each guidance element. These update
operations are suggestions for application engineers on how
to update their configurations. For each update operation
(u;,j € U;), domain engineers need to specify the concrete
set operation on the configuration (op; ;), a rationale (r; ;)
that explains why they defined this operation and in which
cases it is sensible to apply the update operation. In the exam-
ple, Uy (only constituent elements shown in Table 1) is the
set of possible configuration update operations for the guid-
ance element x;. It contains one update operation u; ; that
has one set operation op; 1. This operation establishes that
configurations should be left unchanged. The rationale r ;
of this update operation states that these configurations can
remain unchanged as they are not affected by the evolution.

Additionally, domain engineers specify whether product
behavior is preserved (b;, ;) by applying an update operation
(i.e.,u; ; € Ui = (opi,j, i j, bi j)). In this way, application
engineers know whether they can expect stable behavior after
evolution, or whether they need to perform additional work.
For instance, if product behavior did change, the product has
to be tested again in order to avoid error during runtime. In
the example, it is specified that the update operation u1 i
will preserve product behavior (b1,1). The second guidance
element x» is specified analogously to x; for configurations
selecting the deleted feature. However, this feature must be
removed from the respective configurations (op2,1) as the
feature does not existanymore (r2 1) whichresults in changed
product behavior (b2, 1).

Guidance can be applied on different levels of automation.
The type of a guidance element (#; in Table 1) indicates this
automation degree and can be automatic, semi-automatic,
or manual. Guidance with type automatic indicates that the
respective configuration update operation can be applied
without any manual effort from application engineers. Semi-
automatic guidance indicates that manual effort is required

@ Springer

M. Nieke et al.

load relevant
guidance elements
for configuration
check guidance
type

change product line
& write evolution
rationale

semi-automatic v

automatic

manual

identify
configuration
subsets

read update
operations &
update rationales
check guidance
type

define update
operations & write
update rationales

semi-automatic

auto-
matic select most suitable

update operation

does update
operation meet
‘ needs as is?

read evolution

check behavior
preservation

automaticall .
set guidance apply updatg adapt up_date rationale &
types operations operation apply own update
operations

(a) For domain (b) For application engineers.

engineers.

Fig.3 Guided configuration evolution process. a For domain engineers.
b For application engineers.

from application engineers in terms of choosing between
multiple possible configuration update operations that can
then be applied automatically. Guidance has manual type if
no configuration update operation is specified and applica-
tion engineers need to specify update operations on their own
using the information on the product-line evolution. Manual
guidance is required if domain engineers are not able to define
update operations. Guidance G = (r, X)) is defined as a tuple
containing the evolution rationale and the set of guidance ele-
ments. For instance, the guidance of the example of Table 1
is described for an evolution operation that deletes feature
fo- Two guidance elements (x{, x2) are defined for config-
uration subsets not selecting fy (S1) and selecting fy (S2).
Configurations that do not select fj can remain as-is (op1 1)
which preserves behavior (b1,1) as the configurations are not
affected by the evolution (71, 1), and this configuration update
can be applied automatically (z1).

3.2 Guided configuration evolution process

As part of the guided configuration evolution methodology,
we propose processes for domain engineers to define guid-
ance and for application engineers to apply such guidance.
Figure 3a illustrates the process from the domain engineers’
perspective. During evolution, domain engineers have to
gradually define the elements for the configuration evolu-
tion guidance. First, they can perform product-line evolution
as they are used to (e.g., with existing tools). To allow a
high level of flexibility, this evolution is performed indepen-
dently of our method, and consequently, we do not limit how

@ Springer

to change a product line. Optimally directly afterward or
even before, so that no details on the evolution are forgotten,
domain engineers define guidance. To share knowledge on
the evolution, domain engineers have to specify an evolution
rationale. The rationale should be specified in such a way
that application engineers with different levels of expertise
are able to understand it. Second, domain engineers have to
determine which configuration subsets are affected by the
product-line evolution. This is done by analyzing which fea-
tures are part of the evolution scenario. For instance, if the
feature Cassette of Fig. 1 is deleted during evolution, all
configurations selecting Cassette are in one category and
all configurations not selecting Cassette are in another
category. Third, for each of these subsets, domain engi-
neers define one or multiple update operations, and rationales
explaining them with their impact on configurations. Multi-
ple update operations are necessary if the domain engineer
identifies several sensible possibilities to update certain con-
figurations. If domain engineers are not able or do not want
to define update operations, we allow to omit the respective
update operations which results in guidance with manual type
for application engineers. However, this is an undisciplined
usage of our method, and we strongly encourage domain
engineers to define update operations.

Fourth, domain engineers have to analyze how each update
operation affects product behavior. Given that our behavior
preservation notion is based on the set of artifacts included in
a product, this is optimally done with tool support, e.g., with
a verification system that compares the resulting artifacts of
a configuration by evaluating the feature-artifact mapping
before and after evolution. Different levels of product behav-
ior assurance may be defined by domain engineers. In the
following, we give three exemplary levels that may serve as
a sensible basic level set, but domain engineers can define
other levels as well in accordance with the domain or sce-
nario. For instance, proven if product behavior preservation
is shown using a proof system, fested if thorough testing
resulted in the same product behavior, or reviewed if experts
reviewed the resulting product and confirm product behavior
preservation.

Fifth, a guidance type has to be set for each update oper-
ation, determining the automation degree of the guidance.
For cases without alternatives for update operations, domain
engineers set the type to automatic, e.g., if the evolution was a
refactoring or if only one operation is possible. However, this
type should be used only if product behavior is preserved or if
other circumstances force this operation (e.g., management
decisions). If multiple update operations are available or if
domain engineers are not sure whether the update operation
is suitable, domain engineers set the type to semi-automatic.
We consider it as undisciplined usage if no update operation
was defined, and set the type to manual.

Guiding the evolution of product-line configurations

Figure 3b shows the process from the application engi-
neers’ perspective. When application engineers want to
update a configuration to a new product-line version, the
knowledge transfer takes place. First, application engineers
evaluate which guidance type is set for that configuration. If
the category is automatic, the respective update operation can
be applied automatically, without manual effort from appli-
cation engineers. Nevertheless, the update operation and the
rationale can still be inspected by application engineers. If
the category is semi-automatic, application engineers have
to select the most suitable update operation based on the
rationales. The selected operation can then be applied auto-
matically. Moreover, application engineers can adapt the
update operations if needed. If it is manual, the application
engineers can read the rationales that explain the product-line
evolution. Based on this information, application engineers
need to find a fix on their own.

4 Guidance templates

Specifying guidance for product-line evolution requires up-
front effort. To reduce effort for domain engineers, we
provide the possibility to store guidance for evolution scenar-
ios in the form of templates to facilitate reuse. Consequently,
guidance templates further automate the presented process,
but are not necessary to apply our method, e.g., for update
operations that are used only once. In contrast to guidance
without templates, templates additionally specify the evo-
lution scenario for which they are applicable. An evolution
scenario £ = (ep, epr) consists of feature-model evolution
(er) and feature-artifact mapping evolution (e,s), described
in terms of the evolution operations we defined in Sect. 2.
The evolution operations are preconditions for applying the
guidance defined in the templates. Thus, an evolution tem-
plate 7 = (&, G) consists of a description of the evolution
scenario and the corresponding guidance.

In the following, we define three exemplary guidance
templates for common evolution scenarios. We chose those
scenarios as related work identified them as relevant evo-
lution cases [22,27-29]. The templates also illustrate the
general concept of guided configuration evolution. To better
reference the table’s elements in the text, we add identifiers
for guidance elements and update operations.

4.1 Delete feature

Itis expensive to maintain a large set of features and their real-
ization artifacts so that we define the Delete Feature template
to remove obsolete features from the product line. Maintain-
ing certain features may not be profitable anymore. In the
running example (cf. Fig. 1), cassettes are rarely used and

almost no customer selects the feature. Therefore, this fea-
ture is deleted, including its mapped artifacts.

We used the guidance of this template to illustrate the
structure of guided configuration evolution in Sect. 3.1.
Table 2 shows the elements of this template, and thus, mostly
resembles Table 1. Therefore, we only describe the product-
line evolution which is the precondition for applying this
template. As precondition, the feature fy is removed from the
feature set and in the feature-artifact mapping, it is replaced
by false. The first guidance element (Delete() addresses the
configuration subset not selecting fi. We specify the type as
automatic because such configurations remain unchanged,
as they are unaffected by the operation, and explain this in
the rationale.

4.2 Merge features

When systems evolve, individual features may grow together
into one semantic unit [27] for which we define the Merge
Features template. In our running example, new cheaper
hardware is capable of providing functionality for both fea-
tures GPS and Glonass. Thus, Glonass is merged into
GPS.

Table 3 shows this template. The source feature f is
merged into the rarget feature fy, and thus, f; is removed
from the set of features and f] is replaced by fo in the feature-
artifact mapping.

We define four guidance elements for this template. The
first element Merge,, is for the configuration subset selecting
neither fo nor fi. As the merge does not affect them, we
leave the configurations unchanged. Thus, product behav-
ior is preserved, no interaction is required, and we set the
guidance type to automatic. We define the second guidance
element Merge, for the configuration subset which selects
both fyand f1. As update operation, we specify to remove fi
as fo provides functionality for both features after evolution.
Product behavior is preserved using this update operation,
and thus, we set the guidance type to automatic.

