
A Formal Framework of Software Product Line Analyses

THIAGO CASTRO, Systems Development Center – Brazilian Army, Brazil

LEOPOLDO TEIXEIRA, Federal University of Pernambuco, Brazil

VANDER ALVES, University of Brasília, Brazil

SVEN APEL, Saarland University, Saarland Informatics Campus, Germany

MAXIME CORDY, University of Luxembourg, Luxembourg

ROHIT GHEYI, Federal University of Campina Grande, Brazil

A number of product-line analysis approaches lift analyses such as type checking, model checking, and

theorem proving from the level of single programs to the level of product lines. These approaches share

concepts and mechanisms that suggest an unexplored potential for reuse of key analysis steps and properties,

implementation, and verification efforts. Despite the availability of taxonomies synthesizing such approaches,

there still remains the underlying problem of not being able to describe product-line analyses and their

properties precisely and uniformly. We propose a formal framework that models product-line analyses in a

compositional manner, providing an overall understanding of the space of family-based, feature-based, and

product-based analysis strategies. It defines precisely how the different types of product-line analyses compose

and inter-relate. To ensure soundness, we formalize the framework, providing mechanized specification and

proofs of key concepts and properties of the individual analyses. The formalization provides unambiguous

definitions of domain terminology and assumptions as well as solid evidence of key properties based on

rigorous formal proofs. To qualitatively assess the generality of the framework, we discuss to what extent it

describes five representative product-line analyses targeting the following properties: safety, performance,

data-flow facts, security, and functional program properties.

CCS Concepts: • Software and its engineering → Software product lines; Formal software verifica-
tion.

Additional Key Words and Phrases: Software Product Lines, Product-line Analysis

ACM Reference Format:
Thiago Castro, Leopoldo Teixeira, Vander Alves, Sven Apel, Maxime Cordy, and Rohit Gheyi. 2020. A Formal

Framework of Software Product Line Analyses. ACM Trans. Softw. Eng. Methodol. 1, 1 (December 2020),

37 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

Authors’ addresses: Thiago Castro, Systems Development Center – Brazilian Army, QG do Exército - Bloco G - 2º Andar,

70630-901, Setor Militar Urbano, Brasilia, Brazil, castro.thiago@eb.mil.br; Leopoldo Teixeira, Federal University of Pernam-

buco, Av. Jornalista Aníbal Fernandes, s/n - Cidade Universitária (Campus Recife), 50740-560, Recife, Brazil, lmt@cin.ufpe.br;

Vander Alves, University of Brasília, Campus Universitário Darcy Ribeiro - Edifício CIC/EST, 70910-900, Brasilia, Brazil,

valves@unb.br; Sven Apel, Saarland University, Saarland Informatics Campus, Campus E1 1, 66123, Saarbruecken, Germany,

apel@cs.uni-saarland.de; Maxime Cordy, University of Luxembourg, 6, rue Richard Coudenhove-Kalergi L-1359, Luxem-

bourg, Luxembourg, maxime.cordy@uni.lu; Rohit Gheyi, Federal University of Campina Grande, Av. Aprigio Veloso, 882,

Bloco CN, Bairro Universitário 58.429-900, Campina Grande, Brazil, rohit@dsc.ufcg.edu.br.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

1049-331X/2020/12-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: December 2020.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Thiago Castro, Leopoldo Teixeira, Vander Alves, Sven Apel, Maxime Cordy, and Rohit Gheyi

1 INTRODUCTION
Software product line engineering is a means to systematically manage variability and commonality

in software systems, enabling automated synthesis of product variants from a set of reusable assets

[1, 22, 63]. Such discipline aims at improving productivity and time-to-market, as well as achieving

mass customization of software [63]. However, for a product line with high variability, the number

of possibly generated products may be intractably large. Because of this phenomenon, it is often

infeasible to quality-check each of the products individually. Nonetheless, software analysis and

verification techniques for single products are widely used in industry, and it is beneficial to exploit

their maturity to increase reliability of software product lines while reducing costs and risks.

There is a number of product-line analysis approaches that lift analyses such as type checking,

model checking, and theorem proving to the level of entire product lines [73]. Product-line analyses
can be classified along three main strategies: product-based (the analysis is performed on generated

products or models thereof), family-based (only domain artifacts and valid combinations thereof

are checked), and feature-based (domain artifacts implementing a given feature are analyzed in

isolation, regardless of their combinations) [73].

Although different in purpose, individual approaches to product-line analysis share features

that suggest there is a yet unexplored potential for reuse of key analysis steps and properties,

implementation, and verification efforts. For instance, Kowal et al. [47] employ a family-based

analysis strategy for building a stochastic model that encodes all variability of the product line, and

thus can be analyzed in a single run. Apel et al. [3] adopt the same strategy for generating source

code of a program that encodes all variability in the product line as runtime variability, so that

off-the-shelf software model checkers can be applied. Although the models and verified properties

are different, there is a pattern of encoding all variability in a single product, which Apel et al.

[3] call a product or variant simulator. This pattern, in turn, must have an underlying principle

governing its applicability and validity [81]. Therefore, should one have the need of applying these

and similar analyses implemented by different tools, a number of analysis steps—that are inherently

time-consuming, error-prone, and require specialized knowledge to perform—would inevitably be

repeated.

In the same vein, as research in this area progresses, different analysis strategies may be applied

to the same property. As an example, Ghezzi and Sharifloo [36] first explored compositionality

of probabilistic models to analyze product-line reliability, effectively proposing a feature-product

analysis strategy. Lanna et al. [49] also aimed at compositionality while avoiding enumerating

all products in a feature-family strategy. Nevertheless, for the sake of soundness, each strategy

carries the burden of proving that it yields correct results. This is often overlooked, error-prone, and

time-consuming to achieve, eventually partially achieved with incomplete methods (e.g., testing [9]),

ultimately jeopardizing confidence in such analysis strategies.

The repetition and formalization gaps are a natural outcome of ongoing research activity, given

that there are independent groups exploring similar issues. Nonetheless, practitioners and re-

searchers would benefit from having an integrated body of knowledge. So, it is useful to periodically

synthesize existing work in a given field. Indeed, the survey by Thüm et al. [73], in which the

terminology of family-, feature-, and product-based analysis strategies was established, is an impor-

tant step in this direction. In some sense, it is a coarse-grained domain analysis of the domain of

product-line analysis. However, there still remains the underlying problem of not being able to de-

scribe product-line analyses and their properties precisely and uniformly. Indeed, more refinement

is necessary to formalize concepts, to explore similarities in analysis steps and key properties, and

to suitably manage variability across analysis approaches, providing practitioners and researchers

with more efficient techniques and a theoretical framework for further investigation.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: December 2020.

A Formal Framework of Software Product Line Analyses 3

We propose a formal framework of key concepts and properties of the state of the art of product-

line analysis. In particular, the framework defines abstract functions and types modeling essential

abstractions in this problem domain, including central analysis steps, models, and intermediate

analysis results. Product-line analyses are presented in a compositional manner, providing an overall

understanding of the structure space of family-based, feature-based, and product-based analysis

strategies, showing how the different types of product-line analyses compose and inter-relate. To

ensure soundness, we formalize the framework using the PVS proof assistant [58], providing a

precise specification of key concepts and properties as well as mechanized proofs of key soundness

results (e.g., commutativity of intermediate analysis steps). Therefore, the novelty of this work

lies in how we model and map the different strategies and how we prove certain properties. To

qualitatively assess the generality of the framework, we discuss to what extent it is able to describe

five representative product-line analyses targeting the following properties: safety, performance,

data-flow facts, security, and functional program properties. Analytical assessment by instantiation

of the PVS theory for concrete analysis techniques is a promising avenue of future work. Our

framework lays the foundation for this.

Overall, our formal framework encodes knowledge on the product-line analysis domain in a

concise, precise, and sound manner, thus providing unambiguous definitions of domain terminology

and assumptions as well as solid evidence of key domain properties based on formal proofs. This

way, the framework provides a principled understanding and further facilitates the communication

of ideas and knowledge of this domain. Researchers and practitioners can safely leverage the

framework to lift existing single-product analysis techniques to yet under-explored product-line

analysis approaches and to explore further strategies.

In summary, the contributions of this article are the following:

• We review existing product-line analyses, revealing their key concepts and properties (Sec-

tion 3);

• We present a formal framework of product-line analyses that provides an overall understand-

ing of the space of family-based, feature-based, and product-based analysis strategies as well

as relations among them (Section 4);

• We provide a mechanized formalization of the framework using the PVS proof assistant, com-

prising a specification of essential concepts and proofs of key soundness results (Section 4.2);

• We explore the framework’s generality by discussing to what extent it can describe five

representative product-line analyses (Section 5).

2 BACKGROUND
Before presenting our framework, we introduce basic concepts of software product lines (Section 2.1)

and product-line analysis (Section 2.2). We also briefly review transition systems, the mathematical

foundation of the analysis techniques that inspired this work (Section 2.3). Furthermore, we present

algebraic decision diagrams (Section 2.4), which are leveraged as variational data structures to

support family-based analyses within our framework.

2.1 Software Product Lines
A software product line is a set of software-intensive systems that share a common, managed set

of features satisfying the specific needs of a particular market segment or mission and that are

developed from a common set of core assets in a prescribed way [22]. The main goal in product-line

engineering is managing variability, which is defined by van Gurp et al. [76] as the ability to change

or customize a system. To accomplish this, it is useful to abstract variability in terms of features.
The concept of a feature encompasses both intentions of stakeholders and implementation-level

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: December 2020.

4 Thiago Castro, Leopoldo Teixeira, Vander Alves, Sven Apel, Maxime Cordy, and Rohit Gheyi

concerns, and has been subject to a number of definitions [1]. Synthetically, it can be seen as a

characteristic or end-user-visible behavior of a software system. The features of a product line and

their relationships are documented in a feature model [27, 43], which can be graphically represented

as a feature diagram.

A given software system that is part of a product line is referred to as a product. A product is

specified by a configuration, which is a selection of features respecting the constraints established

by the feature model. A product consists of a set of assets (e.g., source code files, test cases,

documentation), which are derived from a common asset base. The mapping between a given

configuration and the assets that constitute the corresponding product is called configuration
knowledge [27]. Configuration knowledge may consist of selecting source files, for instance, but

may also incorporate processing tasks over the selected assets, such as running the C Preprocessor.

The locations in the assets at which variation occurs are called variation points. There are three
common approaches for representing variability at implementation level: annotative, composi-

tional, and transformational [38, 44]. Annotative approaches annotate common assets with tags

corresponding to features, such that product derivation can be done by removing the parts an-

notated with the features not selected (e.g., by using preprocessor directives [59]). Compositional
approaches represent variability in a modular way by segregating assets or parts of assets that

correspond to each feature in composable units; the ones corresponding to selected features in a

given configuration are combined to derive a product. Transformational approaches, more generally,

rely on transformations of base assets; these transformations usually manipulate assets at the

syntactic level, but this is not a formal restriction of this category of techniques.

2.2 Analysis Taxonomy
Analysis of software product lines is a broad subject in the sense that it can refer to reasoning about

any of the product line artifacts, including the feature model and configuration knowledge [1]. We

focus on the possibly derivable products. This does not necessarily mean generating all products in

a product line and analyzing each of them, as long as analyzed properties can be generalized to the

product line as a whole. We refer to the latter case as variability-aware analysis.
Thüm et al. [73] conducted a literature survey defining three dimensions of analysis strategies

for product lines:

Product-based. Product-based analysis analyzes the derived products or models thereof. This

can be accomplished by generating all products (the brute-force approach) or by sampling a

subset of them. Themain advantage of this strategy is that the actual analysis can be performed

exactly as in the single-system case using off-the-shelf tools. However, the analysis effort can

be prohibitively large (exponential blowup) if the considered product line has a large number

of products.

Feature-based. Feature-based analysis analyzes all domain artifacts implementing a given

feature in isolation, not considering how they relate to other features. However, issues

related to feature interactions are frequent [35, 51, 55], which renders the premise false

that features can be modularly analyzed. Still, a feature-based approach is able to verify

compositional properties (e.g., syntactic correctness) and has the advantage of supporting

open-world scenarios—since a feature is analyzed in isolation, not all features must be known

in advance.

Family-based. Family-based analysis operates only on domain artifacts (not generated ones)

and incorporates the knowledge about valid feature combinations. It aims at sharing, thereby

avoiding redundant computations across multiple products. Family-based analyses may oper-

ate by merging all variability into a single product simulator (also known as 150% model [82]),

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: December 2020.

A Formal Framework of Software Product Line Analyses 5

which is prone to single-product analysis techniques. Nonetheless, there are also approaches

specifically tailored to product lines, leveraging custom-made tools and techniques [29, 50].

Specifically, our framework addresses the static analysis of properties of derivable products, and

not of variability management artifacts, so automated analyses of feature models [8] are out of

scope.

Beyond individual strategies, there is the possibility to employ more than one strategy simul-

taneously. This way, weaknesses resulting from one strategy can be overcome by another. This

is particularly useful for feature-based approaches, which are generally not sufficient if there are

feature interactions. For instance, Thüm et al. [74] propose formal verification of design-by-contract

properties [53] restricted to individual feature modules. This is a feature-based strategy, but the

actual contract of a given product cannot be known before the corresponding feature modules

are composed. Hence, this approach defines partial proofs for the contracts of individual feature
modules (feature-based step), then generate proof obligations for each derived product, and verify

whether these obligations are satisfied by a composition of the partial proofs for the selected

features (product-based step). Since the product-based phase leverages the proofs obtained in the

feature-based phase, this composite strategy is called feature-product-based.
Product-line analyses combining different strategies are classified as follows [73, 78]:

Feature-product-based. This strategy consists of a feature-based analysis followed by a

product-based analysis. It leverages the feature-based phase (e.g., computing properties

that hold for individual features) to ease the analysis effort necessary for the product-based

phase.

Feature-family-based. In this strategy, one performs a feature-based analysis to check prop-

erties that apply individually for each feature, then the results are combined maintaining

variability to undergo a family-based analysis. The family-based phase considers the feature

model constraints and the interactions between features all at once, enabling the analysis of

properties that are not observable in the scope of a single feature.

Family-product-based. This strategy consists of a partial family-based analysis followed by

a product-based analysis that leverages the intermediate results.

Feature-family-product-based. In this strategy, one performs a feature-based analysis fol-

lowed by a family-product-based analysis that leverages the analysis effort of the feature-based

phase.

Although this taxonomy of product-line analyses provides an overall understanding, more re-

finement is necessary to formalize the underlying analysis steps and interrelations, key properties

(e.g., commutativity of intermediate analysis steps), and preconditions (e.g., assumption on compo-

sitionality of basic analyses). Only this way, one can effectively explore similarities and suitably

manage variability among these approaches.

2.3 Transition Systems
Transition Systems are a formalism to represent the behavior of a system as states and transitions

among them. A transition system consists of a set of states and transitions between these states

annotated with actions. For example, s
α
−→ s ′ denotes a transition from state s to state s ′ due to

some action α . Each state is labeled with a set of so-called atomic properties, which represent all

the properties that hold when the system is in this state. Examples of atomic properties are failure
and sleep, which signal the system is in a failure state or in sleep mode, respectively. Starting from

these atomic properties, one can define properties across the transitions between the system states.

A most simple example is “the next state of the system must not be a failure state”. Another is “the

system must never be in a failure state”. A more complex property is “the system cannot enter sleep

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: December 2020.

6 Thiago Castro, Leopoldo Teixeira, Vander Alves, Sven Apel, Maxime Cordy, and Rohit Gheyi

mode until all failures are resolved”. These properties are typically expressed in some temporal

logic such as Computation Tree Logic (CTL) [18] and Linear Temporal Logic (LTL) [62]. They

are considered as behavioral properties, i.e., they consider the sequence (and in the case of CTL,

also the alternance) of visible states. The properties that are expressible this way include safety,

reachability, and repetitive reachability.

2.4 Algebraic Decision Diagrams
An Algebraic Decision Diagram (ADD) [5] is a data structure that encodes k-ary Boolean functions

of type Bk → R. As an example, Figure 1 depicts an ADD representing a simple binary function.

f (x,y) =


0.9 if x ∧ y

0.8 if x ∧ ¬y

0 otherwise

x

y

0.80.9 0

Fig. 1. ADD Af representing the Boolean function f on the left

Each internal node of an ADD (one of the circular nodes) marks a decision over a single parameter.

Function application is achieved by traversing the ADD along a path that denotes a decision over

the values of actual parameters: if the parameter represented by the node at hand is 1 (true), we
take the solid edge; otherwise, if the actual parameter is 0 (false), we take the dashed edge. The

evaluation ends when we reach a terminal node (one of the square nodes at the bottom).

To evaluate f (1, 0) in our example, we start on node x, take the solid edge to node y (since the
actual parameter x is 1), then take the dashed edge to terminal 0.8. Thus, f (1, 0) = 0.8. Henceforth,
we will use a function application notation for ADDs, meaning that, if A is an ADD that encodes

function f , thenA(b1, . . . ,bk) denotes f (b1, . . . ,bk). For brevity, we also denote indexed parameters

b1, . . . ,bk as
¯b, and the application A(¯b) by JAK ¯b .

ADDs are data structures that facilitate efficient application of arithmetics over Boolean functions.

We employ Boolean functions to represent mappings from product-line configurations (Boolean

tuples) to corresponding values for quality properties of interest. An important aspect that motivated

the use of ADDs for this variability-aware arithmetics is that the enumeration of all configurations to

perform Real arithmetics on the respective quality property values (e.g., performancemeasurements)

is usually subject to exponential blowup. Arithmetic operations on ADDs are linear in the input size,

which, in turn, can also be exponential in the number of Boolean parameters (i.e., ADD variables), in

the worst case. However, given a suitable variable ordering, ADD sizes are often polynomial, or even

linear [5]. Thus, for many practical cases, ADD operations are more efficient than enumeration.

An arithmetic operation over ADDs is equivalent to performing the same operation on cor-

responding terminals of the operands. Thus, we denote ADD arithmetics by corresponding real

arithmetics operators. Formally, given a valuation for Boolean parameters
¯b = b1, . . . ,bk ∈ Bk , it

holds that:

(1) ∀⊙∈{+,−,×,÷} · (A1 ⊙ A2)(¯b) = A1(¯b) ⊙ A2(¯b)
(2) ∀i ∈N · Ai

1
(¯b) = A1(¯b)i

More details on algorithms for ADD operations are outside the scope of this work and can be

found elsewhere [5].

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: December 2020.

A Formal Framework of Software Product Line Analyses 7

3 PRODUCT-LINE ANALYSIS STRATEGIES: TWO EXAMPLES
To motivate the definition of a framework of product-line analysis strategies, we first review two

representative analyses for some models and properties in the following sections. Section 3.1

addresses reliability, and Section 3.2 qualitative temporal logic properties.

3.1 Reliability
The reliability of a software system in a given user environment is defined as the probability that the

system will give the correct output with a typical set of input data from that user environment [16].

As a representative, we review the approach taken by Castro et al. [13], which models software

behavior in a state-space-based fashion by means of a Discrete-Time Markov Chain (DTMC)—a

stochastic process that can also be viewed as a transition system labeled with transition probabilities.

In a DTMC, states represent (parts of) software modules and transitions represent either a possible

transfer of control between modules (with an associated probability) or a module execution failure

(with probability 1−r , where r is the module’s reliability). For simplicity, we constrain this model to

have a single initial state (representing the program entry point) and only two terminal (absorbing)

states, representing program success (i.e., correct execution) and program failure.

We concentrate on user-oriented reliability of a system, which is the probability that, starting

from the initial state, the system eventually reaches the success state [16]. This reliability property

is computed as a reachability probability in the DTMC that serves as the reliability model—that

is, the sum of probabilities for each possible path that starts in an initial state and ends in a state

belonging to the set of target states [6]. For instance, the calculation of the reliability of the DTMC

in the top-left of Figure 2 multiplies the probabilities along the single path to the success state (ssuc),
which is illustrated by the dotted arrow labeled α and whose result is 0.9801.

However, although DTMCs are convenient to model probabilistic behavior, they cannot cope

with variability in the sense of product-line variability. Parametric Markov Chains (PMCs) extend

DTMCs with the ability to represent variable transition probabilities. These variable transition

probabilities can be leveraged to represent product-line variability [17, 36, 65]. For instance, the

top-right model in Figure 2 is a PMC in which variability is represented in both transitions leaving

state s1 (highlighted in thick green). To compute the reliability of this model, one can label success

states with the atom “success” and leverage parametric model checking to compute the reachability

probability of such states, resulting in the rational expression [39] in the bottom-right corner of

Figure 2. This expression has two operands, each of which is a sub-expression corresponding to a

path in the PMC leading to the success state (ssuc). Indeed, the computed reliability is an expression

and not a literal value, as in the case of reliability calculation of the DTMC in Figure 2, since

variables in the expression encode variability in the PMC.

For reliability analysis, one can choose two product-line analysis strategies [65]: (1) bind vari-

ability in a PMC deriving a variability-free model (i.e., DTMC) for each valid configuration of the

product line by evaluation of the variables (i.e., a projection π), and then analyze (α) each such

DTMC using traditional (not variability-aware) model checking, effectively pursuing a product-

based strategy; (2) apply parametric model checking (α̂) only once to the PMC, resulting in an

expression, which is then evaluated (σ) for each valid configuration, pursuing a family-product

analysis. The advantage of the latter approach is that it analyzes the PMC’s non-variable transitions

only once. In exchange, the product-based strategy can rely on the existence of well established

model checking tools such as PRISM [48]; the family-based strategy requires the development of a

variability-aware tool.

In our example, PMCs are used to build an annotative model of product-line behavior: system

states for all variants are present, and variables are used as a means to bypass feature-specific

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: December 2020.

8 Thiago Castro, Leopoldo Teixeira, Vander Alves, Sven Apel, Maxime Cordy, and Rohit Gheyi

s0 s1 s2 ssuc

serr

0.99

0.01

1

0

0.99

0.01

1

1

s0 s1 s2 ssuc

serr

0.99

0.01

x

1 − x

0.99

0.01

1

1

0.9801 · x + 0.99 · (1 − x)0.9801

π

[x 7→ 1]

α̂α

σ

[x 7→ 1]

Fig. 2. Example of family-product-based analysis (α̂ followed by σ) in contrast to a product-based analysis (π
followed by α) of an annotative PMC, for a configuration selecting transition x (i.e., both π and σ bind x to 1).
Clockwise from top-right corner: PMC, expression resulting from reliability analysis of the PMC, reliability
value of the DTMC corresponding to the configuration, and said DTMC.

states according to a feature selection, which is similar to preprocessor directives in source code.

Correspondingly, the expression resulting from parametric model checking of an annotative PMC

is call an annotative expression. Alternatively, one can also model behavior in a compositional way,

also leveraging PMCs to denote variability. In compositional PMCs, variables are not meant to be

directly bound to Real values, as in the annotative case; instead, they act as placeholders for variant

behavior. Note that, to make sense of a set of compositional PMCs, one must resort to a notion of

dependencies between them, so that each PMC can be composed in the intended placeholder in the

PMC that depends on it.

Feature

Feature

s0 s1 s2 s3

s4

ssuc

serr

x

1 − x

0.9

0.1

0.9

0.1

0.9

1

1

1

t0 t1 tsuc

terr

0.9 0.9

0.1 0.1

1

1

depends

s0 s1 t0 t1 tsuc

terr

ssuc

serr

0.9 0.9

0.1 0.1

0.9

0.1

0.9

0.1

0.9

1

1

1

0.729 · x

0.81

depends 0.59049

π ′

fmap(α̂)

α

σ

Fig. 3. Example of feature-product-based analysis (fmap(α̂) followed by σ) in contrast to a product-based
analysis (π ′ followed by α) of compositional PMCs

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: December 2020.

A Formal Framework of Software Product Line Analyses 9

Figure 3 illustrates the concept of compositional PMCs. On the top-left, there is a compositional

model of a system, consisting of two PMCs: the base behavior with variability points and optional

behavior. The base behavior has two parametric transitions (with values “x” and “1−x”), enclosed by
a dashed rectangle for visualization. Such base PMC depends on further optional behavior, since not

all behavior of possible products can be derived from the base case alone. The behavioral model of a

product with the optional feature enabled can be derived by composing (π ′
) the optional PMC into

the corresponding placeholder of the base one (top-right corner of Figure 3). Then, the reliability

of the composed model can be computed by regular model checking (α). Alternatively, one can
perform parametric model checking on each PMC of the compositional model while preserving the

dependency relation (using fmap(α̂)), so that the reliability expression of a PMC is matched to the

expressions representing the reliabilities on which that one originally depended (bottom-left corner

of Figure 3). The resulting compositional expressions can be composed like in PMC composition,

yielding a regular probability.

Compositional and annotative models are alternative means to express the behavior of a product

line [1], both of which rely on parametric model checking to avoid performing regular model

checking for all configurations. However, evaluating the resulting expressions would also need

enumeration, which is often intractable in practice due to the large number of configurations. To

cope with that problem, expressions can be lifted to a semantics based on ADDs [5], for which the

encoded Boolean formulas (cf. Section 2.4) represent feature selections. Using this technique, the

best-case time complexity of evaluating the reliability expressions for all valid configurations can

be polynomial in the number of features, effectively taming the exponential blowup [49]. Note that

lifting is semantic; lifted expressions (either compositional or annotative) are syntactically equal

to the original one, but their variables are evaluated using ADDs that encode the possible values

according to feature selections.

F

G G

0.80.9 0

(a) ADD for the values of variable x

F

G

0.90.5 0

(b) ADD for the values of variable y

F

G G

0.720.81 0

(c) ADD for the values of sub-expression 0.9 · x

F

G

0.10.5 1

(d) ADD for the values of sub-expression 1 − y

F

G G

0.72 0.360.81 0

(e) ADD for the expression 0.9 · x · (1 − y)

Fig. 4. Example of lifted expression evaluation in terms of the presence of features F and G. Each figure
denotes a sub-term of the expression 0.9 · x · (1 − y) when evaluated with ADD semantics.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: December 2020.