The third guidance element Merge, is for configurations
containing f but not f1. As fj still exists and configurations
that select this feature might still be valid after evolution,
existing approaches [16,20,21] detecting defects in configu-
rations would leave the configuration as-is. However, as fj
also provides the functionality of f; after evolution, with our
methodology, we know that the respective products do not
preserve behavior. Without this knowledge, products with
syntactically similar configuration but with altered behav-
ior might be deployed, which may cause harm. Thus, in the
first update operation M> ,, we define that the configuration
is left as-is, but we make application engineers aware that
product behavior changed. For application engineers who do
not want to have the additional functionality of f; in the prod-
ucts, we provide a second update operation M5 5, that removes

@ Springer

M. Nieke et al.

Table 2 Template Delete Feature

Operation: delete feature f with realization artifacts
F' =F\{fo}, M" = M{ fo — false]

Configuration subsets Update operations

Preserves behavior

Deletey :c € F1—fo d=c Yes
Deletey :c € F 1 fo ' =c\ {fo} No

Update rationale Type
Not affected. Can be left as-is Autom
fo Not available anymore Semi-autom

fo from configurations. As domain engineers do not know
which update operation is most suitable for application engi-
neers, the guidance type is semi-automatic. Thus, application
engineers must select an update operation that can be applied
automatically.

Merges describes the remaining case, i.e., for configura-
tions that do not select fj butselect f and is defined similarly
to Merge,. As f1 does not exist anymore after evolution,
it must be removed from all configurations selecting it. We
define two configuration update operations for this case. M3 4
removes f] from the respective configurations. As this results
in loss of f1’s functionality, we define that product behavior
is not preserved. In the second configuration update opera-
tion M3, f1is removed as well, but fj is added. As a result,
products of respective configurations provide the function-
ality of both, fp and f}, after evolution, similar to M>,.
Consequently, product behavior is not preserved as it addi-
tionally contains the original functionality of fy. Again, we
set the guidance type to semi-automatic as product behavior
cannot be preserved and application engineers have to decide
whether they want to lose the functionality of f; or can accept
the additional functionality of fy.

4.3 Extract new feature

To allow more precise configuration, parts of a feature’s func-
tionality can be extracted into a separate feature so that we
define the Extract New Feature. In our running example, both
engine types are equipped with a turbocharger and this func-
tionality is integrated into both features. For cheaper variants,
the turbocharger should be optional. Thus, this functionality
is extracted into a new feature Turbocharger. The Extract
New Feature template shifts functionality from a source fea-
ture into a new target feature.

Table 4 shows this guidance template. We add a new fea-
ture f1 to the feature set. As some artifacts mapped to fp
should be extracted to fi, we need to represent this in the
feature-artifact mapping. We identified four cases: first, if an
artifact remains mapped to fj after evolution, we leave the
feature-artifact mapping as-is; second, if an artifact belongs
to the functionality that is extracted, we replace fo by f] in
the application condition; third, if an artifact is required only
to make both features work together, we replace fo by foA f1

@ Springer

in the application condition; fourth, if an artifact is required
by both features individually, we replace fo by fo Vv f1 in the
application condition. As the required evolution operation
may differ for each artifact, domain engineers can change
each application condition independently.

We define guidance elements for two configuration sub-
sets. First, Extract targets configurations not selecting fp.
Principally, those configurations could be left as-is and
product behavior would be preserved. However, new configu-
ration options are introduced and application engineers might
want to use them. Consequently, we define three update oper-
ations. The first update operation E , leaves corresponding
configurations unchanged and preserves product behavior.
The update operations Eg, and Ego. add fy or fi, respec-
tively, to the configuration. The two latter update operations
do not preserve product behavior. To make application engi-
neers aware of these new configuration options, we set the
guidance type to semi-automatic.

The second guidance element Extract| targets subsets of
configurations that select fy. Again, product behavior could
be preserved by adding f] to these configurations. Similar
to Extracty, application engineers might want to use the new
configuration options. Consequently, we define three update
operations. The first operation Ep, adds the feature f; to
the configurations as described above. The second operation
E1p leaves the configuration as-is. The resulting product’s
functionality is reduced by the extracted functionality of fi.
The third operation Ej . is relevant only if the functionality
that has been extracted should be available. Correspondingly,
fo is replaced by f7 in configurations. Again, the latter two
operations result in altered product behavior.

For this evolution scenario, existing approaches fixing
defects in configurations [16,20,21] would leave the configu-
ration as-is because fj still exists. In configurations covered
by Extracty, this would even preserve product behavior, but
application engineers would not be informed about the new
configuration options. However, for configurations covered
by Extract, this would even lead to changed product behav-
ior, which may entail significant risk and cost to later fix and
update these configurations.

Guiding the evolution of product-line configurations

91qerdoaooe s1 0f aInjeay jo Ayeuonouny
[euonippe oy J1 0f Aq 1/ ainjeay ooerdoy

Aypeuonoung

s, 1J jo ssof ur sjnsoy -o[qeidosoe

jou st 0f a1y jo Ajpeuonouny

{IN{YIno) = p:9ey

wone-rus [euonIppe Ji 1) a1mjeaj oAowy ON {I\o= p:7epw (IS vOof) | g 20: CaSiop
Kypeuonouny
s.0/ Jo sso[ul synsoy “oqeidoooe
jou s1 LS aInjeay jo Ayeuonouny
[euonippe i 0/ aInjeay dAOWY {0f}\ o= p:ay
d1qeidaooe st 1) ainjedy jo
wone-ruas Kji[euonOUNy [RUOIIPPE) JI SI-SB QAR ON 2= 0.7y (= Of) | g 20: LSiop
QIOWAUE JSTX? JoU
saop 1 *0f Aq pa1oaod mou are 1) pue
womny 0/ sa1meay Pajodas Y1oq jo Ajjeuonoung SOR {UI\o=p (v Oofy | 4 20: a8y
womny SI-SB 1J9[9q UB)) "PajJodfJe JON SOA 2=, (f=vOof) | 4 20:080p
adAL, oreuoner epdn JIOTABYQQ SIATISAI] suonerado ojepdn $319sqns uoneIN3yuo))

O < Ylw = w{I\d =4
0/ armyeay ojur I/ ameay Jo Ajpeuonouny a31ow :uonerado

saumaf 2342y derdwal, € d|qel

pringer

As

M. Nieke et al.

1/ Kq 0f qoeydax ‘pamsap st 0f noyyim 1f jo Kyjeuonouny oyl J

{(In{of}\o= o717

SI-SE 3Jo] 2q UEd 1 ‘parIsap st I/ noyim 0f jo Ajjeuonouny oy J ou 2= p: 71y
wone-ruds 1/ ppe ‘Io1aeyeq Jonpoid aaresaid of, SOA {(Yino=p: 7y 0f | o 0 Loauxyg
pappe 9q mou ued I ‘pamsap st 0f noypim 1S jo Ajrreuonouny oy J {(fino=,0:70g
pappe 2q mou ued 0/ ‘pamsap st IS noypim 0f jo Ajrreuonouny oy J ON {(0fyno=p: 907
WOINe-TS SI-SB 1J9[2q UB)) ‘PIJOJJ. JON SR 2= 0:70g 0f | o 9: 0pvaxyg
adAL, oreuoner ojepdn IOTABYQQ SOATSAIJ suorjerado ojepdn s)osqns uoneIIyuo))

v u | [(f ANY) < OfJu = w ' [(f v Of) < 0fJut= (1) < Ofjur= ww=u}>S W {fIng =4

1/ a1myeay mau e ojur 0f aInjee Jo Afeuonouny awos Joenxa :uoneradQ

a1mpa] MaN 1ov43xg ejdwial, ¢ djqel

pringer

Qs

Guiding the evolution of product-line configurations

do update operations

meet needs as is?
apply template 5 check template's
evolution operations guidance elements

are additional
update operations
necessary?

no

check behavior set guidance .
preservation for new; % - wri e]
update operations YP rationales

Fig. 4 Guided configuration evolution process for domain engineers
using templates

define additional
update operations yes

adapt
update operations

4.4 Evolution process with templates

The presented templates are examples that illustrate the usage
of guided configuration evolution, and we do not claim com-
pleteness of the template set. Hence, as additional templates
may be necessary, we enable domain engineers to define their
own templates. However, since it is not the case that each
guidance might be worth a template (e.g., one-off occur-
rence of an evolution operation), our methodology can also
be applied without templates following the process defined
in Sect. 3.2.

To cover the guided configuration evolution with and
without templates, we need to adapt the process defined in
Sect. 3.2. Figure 4 shows the process for applying a tem-
plate from domain engineers’ perspective. After selecting a
template to be used, domain engineers perform the defined
evolution operations for the feature set and the feature-artifact
mapping using the tools they are used to. Using suitable tool-
ing, this step can be further automated. After performing
evolution operations, a tool can help in identifying suit-
able templates from a template catalog. As the feature set
and feature-artifact mapping evolution operations defined in
the templates are preconditions for applying the template,
template’s operations have to match the actually performed
changes to the product line.