10 Thiago Castro, Leopoldo Teixeira, Vander Alves, Sven Apel, Maxime Cordy, and Rohit Gheyi

As an example, Figure 4 depicts the evaluation of a lifted expression 0.9 · x · (1 − y) in a product

line with only two features, F and G. In this example, we assume that the ADDs in Figures 4a and 4b

denote the possible values for variables x and y, according to a given feature selection. That is,

if feature G is selected, but F is not, then x and y evaluate to 0.8 and 0.5, respectively. Figures 4c
and 4d present the results of multiplying x by the constant value 0.9 and subtracting y from 1; such

operations only affect the leaf nodes and are performed in constant time. Figure 4e shows the result

of multiplying the previous two ADDs, an operation that is performed in time proportional to the

number of inner nodes.

DTMC

Compositional

probabilis-

tic model

Annotative prob-

abilistic model

Reliability

Compositional

rational expressions

Annotative

rational expression

Reliability

ADD

Compositional

lifted expressions

Annotative

lifted expression

π ′ π

γ

fmap(α̂) α̂α

σ σ

γ

fmap(lift) lift
J_Kc

σ̂ σ̂

π PMC projection π ′
PMC composition

σ Evaluation σ̂ ADD evaluation

α Model checking α̂ Parametric model checking

J_Kc ADD application γ Variability encoding

lift Maps expression into ADD semantics

feature-based

family-based

product-based

Fig. 5. Commutative diagram of product-line reliability analysis strategies, adapted from Castro et al. [13]

Summary. The analysis choices presented in this section are depicted in Figure 5 [13]. Starting

from a compositional model (top-left corner) or an annotative model (top-right corner), different

paths eventually lead to the Reliability or Reliability ADD nodes. Within each path, each arrow

represents a function application or analysis step. Analysis steps can be feature-based (green solid

arrows), product-based (blue dotted arrows), or family-based (red dashed arrows). Each node in the

path represents an intermediate analysis result, the final ones being either Real-valued reliabilities

or an ADD representing multiple values. Thus, each path ending in either node is a function

composition defining an analysis strategy. Moreover, both compositional probabilistic models and

compositional rational expressions can be transformed into corresponding annotative versions by

means of variability encoding [80] (γ), which leverages a condition operator for PMCs to switch

between possible states with a Boolean variable [13].

Castro et al. [13] proved that Figure 5 is a commuting diagram, meaning that different reliability

analysis strategies on compositional or annotative models are equivalent (i.e., they yield equal

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: December 2020.

A Formal Framework of Software Product Line Analyses 11

results) if their corresponding paths share start and end points. For example, commutativity for

the top-right quadrant means that, for all annotative probabilistic models vModel, and all valid

configurations conf of the product line, σ (α̂ (vModel),conf) = α (π (vModel,conf)). Figure 2 is an

instance of this commuting relation.

For illustration, the feature-product-based analysis strategy corresponds to the following choices

in Figure 5: starting with a compositional probabilistic model (top-left corner), perform parametric

model checking (move down), then evaluate them (move right), yielding a reliability value for a

configuration. Such strategy was first proposed and implemented by Ghezzi and Sharifloo [36]. The

feature-family-based analysis strategy corresponds to the following choices in Figure 5: starting

with a compositional probabilistic model (top-left corner), perform parametric model checking

(move down), and then lift the resulting expressions (move down one more step) and evaluate them

(move right), yielding a reliability ADD for the product line as a whole. Lanna et al. [49] proposed

this strategy.

Nevertheless, neither the strategy proposed byGhezzi and Sharifloo [36] nor Lanna et al. [49] were

conceived within the commutative diagram shown in Figure 5. As a result, the fact that they share

the first transformation (down from the compositional probabilistic model) is implicit and thus their

formalization and implementation were unnecessarily redundant. Furthermore, neither provide

any soundness proofs. In contrast, Castro et al. [13] explore this commonality, providing reusable

specifications and proofs of such analyses. In the resulting theory, the proof of the soundness of

the feature-family-based strategy directly reuses the proof of the feature-product-based strategy.

Nevertheless, Castro’s work is limited to reliability analysis and DTMCs.

3.2 Qualitative Temporal Logic Properties
While reliability analysis, addressed in Section 3.1, is concerned with computing a quantitative

property (i.e., the probability of eventually reaching success states of a system), in this section

we focus on analysis of qualitative temporal logic properties, that is, properties that the system

satisfies with certainty [7]. In what follows, we refer to such properties as behavioral properties.

Checking the behavior of a product line, as opposed to a single system, can be seen as the

problem of verifying a set of transition systems, one for each product. A product-based verification

strategy would check each of these transition systems individually. However, in a product line,

products share common behavior. Similarly to reliability (cf. Section 3.1), one could thus reduce

the verification time for the whole product line by checking behavior that is common to multiple

products only once. Previous research aimed at defining concise formalisms to encode variable

product line behavior and designing efficient verification algorithms that factorize the verification

effort relying on modal transition systems [34, 42], multi-valued model checking [14] and featured

transition systems [20]. A comprehensive survey and comparison of these approaches is available

elsewhere [24, 70, 71, 73, 77]. In what follows, we analyze the work surrounding featured transition

systems (FTS). We will demonstrate that the structure of the commutative diagram presented in

Figure 5 also applies to this modeling formalism. This is a first indication that the diagram and the

framework we devise generalize to other product-line analyses, as we further discuss in Section 5.1.

As an illustrative example, Figure 6 depicts an FTSmodeling a product line of vendingmachines. In

addition to an action, a transition in FTS is also labeled with an expression, called feature expression,
which defines the set of products able to enable this transition. For instance, the transition from

state 3 to state 6 is labeled with the feature expression t , meaning that it can be executed only

by products that include the corresponding feature t . The transition from state 1 to state 2 is

labeled with ¬f , and thus can be executed only by products that do not have the feature f . More

generally, the expression can be any formula that represents a subset of products. The transition

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: December 2020.

12 Thiago Castro, Leopoldo Teixeira, Vander Alves, Sven Apel, Maxime Cordy, and Rohit Gheyi

87

6

5

1 3

cancel / creturn / c

close

change

free / f
soda / s serveSoda / s

tea / t
2

4

serveTea / t

pay / ¬f open

Fig. 6. The FTS modeling a vending machine product line

system representing the behavior of a particular product is obtained by removing all transitions

not available to this product. This operation is called projection [20].

Most of FTS-based analyses rely on annotative models to design efficient CTL and LTL verification

algorithms [19, 20, 25]. The result is a feature expression representing all the products that satisfy

the property under verification. This feature expression can be represented in different ways.

One representation sees a feature expression as two sets of features [21]: one set includes the

features required to satisfy the property; the other contains the features that must be excluded.

Alternatively, feature expressions can be represented as Boolean formulae in which included (resp.

excluded) features appear as positive (resp. negative) literals [20] (as done in Figure 6). The result

of a given verification analysis is another feature expression, produced by computing conjunctions

and disjunctions of the individual expressions.

Figure 7 illustrates such variability-aware analysis of FTS, where the resulting feature expression

is denoted as a Boolean formula. On the top right corner, an FTS models the behavior of the

vending machine product line. Let us assume that this FTS is checked against the property “the

machine can only return if pay occurred”, which is violated by any product having both free

drinks (f) and cancel (c) features. As an additional example, we consider a feature selection for the

vending machine selling soda and tea without the free drinks and cancel features. The family-based

analysis step α̂ applied to the FTS yields the feature expression ¬(c ∧ f). Then, pursuing a family-

product-based strategy, one can evaluate this formula under the feature valuation corresponding to

the aforementioned product. Doing so would yield True , meaning that the product satisfies the

property. Alternatively, one could follow a product-based strategy by projecting the FTS onto the

specific product (π), yielding the transition system shown on the top left corner. Thus, a classical

verification procedure α yields that the product indeed satisfies the property.

Whatever representation one chooses for a feature expression, it can be concisely encoded in a

Binary Decision Diagram (BDD) [12, 19], similar to the ADD encoding of algebraic expressions in

Figure 4. The analysis of Classen et al. [19] works fully symbolically: both the feature expressions

and the state space are encoded as BDDs. The analysis proceeds classically, by induction on the

structure of the CTL property, and by computing fixpoints backwards. In contrast, the analysis of

Classen et al. [20] is semi-symbolic: the state space of the model and the automaton of the property

are represented explicitly, but the feature expressions are represented as BDDs. Model checking is

performed forwards, as in SPIN [41], but some states may be re-explored if they are reached with a

new combination of features.

FTS is a formalism that falls into the category of annotative models. Higher-level formalisms

are also availlable, most notably fPromela [20] (inspired by Promela [41]). Compositional models

also exist. For example, Plath and Ryan [61] extended the SMV language to express how a feature

modifies an SMV model, called fSMV. In fSMV, each feature is modeled in isolation, which paves

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: December 2020.

A Formal Framework of Software Product Line Analyses 13

Fig. 7. Product-based and family-product-based strategies applied to FTS verification

the way for compositional reasoning. Classen et al. [19] showed that any fSMV model can be

transformed into an FTS and vice versa, thereby proving that the compositional model is equivalent

to the annotative one. This implies that any verification algorithm designed for one model also

works for the other.

Transition

System
SMV + fSMV

Featured

Transition

System

CTL or LTL

(yes / no)

Feature

expression

BDD

Lifted

feature expression

π ′ π

γ

α̂α

σ

lift

J_Kc
σ̂

π Projection [20] π ′
Feature composition [61]

σ Product evaluation σ̂ BDD evaluation

α Model checking α̂ FTS model checking [19, 20]

J_Kc BDD application γ Lifted composition [19]

lift Maps expression into BDD semantics

feature-based

family-based

product-based

Fig. 8. Commutative diagram of product-line behavioral properties verification strategies

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: December 2020.

14 Thiago Castro, Leopoldo Teixeira, Vander Alves, Sven Apel, Maxime Cordy, and Rohit Gheyi

Summary. The above review of the state of the art of FTS verification suggests the potential

partial reuse of the structure of the commutative diagram for reliability analysis (Figure 5), resulting

in Figure 8. From an FTS (see top right of Figure 8), one can pursue a product-based strategy by

computing the projection (π) of each product and applying a standard model checking algorithm

(α). In contrast, family-based strategies start with the application of dedicated algorithms to FTS

(α̂) to obtain the set of products satisfying the property. This set can either be enumerated (σ),
giving rise to a family-product-based strategy, or lifted into a feature expression encoded in BDD

semantics and then being evaluated without enumeration into a BDD (σ̂).
As for the compositional fSMV model of Plath and Ryan [61], the transition system of a particular

product can be obtained by composing the base model with the model of each of its features (π ′). A

family-based approach can be followed to produce directly an FTS from the lifted composition [19]

of the base model and all the features (γ). Feature-based strategies have been proposed under

specific assumptions (e.g., that features only add behavior) [23], but do not apply outside such

restricted scope. The soundness of the analyses is proved by the commutativity of the upper-right

quadrant of Figure 8 and by the equivalence result by Classen et al. [19], much like for reliability

analysis (Figure 2).

4 A FORMAL FRAMEWORK FOR SOFTWARE PRODUCT LINE ANALYSIS
In this section, we generalize and formalize the discussion of Section 3. We first present an overview

of the envisioned analysis framework (Section 4.1) and formalize key aspects (Section 4.2).

4.1 Analysis Framework Overview
The framework aims at precisely and uniformly describing product-line analyses and their key

properties. To create the framework, we reviewed existing analyses for the different models and

properties mentioned in Section 3, and we identified essential abstractions of such analyses and

their structure. We started from a number of specific models and properties, such as the reliability

analysis mentioned in Section 3.1. We then started a process of formulating more general concepts

by means of abstraction. This also required assessing the impact on dependent concepts, which

also had to be reformulated. Finally, we identified assumptions that such elements should fulfill to

keep the diagram’s structure.

For example, in Figure 5, by abstracting DTMC into Product, derivation by projection (π) also
needs to be abstracted, so that π ’s domain becomes a generic Product model with annotations, its co-

domain becomes Product, and its semantics is generalized to bind variability in the generic Product
model with annotations. The goal is that the framework accommodates, at least, the analyses

of Section 3, and becomes a generic theory, consisting of a structure of key concepts related to

product-line analyses. Then, the theory should be further evaluated with instantiations for different

product models and properties, as discussed in Section 5.1.

Figure 9 and Table 1 synthesize the outcome of this abstraction process. At a coarse grain, Figure 9

is a generic commutative diagram abstracting the structures presented in Figures 5 and 8. At a

fine grain, Table 1 relates concrete elements of Figures 5 (reliability analysis) and 8 (behavioral

properties) to corresponding generic elements in Figure 9, together with a brief description of the

latter elements in the generic framework. These generic elements correspond to key abstractions of

both the taxonomy proposed by Thüm et al. [73] and of the product-line representation by Kästner

et al. [44] and von Rhein et al. [80], which have been used to describe and analyze a multitude of

product lines [73].

The diagram shown in Figure 9 offers different ways to analyze a given Property of a product

line of Product members. We can obtain a product (variability-free model) by projection (π), in the

case of annotative product lines, or model composition (π ′
), in the case of compositional product

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: December 2020.

A Formal Framework of Software Product Line Analyses 15

Product

Compositional

Product Line

Annotative

Product Line

Property

Compositional

expressions

Annotative

expression

Property

ADD

Compositional

lifted expressions

Annotative

lifted expression

π ′ π

γ

fmap(α̂) α̂

α

σ σ

γ

fmap(lift) lift
J_Kc

σ̂ σ̂

π Projection π ′
Composition

σ Evaluation σ̂ Evaluation with ADDs

α Non-variability-aware analysis α̂ Variability-aware analysis

J_Kc ADD application γ Variability encoding

lift Maps expression into ADD semantics

feature-based

family-based

product-based

Fig. 9. Commutative diagram of our software product line analysis framework

lines, then proceed with a non-variability-aware analysis α . Alternatively, for annotative product
lines, we can apply a variability-aware analysis α̂ to obtain an annotative expression, which is either

evaluated for a given product (σ) or further abstracted into an annotative lifted expressions (lift). The
latter is evaluated into a concise representation as an ADD (σ̂). In the case of compositional product

lines, variability-aware analysis is applied to the compositional model in a structure-preserving way

(fmap(α̂)), yielding a compositional expression, which is again either evaluated for a given product

(σ) or further abstracted into a compositional lifted expression (fmap(lift)) for later evaluation into

an ADD (σ̂).
In either case, the purpose of lifting operations is to provide a representation of expressions

enabling their non-enumerative evaluation (cf. Section 2.4), which is key to the family-based

dimension of the analysis. Furthermore, an ADD-based representation is often used for a space-

efficient encoding of values and also encompasses a BDD-based representation, since the value

nodes in an ADD can represent values other than Booleans.

Compositional product lines and compositional expressions can be transformed into correspond-

ing annotative versions by means of variability encoding [80] (γ). In addition to the examples

presented in Section 3, this is also possible for Lightweight Java [68], as has been shown else-

where [45], whereby complete refactorings enable transforming physical separation of features

(compositional product line) to their virtual separation counterpart (annotative product line).

Similarly to Figures 5 and 8, each path from a compositional or annotative product line to

a property value defines an analysis strategy, which amounts to function composition of the

intermediate analysis steps (arrows in the diagram). The nodes in the diagram represent models

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: December 2020.

16 Thiago Castro, Leopoldo Teixeira, Vander Alves, Sven Apel, Maxime Cordy, and Rohit Gheyi

or abstractions thereof after applying a series of analysis steps. These nodes and their underlying

structure are defined in Section 4.2 and further discussed in Section 5.2.

Our framework allows us to characterize a product-line analysis strategy in a compositional

manner. For instance, the feature-family-based analysis (in Figure 9, from compositional product

line, down, down, and right) and the feature-product-based analysis (from compositional product

line, down, and right) share the feature dimension of the analysis (down from compositional product

line). Furthermore, based on Figures 5 and 8, one could conjecture that the diagram in Figure 9

is also a commuting diagram: different analysis paths yield equal results if they share the start

and end points. In fact, this is indeed the case, according to the framework formalization that we

describe in the following section.

Table 1. Synthesis of abstraction process defining our software product line analysis framework (element
view)

Framework Element Description Reliability Analysis Element Qualitative Temporal Logic

Property Computable property Reliability Temporal logic property

Product Variability-free model DTMC Transition Systems

Analysis (α) Variability-free analysis Model checking Model checking

Annotative Product Line Product line with annotative representation Annotative probabilistic model Featured Transition Systems

Compositional Product Line Product line with compositional representation Compositional probabilistic model SMV+fSMV

Annotative expression Expression computing property value at products Annotative rational expressions Feature expression

Compositional expression Compositional counterpart of annotative expressions Compositional rational expressions –

Annotative lifted expression ADD-encoded annotative expressions Annotative lifted expression Lifted feature expression

Compositional lifted expression ADD-encoded compositional expressions Compositional lifted expressions –

Property ADD Maps product configurations to property values Reliability ADD BDD

Projection (π) Product derivation by presence condition projection PMC projection projection

Composition (π ′
) Product derivation by model composition PMC composition feature composition

Variability-aware analysis (α̂) SPL analysis exploring commonalities (sharing) Parametric model checking FTS model checking

Evaluation (σ) Expression evaluation to a property value rational expression evaluation Product evaluation

Evaluation with ADDs (σ̂) Expression evaluation to an ADD ADD evaluation BDD evaluation

lift Maps expression to ADD semantics lift lift
Variability encoding (γ) Maps compositional into annotative representation Variability encoding Lifted composition

ADD application (J_Kc) Property value mapped by a configuration ADD application BDD application

4.2 Formalization
To formally underpin our framework, we developed a machine-verified theory comprising formal

specification and verification of key concepts and properties of product-line analysis. This theory is

specified and checked using the PVS proof assistant [58], to ensure precise specification and to avoid

unsound proof steps, since manual demonstrations are prone to human mistake. In particular, this

formalization defines abstract functions and types modeling essential abstractions in this problem

domain, including analysis steps, models, and intermediate analysis results. Hence, the details of

concrete analysis strategies, such as reliability analysis using PMC or behavioral analysis over FTS,

are abstracted. The mechanization allows us to derive machine-verified soundness proofs of key

results, such as commutativity of analysis strategies. This way, we increase confidence that our

framework can be reused to safely establish different product-line analysis strategies for specific

models and properties.

4.2.1 The PVS Proof Assistant. PVS provides mechanized support for formal specification and

verification, including a specification language and a theorem prover. Specifications consist of

collections of theories. Each theory consists of signatures for the types introduced in the theory,

and the axioms, definitions, and theorems associated with the signature. Specifications are strongly

typed—every expression has an associated type. The specification language is based on classic,

typed higher-order logic.

PVS also provides mechanisms such as theory parameterization and interpretation, enabling us to

consider variability when specifying our theories. We may use parameters when defining a theory,

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: December 2020.

A Formal Framework of Software Product Line Analyses 17

which provides support for universal polymorphism. PVS offers separate mechanisms for importing

a theory with axioms, and for interpreting a theory by supplying a valid interpretation [57]. The

theory interpretationmechanism enables us to show that a theory is correctly interpreted by another

theory under a user-specified interpretation for the uninterpreted types and constants. We can

use interpretations to show that an implementation is a correct refinement of a specification, that

an axiomatically defined specification is consistent, or that an axiomatically defined specification

captures its intended models. Axioms defined in the theory being interpreted generate proof

obligations.

In what follows, we present our formalization using a simplified notation, abstracting from

PVS syntax, to facilitate the communication of ideas and knowledge. We first present general

framework definitions, and then proceed with a formalization of annotative product lines, which

forms the basis for specifying compositional product lines. The full PVS mechanization, comprising

all definitions and proofs, is available online.
1

4.2.2 General Framework Definitions. We define Product as a variability-free model defining the

type of the product line members. We do so by using uninterpreted types in PVS, which are

a way of introducing types with almost no constraints, other than the fact that such types are

disjoint from all other types. Products have a computable Property of interest, such as reliability. In

existing analyses, this property usually has a numerical or Boolean type [73]—reliability, safety,

performance, etc. To increase generality, we still define it using uninterpreted types. We introduce

special elements emptyproduct ∈ Product and emptyproperty ∈ Property, to be used as base cases

for recursive functions in the compositional model evaluation. We use type Conf to represent a

configuration. For generality, we also use uninterpreted types to abstract the specific syntax of

product configuration. For instance, it could be a set of selected features from a product line or a

Boolean formula. Finally, function α is a variability-free analysis that performs the computation of a

Property for a given Product, such as reachability probability analysis for reliability (cf. Section 3.1).

This function is also uninterpreted, but it must obey the constraint that analyzing an emptyproduct
yields emptyproperty.

Definition 1 (Computing Properties from Products). We compute a Property from a Product ,
using a function α : Product → Property, such that α(emptyproduct) = emptyproperty.

4.2.3 Annotative Product Lines. On the right-hand side of the diagram in Figure 9, Annotative
Product Line comprises a feature model, configuration knowledge, and a variant-rich model called

annotative model. The latter is an extension of Product including optional presence conditions

attached to model elements. Therefore, AnnotativeModel is either a base variability-free Product
model, or a variation point with choices depending on a presence condition. We use abstract

data types to represent this, in which we provide a set of type constructors, such as ModelBase
and ModelChoice, along with associated accessors. This allows us to extract arguments from the

constructors, such as the product, or the presence condition. Definition 2 presents this data type in

a simplified way.

Definition 2 (Annotative Model). An annotative model is either:

(1) ModelBase(m : Product), denoting a variability-free product model; or

(2) ModelChoice(pc : PresenceCondition,vm1 : AnnotativeModel,vm2 : AnnotativeModel),
denoting variation according to a presence condition.

The intuition behind this specification is thatAnnotativeModel is a data structure representing the
semantics of an annotative product line. That is, an AnnotativeModel can be seen as a decision tree

1
https://github.com/thiagomael/spl-analyses-mechanization/

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: December 2020.

https://github.com/thiagomael/spl-analyses-mechanization/

18 Thiago Castro, Leopoldo Teixeira, Vander Alves, Sven Apel, Maxime Cordy, and Rohit Gheyi

in which the internal nodes are presence conditions (to be checked against a given configuration)

and the leaf nodes are all possible products. For instance, Figure 10 illustrates how an annotative

model of a product line (the example PMC from Figure 2) could be interpreted according to this

concept.

s0 s1 s2 ssuc

serr

0.99

0.01

x

1 − x

0.99

0.01

1

1

(a) Concrete annotative PMC, denoting the behavioral model of a product line

s0 s1 s2 ssuc

serr

0.99

0.01

1

0

0.99

0.01

1

1

Is "x" present?

s0 s1 s2 ssuc

serr

0.99

0.01

0

1

0.99

0.01

1

1

True
False

(b) Variational semantics (AnnotativeModel) of the same PMC, represented as a decision tree

Fig. 10. Intuition of how an annotative model satisfies our specification in Definition 2 (assuming that x is
bound to 1 if the corresponding feature is selected, and 0 otherwise)

Note that Definition 2 is not meant to be directly implemented; otherwise, modeling a product

line would require that all products be modeled individually, which defeats the whole purpose

of product line engineering. However, specification-wise, having an abstraction of all possible

products helps on stating and proving theorems that quantify (universally or existentially) over the

solution space.

Using this semantic notion of an AnnotativeModel in the form of a decision tree, product deriva-

tion becomes a matter of evaluating presence conditions until a leaf node (i.e., product) is reached.

This product derivation process is denoted by function π , which receives an annotative model and

a configuration, and yields a product.

Definition 3 (Product Derivation from Annotative Models). Given an annotative model and a con-

figuration c , product derivation is performed by function π : AnnotativeModel → Conf → Product,
such that:

(1) π
(
ModelBase(m), c

)
= m; and

(2) π
(
ModelChoice(pc, vm1, vm2), c

)
=

{
π (vm1, c) if c |= pc (presence condition is satisfied)
π (vm2, c) otherwise

Similar to annotative models, annotative expressions are specified using a representation of

choice semantics. Hence, we use the BaseExpression constructor for leaf nodes (denoting property

values of products, such as the bottom-left corner of Figure 2) and ChoiceExpression to introduce

decision nodes.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: December 2020.

A Formal Framework of Software Product Line Analyses 19

Definition 4 (Annotative Expression). An annotative expression is either:

(1) BaseExpression(p : Property), denoting a property computed from a product; or

(2) ChoiceExpression(pc : PresenceCondition, e1 : AnnotativeExpression, e2 : AnnotativeExpression),
denoting choices guarded by a presence condition.

0.9801

Is "x" present?

0.99

True False

Fig. 11. Variational semantics (AnnotativeExpression) of the expression 0.9801 · x + 0.99 · (1 − x) in Figure 2,
represented as a decision tree (assuming that x is bound to 1 if the corresponding feature is selected, and 0

otherwise)

Figure 11 illustrates the intuition of an AnnotativeExpression encoded in this way. It encodes the

semantics of property values in terms of product-line configurations, so that annotative expression

evaluation is defined recursively much like we did for product derivation.

Definition 5 (Annotative Expression Evaluation). Given an annotative expression and a configu-

ration c , evaluation is performed by function σ : AnnotativeExpression → Conf → Property, such
that:

(1) σ
(
BaseExpression(p), c

)
= p; and

(2) σ
(
ChoiceExpression(pc, e1, e2), c

)
=

{
σ (e1, c) if c |= pc (presence condition is satisfied)
σ (e2, c) otherwise

Since the data types for both annotative models and annotative expressions denote the semantics

of the corresponding artifacts, we specify function α̂ (variability-aware analysis on annotative

models) by recursively mapping their structures. In the case that the model has no variability, a

variability-free expression (i.e., the result of applying α to the model) is returned. Otherwise, an

annotative choice expression is yielded.

Definition 6 (Variability-aware Analysis on Annotative Models). Given an annotative model,

we define the function α̂ : AnnotativeModel → AnnotativeExpression to perform variability-aware

analysis, such that:

(1) α̂
(
ModelBase(m)

)
= BaseExpression

(
α(m)

)
; and

(2) α̂
(
ModelChoice(pc, vm1, vm2)

)
= ChoiceExpression

(
pc, α̂(vm1), α̂(vm2)

)
.