In the following steps, domain engineers have to check
whether the elements defined in the template meet their
needs. Optimally, the update operations meet the needs as-is
and no additional or modified update operations are nec-
essary. However, domain engineers should always check
whether they can define additional domain-specific update
operations to better guide application engineers for a con-
crete evolution scenario. If the update operations are not
completely matching the evolution scenario or the domain
engineers’ requirements, existing update operations can be
adapted or can be supplemented by additional operations. For
instance, if a feature should be replaced by another feature,

the delete feature template can be applied with the first fea-
ture to be deleted, but domain engineers can adapt the update
operations such that the first feature is replaced by the lat-
ter feature in configurations. For changed or added update
operations, domain engineers need to analyze whether prod-
uct behavior is preserved. If domain engineers specify that a
new update operation preserves product behavior, they have
to ensure that the resulting artifact set is the same after the
update, e.g., with a formal proof or excessive testing. In the
next step, the guidance types of the guidance elements must
be set. We deliberately define this as a mandatory step to stim-
ulate domain engineers in providing more information. We
expect that as much domain-specific information as possi-
ble helps application engineers in fixing their configuration.
Finally, the rationales for the evolution operation and the
update operations have to be written. This is of particular
importance as application engineers use this information as
main source for decision making on how to update configu-
rations.

By using templates, we expect that the effort for defining
guidance can be reduced. If a template can be used as-is, it
can be fully automated resulting in no manual effort. If no
existing template is suitable or an existing template must be
adapted, the defined guidance can be saved as new template.
These new templates can be added to a template catalog,
and over the entire life cycle of a product line, the tem-
plate catalog can grow to cover most evolution scenarios.
Additionally, as product-line evolution is formally defined in
the templates, this serves as basis for automatically selecting
suitable templates when evolution scenarios can be detected
from performed changes. Such an automated detection would
reduce the effort for domain engineers even more as they do
not have to search for an applicable template. Even if effort
remains unchanged, it results in proactively avoiding errors
instead of retroactively fixing errors constituting a quality
assurance mechanism. This process shows the flexibility of
the guided configuration evolution as it can be used from
scratch without any templates (e.g., if an evolution operation
is too specific to save it for reuse), it can be gradually extended
by templates, existing templates can be reused directly, or
existing templates can be adapted for a concrete scenario.

5 Proving behavior preservation

We fully formalized proofs for behavior preservation of the
three templates using the theorem prover PVS [30]. For the
sake of brevity, we provide sketches of those proofs in the
following and provide the complete proofs via our online
repository.’

3 https://gitlab.com/mnieke/guided-config-evo-eval-data.

@ Springer

https://gitlab.com/mnieke/guided-config-evo-eval-data

M. Nieke et al.

‘We utilize the formalization that we introduced in Sect. 2,
i.e., product behavior of a configuration c is preserved by ¢,
if [M]. = [M'] . For the Delete Feature template, behavior
is preserved for configurations that did not select the deleted
feature fy (cf. Table 2, Deleteg). To show this, we prove the
following theorem.

Theorem 1 Forproductline (F, I, M) evolvedto (F',1', M"),
giventhat 1 CI', f e F,F/ = F\{f}and M' = M[f —
false]:

Yee F1(=f):[M].=[M].

The idea of the proof is that we can show that for an arbi-
trary M, an M’ = M[f > false] exists, which produces
the same value for configurations not containing f. We have
proven this in PVS by induction over the application condi-
tions of all feature-artifact mapping entries. We have proven
all of the following theorems in PV using similar reasoning.

For the Merge Features template, behavior is preserved if
either both features fj and f; were not selected in ¢ or both
features were selected (cf. Table 3, Merge, and Merge,).
In the first case, the configuration remains as-is and, in the
second, f7 is removed. To show behavior preservation for
Merge, and Merge;, we have proven the following theorem:

Theorem 2 Forproductline (F, I, M) evolvedto (F',I', M),

given that I C I', with fo € F, fi € F, fo # f1,F =
F\{fi},and M' = M[f1 — fol:

(Vee Fl(=forn=fi):c =c [M]c=[M]HIN
(Yee F1(fon fu:cd=c\{fi},[M]c =[M]c)

For the Extract New Feature template, we are principally
able to preserve behavior for all possible configurations. In
particular, for configurations that do not select the feature
fo, we leave the configuration as-is, and for configurations
that select fy, we additionally select the extracted feature f;
(cf. Table 4, Extracty, and Extract). We formalized and
proved the template using the following theorem:

Theorem 3 Forproductline (F, I, M) evolvedto (F',I', M),

giventhat I C I', with fo € F, fo # fi1, F' = FU{f1}
and M' C {m' = m,m" = m[fo — fil,m' = m[fo —

(fon fOlm" =mlfor (fov fOllme Mj:

(Vee F1(=fo):c' =c, [M]c = [M]cHIN
~NVee F1(fo):c'=cU {f1}, [[MHC = HM/]]C/)

Successful application of our method requires that the
templates, and especially, the feature set and feature-artifact
mapping evolution operations are applied correctly. To
ensure this correct application, tool support is beneficial that
either applies the evolution operations automatically or veri-
fies whether performed evolution matches the pre-conditions
of a template.

@ Springer

6 Applying guided configuration evolution

Tool support is pivotal for practitioners to use guided config-
uration evolution in real-world development projects. Thus,
we sketch the core functions a production tool needs to
provide based on our methodology along with the suit-
able application orders of these functionalities to realize the
workflows of Figs. 3a, b and 4. We implemented an early
open-source prototype, named GuyDance,* to show feasi-
bility.

Preserving compatibility with existing processes and tools
is crucial for acceptance. For this reason, domain engineers
can perform changes to their product line with tools they are
used to. This is particularly important as guided configura-
tion evolution can be used for certain important evolution
operations, but does not have to be used for all operations.
Thus, if domain engineers consider a change as minor, our
method does not have to be applied, but it can be applied
for other changes or even retroactively when first problems
occur.

To define guidance, domain engineers have three options.
First, they can define guidance without using an existing
template. Second, they can define guidance and save this
guidance as a new template. Third, they can reuse an exist-
ing template with or without adaptation. For this last option,
the level of automation can be increased with additional tool
support. As highlighted in Sect. 4.4, template evolution oper-
ations on the feature set and the feature-artifact mapping
can be applied automatically and, subsequently, the guid-
ance of that template can be reused. Another option is to
automatically identify templates that match the evolution of
the feature set and the feature-artifact mapping. For instance,
the tool FEVER [31] is able to extract and detect changes that
match a certain pattern, such as evolution scenarios described
in templates. To define or adapt guidance and respective
templates, a domain-specific language that provides the pos-
sibility to specify respective information is most suitable.
In GuyDance, we used Xtext® for defining a grammar and
editors for guidance and templates.

For application engineers, the first step is to analyze which
guidance elements (i.e., rows in the example tables) are rele-
vant for an existing configuration. As the configuration subset
of a guidance element is defined formally, this can be eval-
uated using a SAT solver or a simple Boolean evaluation
algorithm. For instance, if a subsetis definedasc € F | — fy
and a configuration selects features fi, f», the SAT solver
can check the formula — fy A f1 A f> for satisfiability. In this
example, the configuration would be part of the defined sub-
set, i.e., the guidance element is relevant. Next, based on the
guidance type, configuration update operations are (semi-)

4 https:/gitlab.com/DarwinSPL/GuyDance.
3 https://www.eclipse.org/Xtext/.

https://gitlab.com/DarwinSPL/GuyDance
https://www.eclipse.org/Xtext/

Guiding the evolution of product-line configurations

automatically applied or have to be manually performed by
the application engineer. To increase user experience, the
effect of these operations can be shown as a preview. The
actual execution of the update operations can be fully auto-
mated as the update operations are defined as set operations
on configurations. To apply an update operation, selected
features of an existing configuration are either deselected or
newly selected features are added to that configuration.

A characteristic of our methodology is that it does not
depend on an input configuration being valid. It is capable
of using an invalid configuration as input to apply update
operations. As output, we do not limit the approach to
valid configurations, but deliberately decided to allow invalid
configurations as output. Thus, it is not required to check con-
figuration validity after each evolution step. In contrast, we
allow to perform multiple/all required update operations first
and then check for validity, e.g., using interactive config-
uration editors [1,20,32]. Otherwise, configuration validity
would have to be reestablished after each evolution step. As
new product-line versions typically contain multiple evolu-
tion steps and configurations are not necessarily updated to
each new product-line version but skip multiple versions,
updating to a new product-line version would lead to many
validity checks and modifications to configurations. Addi-
tionally, if a configuration becomes invalid in an intermediate
evolution step but would remain valid after the application
of all evolution steps, this would lead to unnecessary diver-
gences from the original configuration. Apart from that, if
configuration validity has been restored first, finding a con-
figuration that preserves product behavior may render this
configuration invalid and, thus, requiring to restore config-
uration validity again. We expect that most configurations
remain valid if product behavior can be preserved. If this
is not the case, it is most likely that no valid configuration
exists that preserves product behavior as a different but valid
configuration would result in different product behavior. As
a result, we propose to consider configuration validity only
after applying the guidance of all product-line evolution steps
that have been performed since the last configuration update.
With our methodology, we take the first step in the process
of updating configurations to new product-line versions. Our
goal is to achieve a high degree of automation with a focus
on product behavior. It remains an open research question
whether it is better to reestablish configuration validity after
each evolution step, at the end of multiple evolution steps, or
in combination with product behavior.