Furthermore, the structure of the top-right quadrant in Figure 9 means that, for a given configu-

ration conf , the evaluation of the annotative expression obtained by α̂ from an annotative model

vModel yields the same result as if the variability had first been bound for such configuration, and

then the resulting product analyzed via the non-variability-aware analysis α . Formally specifying

and proving this key property of family-based analyses is often overlooked [73].

Theorem 1 (Soundness of family-product-based analysis).

∀vModel, conf · σ
(
α̂(vModel), conf

)
= α

(
π (vModel, conf)

)
ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: December 2020.

20 Thiago Castro, Leopoldo Teixeira, Vander Alves, Sven Apel, Maxime Cordy, and Rohit Gheyi

Proof sketch. For an arbitrary configuration conf , we need to prove that σ (α̂(vModel), conf) =
α(π (vModel, conf)) holds for any annotative model vModel. We prove this by induction over the

structure of vModel. This generates two subgoals, which correspond to the possibilities for the

type AnnotativeModel. In the first subgoal, we need to prove that σ (α̂(ModelBase(m)), conf) =
α(π (ModelBase(m)), conf). By expanding α̂ on the left-hand side (LHS), and product derivation π
on the right-hand side (RHS), we then have to prove that σ (BaseExpression(α(m)), conf) = α(m).

We then expand σ on the LHS, resulting on α (m) = α (m), which is trivially true.

In the second subgoal, for arbitrary presence condition pc and annotative models am1 and am2 , we

must prove that σ (α̂(ModelChoice(pc, am1, am2)), conf) = α(π (ModelChoice(pc, am1, am2), conf)).
As induction hypotheses, we have that σ (α̂(am1), conf) = α(π (am1, conf)) and σ (α̂(am2), conf) =
α(π (am2, conf)). Expanding σ and α̂ on the LHS, and π on the RHS of the proof goal, we then have

two possible situations, corresponding exactly to the two induction hypotheses. If conf satisfies the

presence condition pc, we must prove that σ (α̂(am1), conf) = α(π (am1, conf)), which is already

given by the induction hypotheses. Otherwise, we have to proveσ (α̂(am2), conf) = α(π (am2, conf)),
concluding the proof of this subgoal, since this is also given by the induction hypotheses. □

At this point, it is important to note that α̂ itself maps the semantics of an annotative model

to the semantics of a corresponding annotative expression by construction. In other words, the

framework assumes that each BaseProduct p (leaf node in an AnnotativeModel) is mapped to a

corresponding BaseExpression α(p) (leaf node in an AnnotativeExpression). Therefore, to instantiate
the framework, one is required to prove that such assumption holds for the concrete models and

the concrete analysis at hand.

4.2.4 Compositional Product Lines. On the left-hand side of the diagram in Figure 9, Compositional
Product Line comprises a feature model, configuration knowledge, and a variant-rich model called

compositional model.

Definition 7 (Compositional Model). A compositional model is a tuple (idt, E, ≺, top), where:

• idt is a finite set of Natural numbers, meant to be identifiers;
• E : N→ AnnotativeModel is a function that maps identifiers in idt to AnnotativeModels;
• ≺ is a well-founded dependency relation between identifiers from idt;
• top ∈ idt denotes the identifier of the root model—i.e., a model on which no other depends.

A compositional model is a named finite set of annotative models with an associated depen-

dency relation between them, which denotes possible compositions. For a CompositionalModel
cm, cm′top identifies the base for composition. The members of a CompositionalModel have type
AnnotativeModel to denote that, in a concrete setting, such artifacts are expected to carry some

sort of annotation that indicates where to perform composition (variation points). These annota-

tions can be placeholders as in Figure 3, for instance. In some contexts, such as feature-oriented

programming [64], it may seem that models should be specified as regular products; however,

feature modules are essentially slices with a different semantics for super (which refers to the

same method in another module) and class (which is actually a partial class or mixin). Previous

work [45] explores integration strategies for annotative and compositional mechanisms.

We exploit the dependency relation among the constituent elements of a CompositionalModel to
define function dependents. This function takes as input a CompositionalModel and an identifier i
for a particular annotative model therein, and yields a list of dependents of such model, consisting

of a pair (pc, id), formed by the id of the dependent model and its presence condition. The latter

can be obtained from the structure of an AnnotativeModel through function getPC.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: December 2020.

A Formal Framework of Software Product Line Analyses 21

Definition 8 (Extracting dependent models). Given a compositional model cm and a natural

identifier i ∈ cm′idt, function dependents yields a list of pairs (pc, id) such that pc = getPC(cm, id)
and id ≺ i .

To either bind or encode variability in compositional models, basic behavior is needed for the

composition of elements in each node of the relation, incorporating dependent elements from

the recursive composition along the structure. Therefore, we assume the existence of a func-

tion partialModelComposition : AnnotativeModel → AnnotativeModel → AnnotativeModel, which
denotes the composition mechanism for AnnotativeModel.
Derivation by composition (π ′

) operates on compositional product lines generating a product

for a given configuration of its feature model. In particular, π ′
relies on auxiliary function π ′

r to

recursively perform a bottom-up composition of annotative models bound within the compositional

model of the product line by leveraging function partialModelComposition. Since the dependency
relation is well-founded, this recursion is guaranteed to terminate.

Definition 9 (Derivation by composition). Given a compositional model cm and a configuration

c , product derivation is performed by function π ′
: CompositionalModel → Conf → Product, such

that π ′(cm, c) = π ′
r (cm, cm‘top, c). The auxiliary function π ′

r expects a compositional model cm, an

identifier i ∈ cm′idt, and a configuration c , such that:

π ′
r (cm, i, c) = π

(
foldl

(
partialModelComposition, cm′E(i),map(f , dependents(cm, i))

)
, c
)

where f receives a pair (pc, idt) ∈ dependents(cm, i) as an argument, and is defined as:

f (pc, idt) =

{
ModelBase

(
π ′
r (cm, idt, c)

)
if c |= pc

ModelBase(emptyproduct) otherwise

In the same vein, compositional expressions are defined by type CompositionalExpression akin

to CompositionalModel. The only difference is that field E now maps to AnnotativeExpression in-

stead of AnnotativeModel. We obtain the list of dependent expressions through dependents, and
partialExpComposition binds the composition mechanism for AnnotativeExpression. Evaluation
of a CompositionalExpression is given by σ ′

, which operates like π ′
. For brevity, we omit these

definitions, which can be found in our repository.

The correspondence between CompositionalExpression and CompositionalModel is a foundation
for applying α̂ to map component models to corresponding expressions, preserving the structure

implied by the dependency relation. Placeholders in a model should have corresponding markers in

the mapped expression, so as to preserve composition semantics. However, the mechanism by which

partialModelComposition and partialExpComposition work depends on concrete models; hence, we

leave both functions uninterpreted and specify a constraint that needs to be satisfied, given by the

assumption below (Axiom 1). Essentially, such assumption means that α̂ is compositional.

Axiom 1 (Compositionality of α̂).

∀m1, m2 · α̂
(
partialModelComposition(m1,m2)

)
= partialExpComposition

(
α̂(m1), α̂(m2)

)
Similarly to the structure of the top-right quadrant of Figure 9, the top-left quadrant means that

obtaining a compositional expression by mapping α̂ over a given compositional model vModel and
then evaluating that expression against a configuration conf yields the same result as applying α
to the product derived from vModel and conf .

Theorem 2 (Soundness of feature-product-based analysis).

∀vModel, conf · σ
′
(
fmap(α̂, vModel), conf

)
= α

(
π ′(vModel, conf)

)
ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: December 2020.

22 Thiago Castro, Leopoldo Teixeira, Vander Alves, Sven Apel, Maxime Cordy, and Rohit Gheyi

Proof sketch. For an arbitrary configuration conf and compositional model vModel, we need to
prove that σ ′(fmap(α̂, vModel), conf) = α(π ′(vModel, conf)). By expanding σ ′

and π ′
, we then have

to prove that σ ′
r (fmap(α̂, vModel), fmap(α̂, vModel)′top, conf) = α(π ′

r (vModel, vModel′top, conf)).
By generalizing vModel′top and applying well-founded induction, we must prove that, for a given

identifier x ∈ vModel′idt, σ ′
r (fmap(α̂, vModel), x, conf) = α(π ′

r (vModel, x, conf)). By expanding σ ′
r

and π ′
r , we have to prove that

σ
(
foldl

(
partialExpComposition, fmap(α̂, vModel)′E(x),map(...)

)
, conf

)
= α

(
π
(
foldl(partialModelComposition, vModel′E(x),map(...)), conf

))
We omit the arguments ofmap operations inside foldl, as their structure can be found in Definition 9.
We can reuse Theorem 1, instantiated with foldl(partialModelComposition, vModel′E(x),map(...)).
By replacing that in our goal, we can use Axiom 1 instantiated with cm′E(x) and themap operation
used in the theorem instantiation (see above). We then have to prove the following:

σ (foldl(partialExpComposition, α̂(vModel′E(x)),map(...)), conf)

= σ (foldl(partialExpComposition, α̂(vModel′E(x)),map(α̂,map(...)), conf)

We see that the right-hand side consists of two nested map operations, the outermost being the

application of α̂ to the list yielded by mapping over each pairp yielded byp ∈ dependents(vModel, x).
The left-hand side has a single map operation, which is applied over each pair p given by p ∈

dependents(fmap(α̂, vModel), x)). To conclude the proof, we need to establish the equivalence of

those map operations, which follows from finite induction on the list of dependents. □

The proof relies on Axiom 1, which is an abstraction over the particular types of the model

and the non-variability-aware analysis function α . Hence, when these types are instantiated, PVS

automatically generates a corresponding theorem (a proof obligation) to establish that α is indeed

compositional. This fact highlights one of the key advantages of using PVS: its type system generates
theorems in the form of obligations, which could go unnoticed in a handcrafted specification. While

addressing proof obligations requires some effort, it is inherent to the analysis at hand. Obligations

aside, the proof of the theorems on the commutativity of the upper-left corner is completely reusable

across different models, properties, and instantiations of non-variability-aware analysis.

5 DISCUSSION
The formalization described in Section 4.2, which was mechanized into PVS, provides formal

evidence on the validity of the framework. In this section, we qualitatively evaluate the framework.

We first discuss the framework’s generality (Section 5.1). Then, we discuss findings, related strengths,

and limitations (Section 5.2). Finally, we discuss threats to validity (Section 5.3).

5.1 Framework’s Generality
In this section, we qualitatively assess the framework’s generality by retrospectively discussing

to what extent it can describe existing product-line analyses. In particular, we show how the

framework’s elements, previously listed in Table 1 and within the structure of the generic diagram

in Figure 9, can be related to different models, properties, and analyses. These analyses were

chosen because three of them (safety, data-flow facts, and functional program properties) represent

different types as identified in a comprehensive survey [73] and the remaining two (performance

and security) are more recent. An analytical assessment, by instantiating the mechanized theory

(cf. Section 4.2) for concrete analyses, is yet to be performed. Such task is outside the scope of this

work and is regarded as future work.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: December 2020.

A Formal Framework of Software Product Line Analyses 23

5.1.1 Safety Analysis. Apel et al. [3] have developed the tool chain SPLverifier for empirically

comparing family-based, product-based, and sample-based model checking of domain-specific

safety properties in product lines written in C and Java. To manage variability, the authors leverage

a compositional representation, using feature modules and derivation via superimposition as

supported by the tool FeatureHouse [2]. For product-based analysis, all products corresponding to

valid configurations are derived via superimposition and then model-checked against a number

of safety properties via explicit-state model checking. The sample-based analysis is an optimized

version of product-based analysis, whereby different strategies are used: 1-wise, 2-wise, and 3-wise,

each of which defines a corresponding sampling function for selecting subsets of products to be

model-checked, after which the analysis is product-based.

In contrast, for family-based analysis, first the composition mechanism of FeatureHouse [2] is

adjusted to perform variability encoding [80]: essentially, the variability induced by different com-

binations of features is encoded in the form of conditional program executions using if statements

so that the product line is transformed into a product simulator, which simulates the behavior of

all products, depending on the values of feature variables that represent the presence or absence of

individual features. Then, off-the-shelf model checkers are used to perform verification of safety

properties by means of explicit-state and symbolic model checking. The model checker exploits

sharing between products using two principles: late splitting and early joining. The former refers

to performing analysis without variability until encountering it, that is, the model checker explores

execution paths of different products only once as long as such paths are equal; the latter refers to

attempting to join intermediate results as early as possible, so analysis branches differing only on

the value of feature variables should be analyzed only once. The result of model checking is a set

of products that violate the given property, which are encoded in BDDs for efficient representation.

Figure 12 depicts the safety analysis by Apel et al. [3] according to our framework.

5.1.2 Performance Analysis. Kowal et al. [47] present an approach for variability-aware analysis of

software performance models. The underlying variability-free model is a Performance Annotated

Activity Diagram (PAAD), which is an UML activity diagram with performance annotations. In

a PAAD, nodes represent a service center with given multiplicity, initial client distribution, and

service time distribution; edges are annotated with probabilities to model operational profiles.