7 Evaluation

Our goal with guided configuration evolution is to automate
the process of updating configurations semantically as far as
possible. To show that we achieve this goal, we perform three

complementary evaluations: First, we have proven behavior
preservation in PVS for typical evolution scenarios captured
by our pre-defined templates (cf. Sect. 5). Second, we per-
form a qualitative evaluation of the guidance templates and
methodology based on the real-world evolution of our indus-
try partner’s product line (cf. Sect. 7.1). Third, we perform
a quantitative evaluation based on the real-world evolution
of the Linux kernel product line and based on real-world
configurations of two product lines (cf. Sect. 7.2). With the
latter two evaluations, we seek to answer the following main
research question:

RQOmain Is it feasible to apply guided configuration evo-
lution to real-world product-line evolution?

We pose individual research questions for each evaluation
which are defined in the respective subsections.

7.1 Qualitative evaluation

In the qualitative evaluation, we investigate the following
research questions:

RQIaTs it feasible to adapt guidance templates to fit real-
world product-line evolution?

RQIbIsitfeasible to derive new guidance templates from
real-world product-line evolution?

RQIc What is the effort to define guidance for real-world
product-line evolution?

To retrieve realistic data for product-line evolution and
intended configuration update operations, we interviewed
our industry partner Schnapptack (https://schnapptack.de/)
about the evolution of their web application product line and
problems that emerged during this process. With their Soft-
ware Product Line (SPL), they can derive custom-tailored
web applications that are based on different visual blocks of
which the web application can be composed. The project is
medium scale with around ten developers working on it. We
identified ten evolution scenarios by interviewing the project
leader on the product-line evolution. Then, we applied our
pre-defined templates if possible. If the three example tem-
plates were not sufficient and, thus, could not be applied as-is,
we adapted these templates to fit the scenarios to answer
RQla. If no existing template is suitable for a scenario, we
define new guidance and, if possible, derive a new template
from that scenario to answer RQ1b. Finally, we investigated
how much effort was spent to apply and adapt the templates
to answer RQlc.

Figure 5 shows an excerpt of the feature model provided by
Schnapptack before evolution. Most of the features represent
blocks, which are visual components to build web applica-
tions. The original feature model contains 111 features but

@ Springer

https://schnapptack.de/

M. Nieke et al.

schnustomizer

[root schnapache]/C{baseblocks

divider block

Fig.5 Excerpt of Schnapptack’s feature model

we omit parts not affected by evolution. In the following,
we explain five scenarios we identified in the interview. The
remaining five evolution scenarios were similar to the fol-
lowing ones, which results in the same insights.

7.1.1 Scenario 1

The feature baseblocks groups all basic block features
(e.g., devider block, gallery block, ...) and the
data model of all basic blocks was mapped to baseblocks.
To allow more fine-grained configuration options, all basic
blocks become optional and the data models for each
basic block feature are extracted from baseblocks to the
respective features. Finally, baseblocks is deleted. We
adapted the extract feature template to map artifacts to an
existing feature. We performed this scenario for each of the
sub features. Then feature baseblocks is removed using
the delete feature template.

7.1.2 Scenario 2

By mistake, two features implement the same functional-
ity (deviderblock and dividerblock). Therefore,
deviderblock is removed together with its mapped arti-
facts. We captured this scenario by applying the delete
Sfeature with mapped artifacts operation. As we know that
both features implement the same functionality, we adapted
the template so that it replaces deviderblock with
dividerblock in configurations. This does not preserve
product behavior as different artifacts are used, but we
explained in the rationale that product behavior is similar.
However, without our method, a configuration update oper-
ation would just deselect the feature deviderblock in
configurations which would unexpectedly result in changed
product behavior.

7.1.3 Scenario 3

The features gc_textblock and textblock imple-
ment similar functionality and share code mapped to text.
The textblock is the more mature feature, but the
gc_textblock feature implements additional bug fixes

@ Springer

for the shared functionality. Thus, both features are merged
into text and we applied the merge feature template twice.

7.1.4 Scenario 4

A library of the feature schnustomizer is used by other

features. Some features have a dependency to schnustomizer

only to use this library. Other features are mapped to copies of
this library (even in old versions). To resolve the unnecessary
dependency to other functionality of schnustomizer and
to resolve the redundant library copies, we created a new fea-
ture and map the library to it instead of schnustomizer.
Additionally, we removed the feature-artifact mapping of
all other features to the library. We captured this sce-
nario using the extract new feature template on feature
schnustomizer. As an original configuration that selects
schnustomizer might still be valid, product behavior
would change, and without configuration guidance, appli-
cation engineers might be unaware. For configurations that
select other features containing copies of the library before
evolution, we defined additional configuration update oper-
ations that are equal to Eq . and set the guidance category
to automatic. Thus, the new feature is automatically selected
in respective configurations without the need for interaction
from application engineers.

7.1.5 Scenario 5

In the last scenario, a feature nginx is introduced to super-
sede feature schnapache. The feature nginx is now the
default webserver, but the schnapache webserver is still
available. For this scenario, we created a new template con-
taining two configuration update operations: First, to replace
schnapache with nginx in all configurations and, sec-
ond, to leave each configuration as-is. As schnapache is
still valid, we set the guidance category to semi-automatic
and write in the rationale that we encourage using nginx
but that it is not compulsory. The first configuration update
operation does not preserve product behavior, but the second
one does.

7.1.6 Discussion

We were able to capture all evolution scenarios of Schnapp-
tack and provide sensible configuration update operations. In
more details, for Scenarios 1-4, we reused our pre-defined
templates. For Scenarios 1, 2, 4, we had to adapt the tem-
plate configuration update operations to fit the scenarios. For
Scenario 2 in particular, we were able to simulate a replace
feature operation by adapting the delete feature template,
which shows the flexibility of our method. Thus, we are able
to adapt guidance templates to fit real-world product-line
evolution (RQla).

Guiding the evolution of product-line configurations

In Scenario 5, we could not reuse any template but had to
define completely new guidance. This required to write the
rationale, to identify the relevant configuration subsets (i.e.,
¢ € F | Schnapache and ¢ € F | —Schnapache), and to
define configuration update operations for those configura-
tions. In particular, we defined two possible update operations
¢ = cand ¢ = (c\ {Schnapache}) U {nginx} for config-
urations that select Schnapache. Configurations that do not
select Schnapache can remain as-is, i.e., ¢’ = ¢. We defined a
replace feature template based on this scenario, and thus, we
are able to derive new guidance templates from real-world
product line evolution (RQ1b).

Adapting existing (RQla) and deriving new templates
(RQ1b) requires deep knowledge of the variability of the
considered product line and foresight regarding the impact
of changes on configurations. However, we argue that defin-
ing and adapting templates is in the same problem domain as
defining and modifying feature models or variable implemen-
tations, e.g., #ifdef annotations. Thus, domain engineers who
are responsible for feature models and variable implementa-
tions should be able to define and adapt guidance. Moreover,
with an increasing catalog of guidance templates, we envision
that most of the occurring evolution operations are covered
by an existing template. Therefore, less experienced domain
engineers are able to reuse these templates which makes the
entire evolution process even easier for them than without our
method. For the remaining cases which are not covered by
existing templates, experts who are experienced in defining
guidance can be consulted.

The effort we had to spend to define guidance (RQIc)
slightly differs for each scenario. In Scenario 1, we adapted
the existing extract feature template and instead of extracting
functionality to a new feature, we used an existing feature as
target. In particular, the only change to the template was to
remove the feature-set evolution operation. Then, we applied
the delete feature template which resulted in almost no addi-
tional costs as it already existed and we just had to select the
feature to be deleted and apply the evolution operation.

For Scenario 2, we adapted the delete feature template
to replace the deleted feature in configurations by another
feature. Thus, we only had to modify the template con-
figuration update operation correspondingly (¢’ = (¢ \
{deviderblock}) U {dividerblock}).

In Scenario 3, the templates could be applied as-is and,
thus, this resulted in no additional effort. In Scenario 4, we
had to adapt the extract new feature template. The main chal-
lenge was to identify the features with library copies which
was done together with our interview partner. In Scenario 5,
we defined completely new guidance and a new template as
described above.

In contrast to real-world application of our methodology,
we as external researchers defined the guidance for the sce-
narios. To this end, we interviewed our industry partner to

understand the product line and what is planned for the next
evolution steps. To better understand the necessary effort, we
give some quantitative data in terms of time we spent to define
the guidance for the scenarios. In particular, the interview was
split in two sessions and took about 2 hours. However, this
also included understanding the product line and the feature
model, which would not be necessary for engineers who are
familiar with that product line. In summary, we spent about
20 minutes per scenario. Most effort was spent for identify-
ing relevant features in Scenario 4 and for defining the entire
guidance for Scenario 5. However, the latter took us about
ten minutes which is little time compared to investigating all
the company’s configurations individually. Additionally, by
modeling guidance with our approach, we persisted knowl-
edge on how to update configurations that can be used at
a later point in time—even when domain engineers already
forgot what they exactly changed and why.

7.2 Quantitative evaluation

In the quantitative evaluation, we investigate to which extent
the guided configuration evolution is helpful for large-scale
product lines. In particular, we are interested in the pro-
vided automation degree and the number of configurations
for which we provide additional benefit compared to existing
methods. This results in the following research questions:

RQ2a For which percentage of configurations can we
provide full automatic guidance?

RQ2b For which percentage of configurations is knowl-
edge of both domain engineers and application engineers
required?

RQ2c¢ For which percentage of configurations can we
ensure behavior preservation?

RQ2d For which percentage of configurations do we
detect product behavior changes that would not be
detected using existing methods?

To answer these questions, we use hundreds of evolution
operations and investigate the impact on thousands of config-
urations. In particular, we consider evolution operations that
match the templates we defined in Sect. 4. As previous work
identified these evolution operations as relevant [22,27-29],
we use them as representative subset of possible evolution
operations. For each occurrence of an evolution operation, we
investigate, for each configuration, which guidance element
is applicable. In particular, we identify the relevant configu-
ration subset of the guidance elements (rows in Tables 2, 3,
4) that covers the considered configuration.

We perform two complementary quantitative evaluations
with three real-world product lines that correspond to the
different roles for the evolution of product lines and con-
figurations: The first quantitative evaluation represents the

@ Springer

M. Nieke et al.

domain engineer’s perspective who performs and knows
about the actual product-line evolution but does not know
existing configurations. To this end, we use the real-world
evolution. The second quantitative evaluation represents the
application engineer’s perspective who knows about the
maintained configurations but does not perform product-line
evolution. For this evaluation, we use their real-world config-
urations. For both evaluations, from domain and application
engineer’s perspectives, we measure which configurations
are covered by which guidance element as described above.
The evaluation software and all data can be found in our
online repository (cf. Footnote 3).

7.2.1 Setup of domain engineer’s perspective

For the evaluation from domain engineer’s perspective, we
analyze the Linux kernel evolution. From its development
history, we search for commits that correspond to the tem-
plates of Sect. 4 using the tool FEVER [31] and extract the
feature model using the tool KConfigReader [33]. We use
the first six commits found by FEVER corresponding to each
template. For this purpose, we analyze commits between
versions 2.6.28 and 3.16. The analyzed feature model has
between 8003 (version 2.6.34) and 16,542 (version 3.16)
features, depending on the kernel version and analyzed archi-
tecture (i.e., x86, ARM, MIPS, or PowerPC).

Ideally, we would generate all possible configurations to
analyze the evolution’s impact on them. However, it is not
feasible to enumerate all configurations due to exponential
growth of the number of configurations relative to the fea-
tures [34]. For domain engineers, configurations appear to be
random as they do not know which configurations are used
and why. Thus, to retrieve realistic results, we randomly gen-
erate configurations using FeatureIDE v3.3 [35]. For each
commit, we generate 1,000 valid configurations.

7.2.2 Setup of application engineer’s perspective

For the evaluation of the application engineer’s perspective,
we use two real-world product lines and their real-world
configurations [36-38]. Product line Agrib consists of 2008
features and 5749 configurations. Product line ERP con-
sists of 1728 features and 170 configurations. As we did not
have access to multiple versions of both product lines and
evolution appears random to application engineers, we ran-
domly generate evolution scenarios for both product lines
based on the evolution operations of the predefined tem-
plates (cf. Sect. 4). We generate 100 random operations for
each template, resulting in 300 evolution operations for each
product line. Although we randomly generate the evolution
scenarios, we evaluate all available real-world configurations
for each scenario.

@ Springer

100 -

80—

60—

40

==

I I T I I T I I
Delete0 Deletel Merge0 Merge1l Merge2 Merge3 Extract0 Extract1

Percentage of configurations (%)

0— —_

Fig.6 Guidance for real-world evolution of the Linux Kernel with six
evolution operations for each template and 1000 configurations (domain
engineer’s perspective)

7.2.3 Results of the quantitative evaluation

For both quantitative evaluations, we analyze, for each evo-
lution operation, how many configurations are covered by
which guidance element of the templates. Therefore, we are
able to determine for each configuration and evolution oper-
ation whether application engineers can automatically apply
guidance and whether product behavior can be preserved.
For instance, if a configuration is covered by the guidance
element Merge after applying a merge features evolution
operation, the configuration update operation can be automat-
ically applied and product behavior is preserved (cf. Table 3).

Figures 6 (domain engineer’s perspective) and 7 (appli-
cation engineer’s perspective) show the aggregated results
of the quantitative evaluation. Each data point represents
one evolution operation and shows the percentage of con-
figurations covered by the respective guidance element.
For instance, if 100 configurations exist, the delete feature
template is applied and 80 configurations are covered by
Deletey, a data point at 80% for Deletey is added. For sim-
plicity and as the results are very similar, we use average
values of the evaluation of the both product lines, Agrib and
ERP, to describe the results for the application engineer’s
perspective.

The results for both perspectives show similar patterns.
For delete feature evolution operations, most configurations
are covered by the guidance element Deleteq (cf. Table 2),
i.e., the deleted feature is not contained by the respective con-
figurations. In the median, 97.9% of the configurations for
the domain engineer’s perspective (Linux kernel, cf. Fig. 6)
and 95.2% of the configurations for the application engi-
neer’s perspective (Agrib and ERP, cf. Fig. 7) are covered by
Deleteq. This is most likely the case as core features that are
part of many configurations, i.e., which many other features
are dependent on, are typically not deleted in real-world evo-
lution. It is more likely that such features are successively cut
off from other features, and, finally, deleted when no other

Guiding the evolution of product-line configurations

100 == Ifl [——]
o ,
° :
80 —_ o
(o}
° 8
[e]
60—
o o 'g’
(o} o b
40
- o
8 o g ©
g 20 g
K ° E 8
s 3 - 4
o> L ——
T 0 &
o
2100 —_ _ —_
> —
o — ,
€ 80 ' ° L
o 1
o _g_ : 8
60— é — R o o o
g ° § e, B
40— 8 8
g o
—_ [e] 8
20 o : 8 - -
C] < - —
0 L ‘f‘ — g -

T T T T T T T T
Delete0 Delete1 Merge0 Merge1 Merge2 Merge3 Extract0 Extractl

Fig. 7 Guidance for real-world configurations for 100 applications of
each template evolution operation for the product lines Agrib and ERP
(application engineer’s perspective)

features depend on them. Additionally, the results from appli-
cation engineer’s perspective indicate that only few of such
core features exist at all.

Regarding the merge features evolution operations, most
configurations are covered by the guidance element Merge,,
i.e., these configurations contain both merged features. The
respective median for the Linux kernel is 75.2% (domain
engineer’s perspective, cf. Fig. 6) and for Agrib and ERP,
it is 92.9% (application engineer’s perspective, cf. Fig. 7).
The second most configurations for the domain engineer’s
perspective are covered by the guidance element Merge, (in
the median 23.0%), i.e., these configurations contain none of
the merged features. This shows that those features that are
merged are typically selected in combination or not at all.

For the extract new feature template, the results from
domain engineer’s perspective have a similar trend as the
results from application engineer’s perspective, but differ in
the degree of scattering. In general, most configurations are
covered by the guidance element Extract (the source feature
isnot selected). For the domain engineer’s perspective (Linux
kernel, cf. Fig. 6), the median value is at 74.8%, whereas
for the application engineer’s perspective (Agrib and ERP,
cf. Fig. 7), itis at 99.5%. The lower quartile of the configura-
tions covered by the guidance element Extracty is at 31.9%
for the Linux kernel (cf. Fig. 6), whereas it is at 96.6% for
Agrib (cf.Fig. 7 top) and at 88.7% for ERP (cf. Fig. 7 bottom).
In summary, this means that it is rather improbable that func-

tionality is extracted from an important feature that is part
of many configurations. However, the results from domain
engineer’s perspective show that, in real-world evolution, it is
more likely to extract functionality from a typically selected
feature compared to random evolution operations.

Moreover, for some evolution operation instances, par-
ticular guidance elements cover no configuration, e.g., for
Delete;. However, for each guidance element, some evolu-
tion operations exist that result in many configurations being
covered by that guidance element. For instance, the guid-
ance element Merge has covered only few configurations in
general, but it covers 50% of the configurations for one evo-
lution operation for the ERP product line (cf. Fig. 7 bottom).
Consequently, each guidance element is relevant.

To estimate the cost for application engineers to apply
guidance, we analyze the automation degree (cf. RQ2a).
Thus, for guidance elements with automatic type (cf. Sect. 3),
no additional effort by application engineers is required as
their configurations are updated automatically. For guid-
ance with semi-automatic type, application engineers have
to select only the update operation which fits best. For the
delete feature template, we are able to automate guidance
application (Deleteq) for between 18.8% (cf. Fig. 7 bottom)
and 100% (cf. Figs. 6 and 7). For the merge features template,
we are able to automate (Mergeg and Merge;) between 43%
(cf. Fig. 7 bottom) and 100% (cf. Figs. 6 and 7 bottom) of
the cases. For the extract feature template, we deliberately
do not provide any automated guidance as new configuration
options always arise, which may be of interest for application
engineers.

For semi-automatic guidance, knowledge of both engineer
roles is required. Thus, for all configurations covered by the
guidance elements Deletey, Merge;, Merges, Extracty,
and Extract;, application engineers must select an update
operation. Regarding RQ2b, in the median for the delete
feature and merge feature templates, knowledge of both
engineers is required for few configurations. In the worst
case, for 81.2% (Deleteq, cf. Fig. 7 bottom) of the config-
urations, knowledge of both engineers is required. For the
extract template, we need knowledge of both engineers for
all configurations. The configurations for which knowledge
of both engineers is required, are those configurations for
which existing methods [16,20-22,29] do not suffice as they
do not provide the possibility to share knowledge between
the engineers. Even if the median values are not high, in some
cases for up to 81.2% of the configurations, application engi-
neers are left alone in updating the configurations.