The property of interest is throughput, which is defined as the difference between the number of

incoming and outcoming jobs out of all service stations of the model. The non-variability-aware

analysis of a PAAD abstracts this model as a Markov population process and approximates its

behavior by a compact system of ordinary differential equations (traffic equations), whose solution

is the throughput of the model.

Variability management is accomplished via delta-modeling such that a core PAAD is supplied

along with a set of deltas adding, removing, or modifying vertices and edges (compositional repre-

sentation). A variant can be obtained by applying such deltas and then the previous variability-free

analysis can be applied. Alternatively, variability encoding of deltas transforms the compositional

model into a 150% model (annotative representation), which subsumes every variant of the family,

consisting of all nodes and transitions that are added or modified by some delta. This model under-

goes variability-aware analysis, whereby a parametric
2
system of ordinary differential equations is

solved, giving rise to an algebraic expression. Such expression is then evaluated for each possible

configuration, yielding a family-product-based analysis, as shown in Figure 13. Like Classen et al.

for model checking, Kowal et al. have not explored compositional (feature-based) reasoning.

2
All elements that are added to, removed from, or modified in the 150% model are represented by parameters.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: December 2020.

24 Thiago Castro, Leopoldo Teixeira, Vander Alves, Sven Apel, Maxime Cordy, and Rohit Gheyi

Plain

Code

Feature

modules

Code with

runtime

variability

Safety

Feature

expression

BDD

Lifted

feature

expression

π ′ π

γ

α̂α

σ

liftJ_Kc

σ̂

π Variable assignment π ′
Superimposition

σ Evaluation σ̂ Evaluation with BDDs

α Model checking α̂ Model checking

J_Kc BDD application γ Variability encoding

lift Maps expression into BDD semantics

family-based

product-based

Fig. 12. Framework description of the safety analysis by Apel et al. [3] (Section 5.1.1)

PAAD

PAAD and

deltas

150% model

Throughput

Algebraic

expression

π ′ π

γ

α̂α

σ

π Projection π ′
Delta application

α Traffic equation solving α̂ Parametric traffic equation solving

σ Evaluation γ Variability encoding

family-based

product-based

Fig. 13. Framework description of the performance analysis by Kowal et al. [47] (Section 5.1.2)

5.1.3 Security Analysis. Peldszus et al. [60] propose SecPL, a method for managing security require-

ments systematically in a product line, promoting model-based security analysis. SecPL extends

UML’s security profile UMLsec supporting the specification of security requirements and annota-

tive variability in UML models with presence conditions. Users leverage UMLsec stereotypes for

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: December 2020.

A Formal Framework of Software Product Line Analyses 25

encoding security specifications as OCL constraints. Such specifications can be done manually or

automatically mined from annotated source code. The authors rely on template interpretation [28],

effectively pursuing a family-based approach, this way lifting checks such as secure dependencies

from the level of individual products to the entire product line. Accordingly, OCL constraints com-

prising the security property specification are analyzed on the annotative UML model, resulting in

a feature expression, which is checked for satisfiability. If the formula is satisfiable, the feature set

generates an unsafe product. Otherwise, one has a proof that each product satisfies the specified

security properties. Figure 14 depicts the safety analysis by Peldszus et al. [60] according to our

framework.

UMLSec SecPL

Security

Feature

expression

π

α̂α

σ

π Projection α OCL check

σ Evaluation α̂ Template interpretation + SAT

family-based

product-based

Fig. 14. Framework description of the security analysis by Peldszus et al. [60] (Section 5.1.3)

5.1.4 Data-flow Analysis. The generalization of the structure of our diagram is not limited to the

verification of probabilistic and non-probabilistic behavioral properties. Consider, for example, the

variability-aware static analysis method proposed by Bodden et al. [9]. Their method, called SPL
LI FT

,

seamlessly lifts inter-procedural data-flow analysis to product lines. To this end, they annotate an

inter-procedural control-flow graph with a feature or its negation, to represent the cases where the

feature is enabled or not. The variability-aware analysis then maps features expressions describing

the configuration space of the annotated control-flow graph to corresponding data-flow facts. This

representation is similar to the annotative FTS models used by Classen et al. [20]. The generalization

of the structure of the diagram is therefore similar: from the annotated inter-procedural control-flow

graph, one can perform a family-based analysis and find the set of products leading to a violation.

This set can be compactly encoded as a constraint over features, which is equivalent to a feature

expression. Figure 15 depicts the data-flow analysis by Bodden et al. [9] according to our framework.

Like Classen et al. [20], Bodden et al. have not explored compositional (feature-based) reasoning.

5.1.5 Functional Program Properties Analysis. Hähnle and Schaefer [40] present a feature-family-

based analysis strategy for product lines to analyze functional program properties expressed as

contracts and invariants. Programs are expressed as a core and a number of delta modules that add,

remove, or modify methods, fields, and contracts. To guarantee uniqueness of variant derivation for

a given set of deltas, it is assumed that a partial order exists between the deltas. Program derivation

proceeds by composing the core with a sequence of deltas.

The analysis proposed by Hähnle and Schaefer relies on an extended Liskov principle for delta

modules, so the method contracts of subsequent deltas must be more specific; invariants cannot

be removed; methods called in deltas use the contract of the first implementation of that method.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: December 2020.

26 Thiago Castro, Leopoldo Teixeira, Vander Alves, Sven Apel, Maxime Cordy, and Rohit Gheyi

Control-flow graph

Annotated

control-

flow graph

Data-flow facts

Feature

expression

BDD

Lifted feature

expression

π

α̂

α

σ

lift

J_Kc
σ̂

π Projection σ̂ Evaluation with BDD

α Data-flow analysis α̂ Variational data-flow analysis

J_Kc BDD application lift Maps expression into BDD semantics

family-based

product-based

Fig. 15. Framework description of the data-flow analysis by Bodden et al. [9] (Section 5.1.4)

Leveraging these constraints, the core and each delta are analyzed in isolation with respect to

method preconditions and postconditions (feature-based phase). After that, the global program

invariants in the core and deltas are combined and checked (family-based phase), considering that

method contracts are the ones computed in the previous step.

The resulting process can be characterized as a feature-family-based verification approach for

delta-oriented product lines [73]. However, the analysis technique proposed by Hähnle and Schaefer

[40] results in a yes/no answer to the question of whether all possible applications of deltas yield

products that satisfy their corresponding specifications. This means that intermediate results can

neither be represented as expressions nor lifted to ADD semantics. Hence, that approach cannot be

described by our proposed framework.

5.2 Abstractions
In addition to generality, our framework rests on a number of central abstractions. Identifying

these abstractions contributes to improving a principled understanding of product-line analyses:

• Inwards—Variability binding: From either side of Figure 9 to its center, there is variability

restriction, which binds variability according to a given configuration. Variability restriction is

performed at different types (models and expressions) and granularity levels (annotative and

compositional models and expressions). For example, π ′
binds variability in compositional

models, whereas π binds variability in annotative models.

• Left side—Component functor: In the leftmost models in Figure 9, there is a functor (a

structure that can be mapped over) capturing the structure of the compositional model

across compositional expressions and lifted compositional expressions (cf. dotted arrows in

Figure 16). Function fmap maps the variability-aware analysis function α̂ over this structure

of the compositional model (cf. edge labeled fmap(α̂) in Figure 9 and first large horizontal

arrow in Figure 16), yielding a corresponding compositional expression. A further call to

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: December 2020.

A Formal Framework of Software Product Line Analyses 27

fmap maps function lift over this expression, fmap(lift), resulting in a lifted compositional

expression.

• Left side—Folding functor with partial composition: Additionally, from the left-hand

side to the center, variability binding is performed within a folding operation over an ordering

of the component functor structure to obtain a product (π ′
) or a property value (σ and σ̂).

Folding implies the existence of both partialModelComposition and partialExpComposition,
which bind the composition mechanism for AnnotativeModel and AnnotativeExpression, re-
spectively.

• Lower quadrants—Lifting to ADDs: Both lower quadrants of the diagram illustrate a

general principle for lifting analyses to product lines using ADDs: the intermediate analysis

results represented by either compositional or annotative expressions are encoded using

ADD operations for concise representation and avoiding enumeration during algebraic

manipulation and evaluation.

lift(α̂(m0))

lift(α̂(m1))

lift(α̂(m2))

fmap(lift)fmap(α̂)

α̂(m2)

α̂(m1)

α̂(m0)

m2

m1

m0

Compositional

Model

Compositional

Expressions

Lifted Compositional

Expressions

Fig. 16. Component Functor, allowing structure-preserving transformations

Regarding generality (cf. Section 5.1), we note that product-line analyses for both functional and

non-functional properties can be described. In general, depending on the property and model, the

total number of possible analysis strategies may change. Although for reliability Castro et al. [13]

formalize seven analyses, this does not necessarily hold for all other properties, since some of these

may not be amenable to compositional reasoning (e.g., performance). In principle, new analyses

can also be conceived based on the original diagram. For instance, the performance analysis by

Kowal et al. [47] results in algebraic expressions, which, in principle, could be subject to lifting and

ADD-based evaluation. New analyses could also arise for other models and properties. As another

example, the behavioral analyses described in Figure 8 could be extended along the compositional

dimension of the framework.

At a finer grain, the extent to which our framework supports reuse depends on the property

and on the model at hand. For instance, for reachability properties, the same model (PMC) for

reliability can be reused. By analyzing the source code of the ReAna tool [49], which performs

feature-family-based reliability analysis of product lines, we note that it is possible to achieve

high level of reuse of both conceptual and implementation aspects. Similar considerations apply

for other probabilistic properties. However, in other cases, the overall structure of the analyses

could still be reused. For instance, in the product-based case, there is enumeration on products. In

family-based strategies, the common part of the model is explored until variation points branch out

the analysis. In feature-based analysis, each model fragment related to a feature is analyzed. This

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: December 2020.

28 Thiago Castro, Leopoldo Teixeira, Vander Alves, Sven Apel, Maxime Cordy, and Rohit Gheyi

overall control can be abstracted and shared across different properties and models thus helping

the development of new analysis strategies.

Accordingly, the formalization carried out in Section 4.2 supports reuse by focusing on key

abstractions and properties in this domain. In terms of abstraction, reuse follows from types

and functions defined directly or indirectly in terms of the framework’s core concepts (i.e, the

property, the model, and the corresponding non-variability-aware analysis). Regarding properties,

our framework also supports reuse of commutative properties, which are essential for the soundness

of product-line analysis strategies, but reuse is usually non-trivial involving scarce effort across

independently developed analyses. As discussed in Section 4.2, proofs of commutative properties

of our framework give rise to a high-level structure that is completely reused under different

interpretations for different models and related properties. Proof reuse is also possible within the

framework: The proof of commutativity of Figure 9’s upper-left quadrant reuses the proof of its

upper-right quadrant’s commutativity. Essentially, this means that the soundness of compositional

analyses, which are coarse-grained, rely on the soundness of standard analyses, which are finer-

grained and non-necessarily compositional. Nevertheless, the commutativity proof of Figure 9’s

upper-left quadrant has the liability of an underlying proof obligation corresponding to Axiom 1 in

Section 4.2, requiring basic compositional behavior of the model and its partial composition, which

is model dependent. This way, by explicitly stating the abstract requirements that a model and

related transformations must satisfy, the framework supports reuse.

Finally, although the commutative diagram of Figure 9 shows logically equivalent analyses

for a given model and property, the diagram does not convey practical considerations in terms

of efficiency. For instance, for the feature-product-based analysis to be efficient, it is necessary

that recursive composition of expressions is less complex than building the whole product [36].

Otherwise, the product-based analysis is preferable. In general, such considerations may also

depend on modeling pragmatics and could be used to define modeling styles and corresponding

bad smells. Furthermore, for a given property and model, the alternative strategies have differing

complexity costs, which could annotate the diagram, yielding another dimension. A still open

question is whether these costs can be reused across properties or models [46, 49, 51, 79].

5.3 Threats to Validity
Our formal framework was inductively built starting from different product-line analysis strategies

(cf. Section 3) and is based on the taxonomy proposed by Thüm et al. [73] and on the product-line

representation by Kästner et al. [44], which have been used to describe and analyze a multitude

of product lines [73]. Nonetheless, the analysis strategies that we considered in Section 3 operate

over transition-system models (either DTMC [13, 49] or FTS [19, 20]), which threatens external

validity. To mitigate this threat, we qualitatively assessed the framework under additional strategies,

operating over transition systems (CTMC [47]), source code [3, 9], UML models [60], and formal

artifacts [40]. We argue that such variety of analyzed models is a representative sample from the

universe of product-line analysis techniques as surveyed by Thüm et al. [73]. Moreover, a recent

survey on the state-of-practice of variability-aware static analyses in different application domains

[55] found that reliability, correctness, and performance are critical properties of interest.

Furthermore, considering the generality assessment in Section 5.1, we see that the lower quadrants

of our commuting diagram are somewhat misrepresented in the qualitative assessment. This raises

the question of whether lifting to ADDs can actually be generalized to other analyses. Indeed, the

proposition of ADD lifting as a technique to cope with product-line analysis is recent [49], so there

are still no independent empirical studies that employ it. Still, we have analytical evidence that

such technique can be employed to analyze any propoerty that can be expressed as an algebraic

expression [13].

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: December 2020.