One goal of updating configurations to the new product-
line version is to preserve behavior of the resulting products.
Thus, in RQ2c, we are interested in the number of con-
figurations for which product behavior can be preserved.
The respective relevant guidance elements for the delete and
merge templates are Deletey, Mergeo, and Merge;. This

@ Springer

M. Nieke et al.

Table 5 Comparison with partial refinement theory [39] (baseline)

Evolution operation Perspective Median configurations covered Best case additionally covered
more than baseline (%) configurations (%)
Delete Domain engineer 2.1 27.0
Application engineer 4.8 81.2
Merge Domain engineer 1.8 26.0
Application engineer 5.7 57.1
Extract Domain engineer 0.0 0.0
Application engineer 0.0 0.0

exactly matches the automation degree for those templates.
Even if we do not provide full automated guidance for the
extract new feature template, we are able to preserve prod-
uct behavior for all configurations. Consequently, we are
able to preserve product behavior for most of the configu-
rations. Most of the configurations can remain as they were
before evolution, i.e., Deleteg and Mergeq. Thus, without
our method, behavior would be preserved as well, but with
our method, application engineers can be assured that they do
not encounter unexpected behavior changes and know which
evolution steps to focus on.

Existing methods to repair configurations do not consider
changed product behavior but focus on reestablishing con-
formance of configurations with feature-model constraints
[16,20,21,29], which can unexpectedly result in changed
product behavior. With RQ2d, we address these cases, which
occur for the merge features template for configurations cov-
ered by the guidance element Merge; and for the extract new
feature template for configurations covered by Extract.
Again, the median values are not high. However, in the worst
case, product behavior changes for more than half of the con-
figurations (55.3% for one extract evolution operation in the
ERP product line), which would not be detected. Even if only
few configurations fall into those categories, these are critical
cases that can lead to severe problems and cost.

To set the results into perspective, we compare our
methodology to the partial refinement theory [39] as a base-
line. The partial refinement theory also considers product
behavior after product-line evolution, but provides no support
for cases in which no product preserves behavior. However,
they do not consider the communication barrier between
domain and application engineers. Thus, they do not pro-
vide concepts to enable application engineers to know how
to update configurations to preserve product behavior nor to
support cases in which no product behavior can be preserved.

Table 5 compares the results of our methodology with the
partial refinement theory [39]. In particular, we highlight for
which percentage of configurations our methodology addi-
tionally provides support. In the median, the percentage of
additional configurations our methodology supports is rather
low. However, if only 1, 000 configurations exist, this still

@ Springer

means that in the median, we additionally support 18-57 con-
figurations. In the best case, we additionally provide support
for 81.2% (Deletey, cf. Fig. 7 bottom) of the configurations.
If these configurations had not been supported, this could
lead to severe problems. A special case is the extract feature
evolution operation. If this operation is performed, prod-
uct behavior can always be preserved and, thus, the partial
refinement theory [39] provides support for all configura-
tions. However, our methodology goes beyond the partial
refinement theory, and we support to deliberately update con-
figurations such that product behavior is not preserved. For
instance, if only the extracted functionality is required and
the remaining functionality can be dropped. These cases are
not represented by the numbers in Table 5 as it depends on the
decision of application engineers which configuration update
operation to choose. In summary, guided configuration evolu-
tion is relevant in many cases, especially if knowledge of both
engineer roles is required. Additionally, our method provides
awareness for application engineers regarding the product
behavior preservation and our method is highly automated.

7.3 Threats to validity

Internal validity of the qualitative evaluation might be biased
as we interviewed only one person who may have misin-
terpreted the evolution. However, this interview partner is
a leading employee with deep knowledge of the product-
line implementation which reduces the chance for mistakes.
Additionally, in contrast to real-world application of our
methodology, we as external researchers adapted and defined
guidance. As discussed in Sect. 7.1, we expect domain
engineers to be able to define and adapt guidance as they
are already experts in defining feature models and variable
implementations. Regarding the effort, we expect that engi-
neers might take longer to specify the guidance (e.g., in a
tool). However, in contrast to real-world engineers, we had
to understand the project domain and features before defin-
ing guidance. Thus, we expect similar results. Nonetheless,
we will evaluate the application of our method with a stable
prototype of a tool suite by real-world domain engineers our
future work.

Guiding the evolution of product-line configurations

The random generation in our quantitative evaluation may
also affect internal validity. As we are not aware of any
open-source product line for which commit history and con-
figurations are publicly available, we decided to generate
configurations for Linux and generate evolution scenarios
for the Agrib and ERP product lines. Thus, parts of the eval-
uation use real-world product-line evolution and other parts
use real-world configurations. Considering all configurations
and all possible applications of templates is not feasible due
to combinatorial explosion. However, this issue relates to the
problem we address in this work: domain engineers do not
know which configurations exist.

To reduce random bias, we heavily used repetitions by
considering 1,000 configurations for each commit of the
Linux kernel and 100 applications per each template for both
Agrib and ERP product lines. The random generation of con-
figurations affects only the evaluation of the Linux kernel but
not the Agrib and ERP product lines. Random application of
templates affects only the evaluation of the Agrib and ERP
product lines but not the evaluation of the Linux kernel. As the
results for both perspectives are similar, this increased confi-
dence in our evaluation. To generate configurations, we used
the random generator of FeatureIDE [35] (version 3.3) which
does not generate uniformly distributed configurations. How-
ever, tools and methods to uniformly generate distributed
configurations do not (yet) scale for large variability mod-
els as used in the evaluation [40]. Additionally, real-world
configurations are not uniformly distributed and it is not pos-
sible to make statements about distribution without domain
knowledge.

The tools we used for the quantitative evaluation may
affect internal validity as they may contain defects. With
KConfigReader and FEVER, we rely on tools that have been
used in prior studies [13,22,31,33,41]. In particular, FEVER
may detect all or may wrongly detect commits matching the
templates in the history of the Linux kernel. FEVER miss-
ing commits matching operations in the history is uncritical
as we were interested neither in all commits matching the
operations nor in the probability of occurrence.

We increased confidence in the external validity with a
combination of strategies. First, we analyzed a total of four
real-world product lines from different domains. Second, we
analyzed one open-source and three closed-source product
lines with different implementation techniques. Thus, we
reduced the threat that our method is applicable only to sys-
tems with a certain nature. Finally, we focused on evolution
operations that have been identified as relevant in the lit-
erature [22,27-29] and which we indeed could confirm for
Linux.

8 Related work

Highly configurable software systems and the evolution
of such systems have been subject to recent research.
Xu et al. [18] identified misconfigurations leading to vulner-
abilities or bugs. They conclude that developers should take
an active role in handling misconfigurations by supporting
users in the configuration process. With our methodol-
ogy, we address this issue as we provide a method for
domain engineers (i.e., developers) to support application
engineers (i.e., users). Zhang et al. [19] address a very sim-
ilar problem as guided configuration evolution. They are
interested in preserving product behavior after evolution by
analyzing products’ control flow. However, in contrast to
Zhang et al. [19], we use a conservative and almost black-
box approach. This method could be used complementarily
by domain engineers if product behavior cannot be preserved
to devise a suggestion for an update operation.

Recent research analyzed and categorized evolution of
product lines and, in particular, the mapping between vari-
ability model and artifacts [27,31,42,43]. However, the
guided configuration evolution is more generic and helps to
update configurations. With FEVER, Dintzner et al. intro-
duced a tool to extract changes to variability models, code
artifacts, and the corresponding mapping [31]. We used
FEVER to find and extract the commits of the Linux ker-
nel for our evaluation (cf. Sect. 7.2.1). Passos et al. analyzed
the evolution of the Linux kernel variability model and asso-
ciated artifacts to extract evolution patterns [27]. We used
some of these templates as motivating examples from real-
world feature models. In the mentioned research [27,31,42]
categorizations of commits are considered, but the guided
configuration evolution is more generic and helps to update
configurations. Ziegler et al. analyze the Linux kernel evolu-
tion and identify artifacts affected by changes to the variabil-
ity model [43]. These results are incorporated in regression
testing of configurations mapped to changed artifacts. Thus,
they explicitly test artifacts affected by changes. However,
they do not specify on how to fix configurations. Their
approach could be improved incorporating product behavior
preservation properties of evolution operations. Moreover,
several authors identify dead or superfluous #1ifdef blocks
(i.e., feature-artifact mapping entries) [43—46]. Each analy-
sis could be integrated with guided configuration evolution
to check for new dead or superfluous mapping items after
each evolution.

Other research defines refactorings for product-line evo-
lution. Thiim et al. [47] and Alves et al. [48] classify
feature-model evolution in terms of changes to the set of
valid configurations. Both approaches focus on refactorings
for feature models and do not consider product behavior of
configurations. Schulze et al. define refactoring operations
for product lines using feature-oriented and delta-oriented

@ Springer

M. Nieke et al.

programming [49,50]. Seidl et al. define evolution opera-
tions to co-evolve three spaces: feature models, artifacts, and
mappings [51]. For operations affecting more than one space,
they define how to co-evolve the other spaces [51]. In contrast
to the previously mentioned publications, we do not want to
limit evolution to refactorings.