A Formal Framework of Software Product Line Analyses 29

Besides human scrutiny, we provide evidence on the soundness of our commutativity framework

by means of machine-based verification. To address the validity of the mapping between framework

concepts and formal definitions, we created our mechanized theory by modeling the constructs that

exist in the formal theory of commuting product-line reliability analysis strategies [13]. However,

it is future work to assess the extent to which one can devise mechanized theories of concrete

analysis strategies by instantiating our generic PVS theory.

6 RELATEDWORK
Conceptual models and taxonomy: Thüm et al. [73] established the taxonomy for product-line

analyses upon which we based our work, that is, the classification of analysis techniques in

three basic strategies (product-based, feature-based, and family-based) and combinations thereof.

Furthermore, Meinicke et al. [52] surveyed existing product-line analysis tools and categorized them

along four criteria: product-line implementation technique (annotation-based versus composition-

based approach), analysis technique (e.g., testing, type checking, model checking), strategies for

product-line analysis (i.e., the analysis strategies taxonomy by Thüm et al. [73]), and strategy of the

tool (product-based, variability-aware, and variability-encoding). In this work, we build upon these

existing taxonomies to propose a framework relating analysis steps in all dimensions. Although

the surveys by Thüm et al. [73] and Meinicke et al. [52] range over a larger number of primary

studies, our work establishes finer-grained relationships between analysis steps, supported by

formal reasoning. In principle, our framework could be applied to describe the studies surveyed

by Thüm et al. [73] and Meinicke et al. [52]—for instance, the ones that are part of the qualitative

analysis in Sections 5.1.1 and 5.1.4.

Von Rhein et al. [78] proposed the PLAmodel, a simple formalmodel for describing and comparing

product-line analyses. That model consists of four operators that express possible manipulations of

product line artifacts during analysis. Our commuting diagram (Figure 9) relates to the PLA model

as follows: all downward arrows are instances of the processing step of von Rhein et al. [78], all

straight arrows from either left or right to the center are instances of variability restriction, and all

arcs from left to right are instances of variability combinator. Moreover, whereas von Rhein et al.

[78] provide static building blocks for describing product line analyses, we present structurally

related analysis steps and formalize conditions for their applicability.

Thüm et al. [75] discussed the analysis of product lines throughout their life cycle. The authors

reviewed product-line analysis techniques that can be applied to regression analysis and, conversely,

revision analyses that can be leveraged in a space–variant setting. Thüm et al. [75] conjecture that

analyses of product-line variations in time (i.e., evolution) could be modeled as a fourth dimension

in von Rhein’s PLA model [78], combining both types of techniques. Within the scope of such

modeling effort, we envision that our work can be extended to cover the time dimension as well,

leveraging the finer-grained (yet generic) analysis steps.

Formal approaches to variability-aware analysis: The definition of product-line analysis techniques
that are sound by construction has been investigated in different contexts [11, 15, 54]. Midtgaard

et al. [54] presented a methodology to systematically derive family-based static analyses from

single-product analyses based on abstract interpretation; Chen and Erwig [15] defined a framework

for automatic lifting of static analyses that are expressible as type systems; and Brabrand et al. [11]

proposed a technique to automatically lift intraprocedural data-flow analyses to handle variability

in product lines. In contrast to their work, we provide a basis for structuring proofs of correctness

without constraining them to a specific analysis technique formalism. In exchange, we expect users

of our framework to perform more formalization activities to bridge their concrete setting to our

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: December 2020.

30 Thiago Castro, Leopoldo Teixeira, Vander Alves, Sven Apel, Maxime Cordy, and Rohit Gheyi

abstract one. Moreover, whereas Midtgaard et al. [54], Chen and Erwig [15], and Brabrand et al. [11]

handle only the family-based dimension of analysis, we also address the feature-based dimension.

With their seminal work on FTS, Classen et al. [19, 20] laid the foundations for designing product-

line model checking strategies. Classen et al. [20] were concerned with annotative strategies (i.e., the

right-hand side of our framework diagram). The principles of their strategies were later reused and

extended to solve automata-based verification problems (e.g. real-timemodel checking [26], 2-player

games [37]). Classen et al. [19] proved the equivalence between compositional and annotative FTS

(i.e., the existence of the encoding function γ for these models). Our framework makes apparent that

purely compositional strategies (i.e., the left-hand side of our diagram) have not been investigated

for FTS.

Earlier work on product-line model checking [33] represents the behavior of multiple products

as modal automata (i.e., automata with optional and mandatory transitions). While such modeling

allows one to check that given properties hold for the whole product line, they cannot trace back

the features responsible for property violations. Framing this verification problem within our

framework would indeed highlight the impossibility to construct annotative (lifted) expressions.

This limitation was later circumvented by extending modal automata with variability constraints

[4, 72]. This makes modal automata as expressive as FTS [70, 71] and paves the way for exploiting

the benefits of both formalisms [77].

Dimovski et al. [31] proposed a formal approach of applying variability-aware analyses even in

the case where they are not immediately feasible. Given a variability-aware analysis, this technique

searches for a suitable abstraction that allows a pre-analysis to be performed. Such pre-analysis, in

turn, is used to find the features that have the same effect on the property under evaluation (and

thus can be grouped) and those that are irrelevant to the problem at hand (and can be ignored).

The work by Dimovski et al. [31] addresses the optimization of already lifted analyses, whereas we

focus on aspects of the variability-aware analysis itself. Hence, both approaches are complementary.

Moreover, similar to this work, Dimovski et al. [31] propose that Binary Decision Diagrams be

used to increase sharing of analysis results.

Castro et al. [13] formalized a number of strategies for user-oriented reliability analysis of

product lines, covering all possible combinations in the taxonomy by Thüm et al. [73]. They provide

mathematical specifications and soundness proofs (not machine checked) of these strategies, along

with a commuting diagram relating intermediate steps. In contrast, our work does not formalize

concrete analysis techniques, but provides a machine-verified theory regarding generic concepts

involved in product-line analyses. Nonetheless, we used the commuting diagram by Castro et al.

[13] as a starting point to elicit candidate concepts for reuse (cf. Section 3.1).

Schobbens et al. [67] presented a formalization of feature diagram semantics. They defined

feature diagrams in a precise manner, thereby establishing a formal relationship between existing

notations. Likewise, our framework aims at formally defining concepts that are otherwise expressed

in natural language. However, whereas Schobbens et al. [67] deal with formalization and analysis

of variability management artifacts, our work addresses the analysis of properties of derivable
products.

Von Rhein et al.[79] handled practical aspects of static analysis by implementing variability-aware

control-flow and data-flow analyses for large-scale and highly configurable systems, based on the

TypeChef tooling infrastructure. Their evaluation demonstrates the applicability of variability-

aware analysis to real-world systems, with a performance comparable to that of sampling techniques.

To achieve such results, the authors focus on the family-based dimension and employ sharing

techniques to leverage existing analyses in the variability context. Similar to our work, von Rhein

et al. [79] present formal definitions of core concepts necessary for their technique. However, the

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: December 2020.

A Formal Framework of Software Product Line Analyses 31

authors do not provide proofs of correctness. Given the relevance of analyzing industrial systems,

we regard such an effort as an important step towards ensuring that the results can be trusted.

Last, we note that all aforementioned approaches of variability-aware analysis devise or evaluate

concrete techniques for computing specific properties. In contrast, our work abstracts from such

details in pursuit of a general framework that can be reused in different scenarios, with different

techniques and strategies. Moreover, the definitions and theorems provided in previous work are

often manually crafted, whereas the concepts presented in this work are specified and proved using

a proof assistant, which further increases confidence in the results.

Mechanized specification of product lines: Researchers have leveraged theorem provers and proof

assistants in the context of software product lines (e.g., Borba et al. [10], Delaware et al. [30], Neves

et al. [56], Sampaio et al. [66], Teixeira et al. [69], Thüm et al. [74]). However, most of the existing

work investigates the reuse of specification and proofs to assert soundness of different products in

a given product line (product lines of theorems). Our work, in contrast, deals with properties of

product-line analyses.

Borba et al. [10] devised a PVS theory about properties of product lines—in their case, for

reasoning about safe product-line evolution. This work evolved into a product line of theories [69],

where products are theories of safe evolution based on concrete product-line languages. Similar

to our results, their work rests on PVS theories about properties of product lines. Sampaio et al.

[66] extended the refinement theory to contemplate changes that do not preserve the behavior of

the entire set of products in a product line, thus establishing the notion of partially safe evolution

of product lines. All of their properties and theories are also specified and proved using PVS.

Nonetheless, Neves et al. [56], Sampaio et al. [66] and Teixeira et al. [69] specified concepts in

the domain of product-line engineering, whereby the targets of their theories are meta-models of

product lines. Our work focuses on properties of product-line analysis strategies, instead.

Durán et al. [32] proposed the FaMa formaL frAMEwork (FLAME), which comprises a formaliza-

tion of analysis operation over variability models, together with a reference implementation in

Prolog. The semantics of different analysis operations were specified using Z, and defined over a

common abstract layer to different variability model notations. Our goal is similar in the sense that

we aim at abstracting analysis operations and representations. However, we go beyond variability
model analysis, and we use a mechanized theorem prover to specify our theories.

Product line of theories: To leverage the machine-verified theory presented in this work, one

needs to instantiate uninterpreted elements to obtain a concrete setting (property, product, and

analysis technique). This way, our generalized theory of product-line analysis becomes itself a

product line of mechanized theories.

Teixeira et al. [69] addressed a similar problem. They created a generic theory to reason about

product-line evolution, based on a refinement notion that is independent of the concrete languages

used to manage variability in a product line. Then, Teixeira et al. [69] employed product-line

engineering techniques and leveraged the theory interpretation mechanism in PVS to systematically

reuse soundness proofs across concrete scenarios. Similar to our theory, their work provides a

generic “backbone” and requires instantiations to be manually developed. However, at this point,

we do not provide a means to systematically manage the reuse of specifications and proofs from

the generic theory. We plan to do so by employing similar techniques to the ones used by Teixeira

et al. [69].

Another approach to manage a family of theories has been proposed by Delaware et al. [30]. In

that work, the authors presented a means to manage features of programming languages along

with corresponding theorems for reasoning about them. The specification and proofs for each

feature are contained in a Coq module, and the modules containing selected features are manually

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: December 2020.

32 Thiago Castro, Leopoldo Teixeira, Vander Alves, Sven Apel, Maxime Cordy, and Rohit Gheyi

imported and used. This approach can be classified as a bottom-up composition, whereas our work

establishes a generic theory to be instantiated in a top-down fashion.

7 CONCLUSION
To address the lack of a precise and uniform description of individual product-line analyses and

their properties, we propose a framework for product-line analysis consisting of a machine-verified

theory comprising formal specification and verification of key concepts and key properties of

product-line analyses captured in suitable abstraction. In particular, the framework defines abstract

functions and types modeling essential concepts in this problem domain, such as analysis steps,

models, and intermediate analysis results. Product-line analyses are modeled in a compositional

manner, providing an overall understanding of the structure of the space of family-based, feature-

based, and product-based analyses, defining precisely how the different types of product-line

analyses compose and inter-relate. Additionally, we provide mechanized proofs of commutativity

of different analysis strategies. The novelty of this work lies in how we model and map the different

strategies and how we prove certain properties.

To create the analysis framework, we reviewed a number of representative existing analyses for

the different models and properties, and we identified essential abstractions of such analyses and

their structure. Figure 9 depicts the patterns that were found, relating annotative and compositional

models as well as the operations defined over them. This view facilitates the organization and struc-

turing of facts (e.g., commutativity of intermediate analysis steps) in a concise and precise manner,

facilitating the communication of ideas and contributing to a more comprehensive understanding

of underlying principles used in current and future product-line analysis strategies. Indeed, we

were able to fit different types of analyses into our framework, in terms of the employed techniques

as well as the models and properties under analysis.

The commuting diagram in Figure 9 and the corresponding mechanized commutativity theory

are meant to be leveraged as guidelines for the formalization of existing analysis strategies and for

the design of new ones. Hence, our framework contributes to the ongoing search for a principled

and possibly automated way to lift a given specification and analysis technique to product lines [73].

In future work, we aim at formalizing the lower quadrants of the commuting diagram (Figure 9)

along the guidelines discussed in Section 4.2. We also plan to extend the qualitative assessment

conducted in Section 5.1 to encompass more analyses as well as to formally instantiate existing and

new analyses. An additional goal is to model product-line evolution within our analysis framework,

so that one is able to reuse analysis effort throughout the lifetime of products. Finally, we intend to

provide a reference implementation of the framework and tool support for its derivation process.

ACKNOWLEDGEMENTS
We would like to thank the following people for fruitful discussions and suggestions on how

to improve this work: Tobias Sena, Danilo Caldas, Andreas Stahlbauer, Christoph Seidl, Malte

Lochau, Matthias Kowal, Ina Schaefer, Thomas Thüm, Pierre-Yves Schobbens, and the anonymous

reviewers. Vander Alves was partially supported by CNPq (grant 310757/2018-5), FAPDF (grant

SEI 00193-00000926/2019-67), and the Alexander von Humboldt Foundation. Leopoldo Teixeira

was partially supported by CNPq (grant 409335/2016-9) and FACEPE (APQ-0570-1.03/14), as well

as INES 2.0,
3
FACEPE grants PRONEX APQ-0388-1.03/14 and APQ-0399-1.03/17, and CNPq grant

465614/2014-0. Sven Apel was supported by the German Research Foundation (AP 206/6, AP 206/11).