Borba et al. devised a refinement theory for product-line
evolution preserving product behavior [24] and Neves et al.
proposed several evolution templates preserving product
behavior using this theory [28]. Sampaio et al. extended
this theory by introducing partially safe evolution templates,
preserving product behavior for a subset of configura-
tions [22,39]. These methods already allow to reason on
product behavior changes of configurations even in pres-
ence of configuration changes. We devised a novel more
general concept that enables domain and application engi-
neers can share their knowledge to update configurations
after product-line evolution. Thus, domain-specific knowl-
edge can be incorporated and guidance can also be provided
even if product behavior cannot be preserved. We used the
formalizations and proofs of the works of Borba et al. [24],
Neves et al. [28], and Sampaio et al. [22,39] as a basis for
our formalization and the proofs for the templates.

Some research focuses on fixing invalid configurations.
An automatic approach computes the smallest possible set
of changes in the configuration to fix it [16]. Semi-automatic
approaches proposed either to provide the complete set of
fixes with the smallest number of feature changes [21] or to
gradually reach the desired fix using application engineers’
feedback [20]. Both semi-automatic approaches assume that
the person fixing the configuration knows what the best fix is.
Moreover, these approaches do not take the implementation
and feature-artifact mapping into account. Thus, the fixes
may lead to different product behavior and, therefore, provide
a false sense of correctness.

9 Conclusion

We presented guided configuration evolution, a methodol-
ogy for automating the process of updating configurations
semantically after product-line evolution as far as possible.
We enable domain engineers to share the essence of product-
line evolution and to suggest configuration update operations.
Application engineers can use this information to update their
configurations for a new product-line version while know-
ing the impact on product behavior. Even if it is impossible
to communicate directly, our methodology allows applica-
tion engineers to update configurations in accordance with
the evolution performed by domain engineers, at the time of
their choosing, and with the most suitable update strategy.
Additionally, effort is spent only once by domain engineers
to define guidance which can be used by an arbitrary num-

@ Springer

ber of application engineers, optimally resulting in a reduced
overall effort.

This work raises several further research opportunities.
First and most importantly, we lay the theoretical and practi-
cal foundations for guided configuration evolution and show
the relevance in our practical evaluation. To assess effective-
ness, efficiency, and acceptance for real-world product-line
evolution processes, we plan to perform a long-term study
over several years with our industry partners. A second future
work opportunity is an extension to our method that ensures
configuration validity after applying configuration update
operations, which would reduce manual effort of application
engineers even more. Third, we want to investigate automatic
learning from modified templates (either by domain or by
application engineers) to derive new templates or to change
templates sustainably. Finally, if domain engineers define
their own templates, automatic proofs of behavior preserva-
tion would increase usability, as proofs in PVS are typically
not feasible for them.

Acknowledgements This work was partially supported by the Fed-
eral Ministry of Education and Research of Germany within CrESt
(Funding 011S16043S), by the DFG (German Research Foundation)
under SPP1593: Design For Future—Managed Software Evolution, by
FACEPE (Grant APQ-0570-1.03/14), by CNPq (Grant 409335/2016-
9), and by INES 2.0, FACEPE Grants PRONEX APQ-0388-1.03/14 and
APQ-0399-1.03/17, CAPES Grant 88887.136410/2017-00, and CNPq
Grant 465614/2014-0. Sampaio was supported by a CAPES Foundation
Scholarship, Process Number 88881.129599/2016-0.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Thiim, T., Krieter, S., Schaefer,l.: Product configuration in the
wild: strategies for conflicting decisions in web configurators. Proc.
Configuration Workshop (ConfWS). pp. 1-8, RWTH Aachen Uni-
versity (2018)

2. Pett, T., Thiim, T., Runge, T., Krieter, S., Lochau, M., Schaefer, I.:
Product sampling for product lines: the scalability challenge. Proc.
Int’l Systems and Software Product Line Conf. (SPLC). pp. 78-83,
ACM (2019)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Guiding the evolution of product-line configurations

3.

10.

11.

12.

13.

14.

15.

18.

19.

20.

Pohl, K., Bockle, G., van der Linden, F.J.: Software Product Line
Engineering: Foundations. Springer, Principles and Techniques
(2005)

Apel, S., Batory, D., Kistner, C., Saake, G.: Feature-oriented
Software Product Lines: Concepts and Implementation. Springer,
Berlin (2013)

Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S. :
Feature-oriented domain analysis (FODA) feasibility study. Tech.
Rep. CMU/SEI-90-TR-21, Software Engineering Institute (1990)
Schaefer, 1., Rabiser, R., Clarke, D., Bettini, L., Benavides, D., Bot-
terweck, G., Pathak, A., Trujillo, S., Villela, K.: Software diversity:
state of the art and perspectives. Int. J. Softw. Tools Technol. Transf.
14, 477-495 (2012)

Czarnecki, K., Eisenecker, U.: Generative Programming: Methods,
Tools, and Applications. ACM/Addison-Wesley, New York (2000)
Quinton, C., Vierhauser, M., Rabiser, R., Baresi, L., Griinbacher,
P., Schuhmayer, C.: Evolution in dynamic software product lines.
J. Softw. Evolut. Process. 33, 2 (2021)

Pett, T., Krieter, S., Runge, T., Thiim, T., Lochau, M., Schaefer,
I.: Stability of product-line sampling in continuous integration.
In Proc. int’l working conf. on variability modelling of software-
intensive systems (VaMoS). ACM (2021)

Michelon, G.K., Obermann, D.,Linsbauer, L., Assun¢do, W.K.G.,
Griinbacher, P., Egyed, A.: Locating feature revisions in software
systems evolving in space and time. In Proc. Int’l Systems and
Software Product Line Conf. (SPLC). ACM (2020)

Ananieva, S., Greiner, S., Kiihn, T., Kriiger, J., Linsbauer, L.,
Griiner, S., Kehrer, T., Klare, H., Koziolek, A., Lonn, H., Krieter,
S., Seidl, C., Ramesh, S., Reussner, R., Westfechtel, B.: A concep-
tual model for unifying variability in space and time. In Proc. Int’]
systems and software product line conf. (SPLC). pp. 1-12, ACM
(2020)

Kroher, C., Gerling, L., Schmid, K.: Identifying the intensity of
variability changes in software product line evolution. In Proc. Int’l
systems and software product line conf. (SPLC). pp. 54-64, ACM
(2018)

Gomes, K., Teixeira, L., Alves, T., Ribeiro, M., Gheyi, R.: charac-
terizing safe and partially safe evolution scenarios in product lines:
an empirical study. In Proc. int’l workshop on variability modelling
of software-intensive systems (VaMoS). ACM (2019)

Berger, T., Nair, D., Rublack, R., Atlee, J.M., Czarnecki, K.,
Wasowski, A.: Three cases of feature-based variability modeling in
industry. In Proc. int’l conf. on model driven engineering languages
and systems (MODELS). pp. 302-319, Springer (2014)
Mukelabai, M., Nesi¢, D., Maro, S., Berger, T., Steghofer, J.-P.:
Tackling combinatorial explosion: a study of industrial needs and
practices for analyzing highly configurable systems. In Proc. int’l
conf. on automated software engineering (ASE). pp. 155-166,
ACM (2018)

‘White, J., Schmidt, D.C., Benavides, D., Trinidad, P., Ruiz-Cortés,
A.: Automated diagnosis of product-line configuration errors in
feature models. In Proc. int’l systems and software product line
conf. (SPLC). pp. 225-234, IEEE (2008)

Bosch, J.: Software product lines: organizational alternatives. In
Proc. int’l conf. on software engineering (ICSE). pp. 91-100, IEEE
(2001)

Xu, T., Zhang, J., Huang, P., Zheng, J., Sheng, T., Yuan, D., Zhou,
Y., Pasupathy, S.: Do no blame users for misconfigurations. In
Proc. ACM symposium on operating systems principles (SOSP).
pp. 244-259, ACM (2013)

Zhang, S., Ernst, M.D.: Which configuration option should I
change? In Proc. int’l conf. on software engineering (ICSE).
pp. 152-163, ACM (2014)

Wang, B., Passos, L., Xiong, Y., Czarnecki, K., Zhao, H., Zhang,
W.: SmartFixer: fixing software configurations based on dynamic

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

priorities. In Proc. Int’l systems and software product line conf.
(SPLC). pp. 82-90, ACM (2013)

Xiong, Y., Hubaux, A., She, S., Czarnecki, K.: Generating range
fixes for software configuration. In Proc. int’l conf. on software
engineering (ICSE). pp. 58-68, IEEE (2012)

Sampaio, G., Borba, P., Teixeira, L.: Partially safe evolution of
software product lines. In Proc. int’l systems and software product
line conf. (SPLC). pp. 124-133, ACM (2016)

Nieke, M., Sampaio, G., Thiim, T., Seidl, C., Teixeira, L., Schae-
fer, I.: GuyDance: guiding configuration updates for product-line
evolution. In Proc. int’l workshop on variability and evolution of
software-intensive systems (VariVolution). pp. 56—-64, ACM (2020)
Borba, P., Teixeira, L., Gheyi, R.: A theory of software product line
refinement. Theor. Comput. Sci. 455, 2-30 (2012)

Thiim, T., Késtner, C., Erdweg, S., Siegmund, N.: Abstract features
in feature modeling. In Proc. int’l systems and software product line
conf. (SPLC). pp. 191-200, IEEE (2011)

Rice, H.G.: Classes of recursively enumerable sets and their deci-
sion problems. Trans. Am. Math. Soc. 74(2), 358-366 (1953)
Passos, L., Teixeira, L., Dintzner, N., Apel, S., Wasowski, A., Czar-
necki, K., Borba, P., Guo, J.: Coevolution of variability models and
related software artifacts. Empir. Softw. Eng. 21, 4 (2016)

Neves, L., Borba, P., Alves, V., Turnes, L., Teixeira, L., Sena, D.,
Kulesza, U.: Safe evolution templates for software product lines.
J. Syst. Softw. 106, 42-58 (2015)

Nieke, M., Seidl, C., Schuster, S.: Guaranteeing configuration
validity in evolving software product lines. In Proc. int’l workshop
on variability modelling of software-intensive systems (VaMoS).
pp. 73-80, ACM, (2016)

Owre, S.,Rajan, S.P., Rushby, J.M. Shankar, N., Srivas, M.K.: PVS:
combining specification, proof checking, and model checking. In
Proc. Int’]l conf. on computer aided verification (CAV). pp. 411-
414, Springer (1996)

Dintzner, N., van Deursen, A., Pinzger, M.: FEVER: an approach
to analyze feature-oriented changes and artefact co-evolution in
highly configurable systems. Empir. Softw. Eng. 23(2), 905-952
(2018)

Krieter, S., Thiim, T., Schulze, S., Schréter, R., Saake, G.: Propa-
gating configuration decisions with modal implication graphs. In
Proc. int 1 conf. on software engineering (ICSE). pp. 898-909,
ACM (2018)

Kistner, C., Giarrusso, P.G., Rendel, T., Erdweg, S., Oster-
mann, K., Berger, T.: Variability-aware parsing in the presence
of lexical macros and conditional compilation. In Proc. conf. on
object-oriented programming, systems, languages and applications
(OOPSLA). pp. 805-824, ACM (2011)

Montaghami, V., Rayside, D.: staged evaluation of partial instances
in a relational model finder. In Proc. int’l conf. on abstract state
machines, alloy, B, TLA, VDM, and Z. pp. 318-323, Springer
(2014)

Meinicke, J., Thiim, T., Schroter, R., Benduhn, F., Leich, T., Saake,
G.: Mastering Software Variability with FeatureIDE. Springer,
Berlin (2017)

Pereira, J.A., Matuszyk, P., Krieter, S., Spiliopoulou, M., Saake,
G.: A feature-based personalized recommender system for product-
line configuration. In Proc. int’l conf. on generative programming
and component engineering (GPCE). ACM (2016)

Pereira, J.A., Schulze, S., Figueiredo, E., Saake, G.: N-Dimensional
tensor factorization for self-configuration of software product lines
at runtime. In Proc. int’l systems and software product line conf.
(SPLC). p. 87-97, ACM (2018)

Pereira, J.A., Schulze, S., Krieter, S., Ribeiro, M., Saake, G.: A
context-aware recommender system for extended software product
line configurations. In Proc. int’l workshop on variability modelling
of software-intensive systems (VaMoS). p. 97-104, ACM (2018)

@ Springer

M. Nieke et al.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

Sampaio, G., Borba, P., Teixeira, L.: Partially safe evolution of
software product lines. J. Syst. Softw. 155, 17-42 (2019)

Oh, J., Gazzillo, P., Batory, D.: t-Wise coverage by uniform sam-
pling. In Proc. int’l systems and software product line conf. (SPLC).
pp- 84-87, ACM (2019)

El-Sharkawy, S., Krafczyk, A., Schmid, K.: Analysing the kconfig
semantics and its analysis tools. In Proc. int’l conf. on generative
programming: concepts & experiences (GPCE). pp. 45-54, ACM
(2015)

Biirdek, J., Kehrer, T., Lochau, M., Reuling, D., Kelter, U., Schiirr,
A.: Reasoning about product-line evolution using complex feature
model differences. Automat. Softw. Eng. 23(4), 687-733 (2015)
Ziegler, A., Rothberg, V., Lohmann, D.: Analyzing the impact of
feature changes in linux. In Proc. int’l workshop on variability mod-
elling of software-intensive systems (vamos). pp. 25-32, ACM,
(2016)

Tartler, R., Lohmann, D., Sincero, J., Schroder-Preikschat, W.: Fea-
ture Consistency in Compile-time-configurable system software:
facing the linux 10,000 feature problem. Proc. Europ. Conf. on
Computer Systems. pp47-60 (2011)

Tartler, R., Lohmann, D., Dietrich, C., Egger, C., Sincero, J.: Con-
figuration coverage in the analysis of large-scale system software.
ACM SIGOPS Oper. Syst. Rev. 45(3), 10-14 (2012)

Nadi, S., Dietrich, C., Tartler, R., Holt, R.C., Lohmann, D.: Linux
variability anomalies: what causes them and how do they get
fixed?,” In Proc. working conf. on mining software repositories
(MSR). pp. 111-120, IEEE (2013)

Thiim, T., Batory, D., Kistner, C.: Reasoning about edits to fea-
ture models. In Proc. int’l conf. on software engineering (ICSE).
pp- 254264, 1IEEE, (2009)

Alves, V., Gheyi, R., Massoni, T., Kulesza, U., Borba, P., de Lucena,
C.J.P.: Refactoring product lines. In int’l conf. on generative pro-
gramming and component engineering (GPCE). pp. 201-210,
ACM, (2006)

Schulze, S., Thiim, T., Kuhlemann, M., Saake, G.: Variant-
preserving refactoring in feature-oriented software product lines. In
Proc. int’l workshop on variability modelling of software-intensive
systems (VaMoS). pp. 73-81, ACM, (2012)

Schulze, S., Richers, O., Schaefer, I.: Refactoring delta-oriented
software product lines. In Proc. int’l conf. on aspect-oriented soft-
ware development (AOSD). pp. 73-84, ACM, (2013)

Seidl, C., Heidenreich, F., ABmann, U.: Co-evolution of models and
feature mapping in software product lines. In Proc. int’l systems
and software product line conf. (SPLC). pp. 76-85, ACM, (2012)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Michael Nieke is a post doc at IT

University of Copenhagen, Den-

mark, with Prof. Christoph Seidl.

From 2015 to 2021, he was Ph.D.

student at TU Braunschweig, Ger-

many, with Prof. Ina Schaefer. His

research interests are modeling and
analyzing highly configurable soft-
ware systems, software evolution,

and model-driven software engi-

neering.

@ Springer

Gabriela Sampaio is a Ph.D.
student at Imperial College Lon-
don and a member of the Pro-
gram Specification and Verifica-
tion group. Her research interests
include program verification, web
development, software product lines,
and software reuse.

Thomas Thiim since January 2020,
he is a professor for the Con-
struction and Analysis of Secure
Software Systems at the Univer-
sity of Ulm in Germany. From
2015 to 2019, he was a post doc
at the TU Braunschweig in Ina
Schaefer’s institute. He received
his Ph.D. in 2015 from the Uni-
versity of Magdeburg under the
supervision of Gunter Saake. His
Ph.D. thesis received the Disser-
tation Award 2015 of the Univer-
sity of Magdeburg and his Mas-
ter’s thesis the Software Engineer-

ing Award 2011 of the Ernst Denert Foundation. He coauthored more
than 100 peer-reviewed publications and is known for his contribu-
tions to the well-known open-source project FeatureIDE.

Christoph Seidl is an Assistant
Professor for Software Engineer-
ing at IT University of Copen-
hagen, Denmark. His research inter-
ests are highly configurable soft-
ware systems/variability modeling
(e.g., Software Product Lines), soft-
ware evolution, model-driven soft-
ware engineering, language engi-
neering, and software visualiza-
tion. As part of his research, he
has worked with companies, among
others, in the automotive industry,
aerospace engineering, and virtual
reality.

Guiding the evolution of product-line configurations

Leopoldo Teixeira is an assistant
professor at the Informatics Cen-
ter (CIn) of the Federal University
of Pernambuco, where he leads
the Software Testing and Analy-
sis Research group, and is affil-
iated with the Software Produc-
tivity Group. His main research
interests involve the following top-
ics and their integration: software
product lines and configurable sys-
tems, software evolution, refac-
toring, formal methods, software
testing, and mobile development.

Ina Schaefer is Professor of Soft-
ware Engineering and Automotive
Informatics at TU Braunschweig.
Her research focus is quality assur-
ance and correctness-by-construction
engineering, particularly for variant-
rich and evolving software sys-
tems. She has received her Ph.D.
from TU Kaiserslautern in 2008
and been a post doc at Chalmers
University, Gothenburg.

@ Springer

	Guiding the evolution of product-line configurations
	Abstract
	1 Introduction
	2 Behavior preservation
	3 Guided configuration evolution
	3.1 Structure of configuration evolution guidance
	3.2 Guided configuration evolution process

	4 Guidance templates
	4.1 Delete feature
	4.2 Merge features
	4.3 Extract new feature
	4.4 Evolution process with templates

	5 Proving behavior preservation
	6 Applying guided configuration evolution
	7 Evaluation
	7.1 Qualitative evaluation
	7.1.1 Scenario 1
	7.1.2 Scenario 2
	7.1.3 Scenario 3
	7.1.4 Scenario 4
	7.1.5 Scenario 5
	7.1.6 Discussion

	7.2 Quantitative evaluation
	7.2.1 Setup of domain engineer's perspective
	7.2.2 Setup of application engineer's perspective
	7.2.3 Results of the quantitative evaluation

	7.3 Threats to validity

	8 Related work
	9 Conclusion
	Acknowledgements
	References