Maxime Cordy was supported by FNR Luxembourg (grant C19/IS/13566661/BEEHIVE/Cordy). Rohit

3
http://www.ines.org.br

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: December 2020.

http://www.ines.org.br

A Formal Framework of Software Product Line Analyses 33

Gheyi was supported by CAPES (grants 117875 and 175956) and CNPq (grants 426005/2018-0 and

311442/2019-6).

REFERENCES
[1] Sven Apel, Don S. Batory, Christian Kästner, and Gunter Saake. 2013. Feature-Oriented Software Product Lines: Concepts

and Implementation. Springer. https://doi.org/10.1007/978-3-642-37521-7

[2] Sven Apel, Christian Kästner, and Christian Lengauer. 2013. Language-Independent and Automated Software Com-

position: The FeatureHouse Experience. IEEE Transactions on Software Engineering 39, 1 (2013), 63–79. https:

//doi.org/10.1109/TSE.2011.120

[3] Sven Apel, Alexander von Rhein, Philipp Wendler, Armin Größlinger, and Dirk Beyer. 2013. Strategies for product-line

verification: Case studies and experiments. In Proceedings of the International Conference on Software Engineering (ICSE).
IEEE, 482–491. https://doi.org/10.1109/ICSE.2013.6606594

[4] Patrizia Asirelli, Maurice H. ter Beek, Alessandro Fantechi, and Stefania Gnesi. 2011. Formal Description of Variability

in Product Families. In Proceedings of the 15th International Conference on Software Product Lines (SPLC). Springer,
130–139.

[5] R. Iris Bahar, Erica A. Frohm, Charles M. Gaona, Gary D. Hachtel, Enrico Macii, Abelardo Pardo, and Fabio Somenzi.

1997. Algebraic Decision Diagrams and Their Applications. Formal Methods in System Design 10, 2/3 (1997), 171–206.

https://doi.org/10.1023/A:1008699807402

[6] Christel Baier and Joost-Pieter Katoen. 2008. Principles of Model Checking (Representation and Mind Series). The MIT

Press.

[7] Christel Baier and Marta Kwiatkowska. 1998. On the verification of qualitative properties of probabilistic processes

under fairness constraints. Inform. Process. Lett. 66, 2 (1998), 71 – 79. https://doi.org/10.1016/S0020-0190(98)00038-6

[8] David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. 2010. Automated analysis of feature models 20 years later:

A literature review. Information Systems 35, 6 (2010), 615 – 636. https://doi.org/10.1016/j.is.2010.01.001

[9] Eric Bodden, Társis Tolêdo, Márcio Ribeiro, Claus Brabrand, Paulo Borba, and Mira Mezini. 2013. SPLLI FT : Statically
analyzing software product lines in minutes instead of years. In Proceedings of the 34th ACM SIGPLAN conference on
Programming Language Design and Implementation (PLDI). ACM, 355–364. https://doi.org/10.1145/2491956.2491976

[10] Paulo Borba, Leopoldo Teixeira, and Rohit Gheyi. 2012. A theory of software product line refinement. Theoretical
Computer Science 455 (Oct. 2012), 2–30. https://doi.org/10.1016/j.tcs.2012.01.031

[11] Claus Brabrand, Márcio Ribeiro, Társis Tolêdo, Johnni Winther, and Paulo Borba. 2013. Intraprocedural Dataflow

Analysis for Software Product Lines. In Transactions on Aspect-Oriented Software Development. Springer, 73–108.
https://doi.org/10.1007/978-3-642-36964-3_3

[12] Randal E. Bryant. 1992. Symbolic Boolean manipulation with ordered binary-decision diagrams. Comput. Surveys 24, 3
(Sept. 1992), 293–318.

[13] Thiago Castro, André Lanna, Vander Alves, Leopoldo Teixeira, Sven Apel, and Pierre-Yves Schobbens. 2018. All roads

lead to Rome: Commuting strategies for product-line reliability analysis. Science of Computer Programming 152 (2018),

116 – 160. https://doi.org/10.1016/j.scico.2017.10.013

[14] Marsha Chechik, Benet Devereux, and Arie Gurfinkel. 2001. Model-Checking Infinite State-Space Systems with

Fine-Grained Abstractions Using SPIN. In Proceedings of the 8th International SPIN Workshop on Model Checking of
Software (SPIN). Springer, 16–36.

[15] Sheng Chen and Martin Erwig. 2014. Type-based parametric analysis of program families. ACM SIGPLAN Notices 49, 9
(aug 2014), 39–51. https://doi.org/10.1145/2692915.2628155

[16] R. Cheung. 1980. A User-Oriented Software Reliability Model. IEEE Transactions on Software Engineering 6, 02 (March

1980), 118–125. https://doi.org/10.1109/TSE.1980.234477

[17] Philipp Chrszon, Clemens Dubslaff, Sascha Klüppelholz, and Christel Baier. 2016. Family-Based Modeling and Analysis

for Probabilistic Systems - Featuring ProFeat. In Proceedings of the 19th International Conference on Fundamental
Approaches to Software Engineering (FASE) (Lecture Notes in Computer Science), Vol. 9633. Springer, 287–304. https:

//doi.org/10.1007/978-3-662-49665-7_17

[18] E. M. Clarke and E. A. Emerson. 1981. Design and Synthesis of Synchronization Skeletons Using Branching-Time

Temporal Logic. In Logic of Programs (LNCS), Vol. 131. Springer, 52–71.
[19] Andreas Classen, Maxime Cordy, Patrick Heymans, Axel Legay, and Pierre-Yves Schobbens. 2014. Formal semantics,

modular specification, and symbolic verification of product-line behaviour. Science of Computer Programming 80 (2014),
416–439.

[20] A. Classen, M. Cordy, P.-Y. Schobbens, P. Heymans, A. Legay, and J.-F. Raskin. 2013. Featured Transition Systems: Foun-

dations for Verifying Variability-Intensive Systems and Their Application to LTL Model Checking. IEEE Transactions
on Software Engineering 39, 8 (2013), 1069–1089. https://doi.org/10.1109/TSE.2012.86

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: December 2020.

https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.1109/TSE.2011.120
https://doi.org/10.1109/TSE.2011.120
https://doi.org/10.1109/ICSE.2013.6606594
https://doi.org/10.1023/A:1008699807402
https://doi.org/10.1016/S0020-0190(98)00038-6
https://doi.org/10.1016/j.is.2010.01.001
https://doi.org/10.1145/2491956.2491976
https://doi.org/10.1016/j.tcs.2012.01.031
https://doi.org/10.1007/978-3-642-36964-3_3
https://doi.org/10.1016/j.scico.2017.10.013
https://doi.org/10.1145/2692915.2628155
https://doi.org/10.1109/TSE.1980.234477
https://doi.org/10.1007/978-3-662-49665-7_17
https://doi.org/10.1007/978-3-662-49665-7_17
https://doi.org/10.1109/TSE.2012.86

34 Thiago Castro, Leopoldo Teixeira, Vander Alves, Sven Apel, Maxime Cordy, and Rohit Gheyi

[21] Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens, Axel Legay, and Jean-François Raskin. 2010. Model

checking lots of systems: Efficient verification of temporal properties in software product lines. In Proceedings of the
32nd International Conference on Software Engineering (ICSE). ACM, 335–344.

[22] Paul Clements and Linda Northrop. 2001. Software Product Lines: Practices and Patterns. Addison-Wesley Professional.

[23] Maxime Cordy, Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens, and Axel Legay. 2012. Managing Evolution

in Software Product Lines : A Model-Checking Perspective. In Proceedings of the 6th International Working Conference
on Variability Modelling of Software-Intensive Systems (VAMOS). ACM, 183–191.

[24] Maxime Cordy, Xavier Devroey, Axel Legay, Gilles Perrouin, Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens,

and Jean-François Raskin. 2019. A Decade of Featured Transition Systems. In From Software Engineering to Formal
Methods and Tools, and Back - Essays Dedicated to Stefania Gnesi on the Occasion of Her 65th Birthday (Lecture Notes in
Computer Science), Vol. 11865. Springer, 285–312. https://doi.org/10.1007/978-3-030-30985-5_18

[25] Maxime Cordy, Patrick Heymans, Axel Legay, Pierre-Yves Schobbens, Bruno Dawagne, and Martin Leucker. 2014.

Counterexample Guided Abstraction Refinement of Product-Line Behavioural Models. In Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering (FSE). ACM, 190–201. https://doi.org/10.

1145/2635868.2635919

[26] Maxime Cordy, Pierre-Yves Schobbens, Patrick Heymans, and Axel Legay. 2013. Beyond Boolean Product-Line Model

Checking: Dealing with Feature Attributes and Multi-Features. In Proceedings of the 35th International Conference on
Software Engineering (ICSE). IEEE, 472–481.

[27] Krzysztof Czarnecki and Ulrich W. Eisenecker. 2000. Generative Programming: Methods, Tools, and Applications. ACM
Press/Addison-Wesley Publishing Co., USA.

[28] Krzysztof Czarnecki and Krzysztof Pietroszek. 2006. Verifying feature-based model templates against well-formedness

OCL constraints. In Proceedings of the 5th International Conference on Generative Programming and Component Engi-
neering (GPCE). ACM, 211–220. https://doi.org/10.1145/1173706.1173738

[29] Benjamin Delaware, William R. Cook, and Don S. Batory. 2009. Fitting the pieces together: A machine-checked model

of safe composition. In Proceedings of the 7th joint meeting of the European Software Engineering Conference and the
ACM SIGSOFT International Symposium on Foundations of Software Engineering, Hans van Vliet and Valérie Issarny

(Eds.). ACM, 243–252. https://doi.org/10.1145/1595696.1595733

[30] Benjamin Delaware, William R. Cook, and Don S. Batory. 2011. Product lines of theorems. In Proceedings of the 26th
Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2011,
part of SPLASH 2011, Portland, OR, USA, October 22 - 27, 2011. ACM, 595–608. https://doi.org/10.1145/2048066.2048113

[31] Aleksandar S. Dimovski, Claus Brabrand, and Andrzej Wąsowski. 2019. Finding suitable variability abstractions for

lifted analysis. Formal Aspects of Computing 31, 2 (01 Apr 2019), 231–259. https://doi.org/10.1007/s00165-019-00479-y

[32] Amador Durán, David Benavides, Sergio Segura, Pablo Trinidad, and Antonio Ruiz-Cortés. 2017. FLAME: A Formal

Framework for the Automated Analysis of Software Product Lines Validated by Automated Specification Testing.

Software and Systems Modeling 16, 4 (Oct. 2017), 1049–1082. https://doi.org/10.1007/s10270-015-0503-z

[33] Alessandro Fantechi and Stefania Gnesi. 2008. Formal Modeling for Product Families Engineering. In Proceedings of
the 12th International Conference on Software Product Lines (SPLC). IEEE, 193–202.

[34] Dario Fischbein, Sebastian Uchitel, and Victor Braberman. 2006. A Foundation for Behavioural Conformance in

Software Product Line Architectures. In Proceedings of the International Symposium on Software Testing and Analysis
Workshop on Role of Software Architecture for Testing and Analysis (ROSATEA ’06). ACM, 39–48. https://doi.org/10.

1145/1147249.1147254

[35] B. J. Garvin andM. B. Cohen. 2011. Feature Interaction Faults Revisited: An Exploratory Study. In Proceedings of the IEEE
22nd International Symposium on Software Reliability Engineering. IEEE, 90–99. https://doi.org/10.1109/ISSRE.2011.25

[36] Carlo Ghezzi and Amir Molzam Sharifloo. 2013. Model-based verification of quantitative non-functional properties for

software product lines. Information and Software Technology 55, 3 (March 2013), 508–524. https://doi.org/10.1016/j.

infsof.2012.07.017

[37] Joel Greenyer, Christian Brenner, Maxime Cordy, Patrick Heymans, and Erika Gressi. 2013. Incrementally synthesizing

controllers from scenario-based product line specifications. In Proceedings of The ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE). ACM, 433–443.

[38] Arne Haber, Holger Rendel, Bernhard Rumpe, and Ina Schaefer. 2011. Delta Modeling for Software Architectures. In

Proceedings of the 7th Tagungsband - Dagstuhl-Workshop: Modellbasierte Entwicklung eingebetteter Systeme (MBEES). 1 –
10.

[39] Ernst Moritz Hahn, Holger Hermanns, and Lijun Zhang. 2011. Probabilistic reachability for parametric Markov models.

International Journal on Software Tools for Technology Transfer (STTT) 13, 1 (2011), 3–19. https://doi.org/10.1007/

s10009-010-0146-x

[40] Reiner Hähnle and Ina Schaefer. 2012. A Liskov Principle for Delta-Oriented Programming. In Leveraging Applications
of Formal Methods, Verification and Validation. Technologies for Mastering Change - 5th International Symposium, ISoLA

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: December 2020.

https://doi.org/10.1007/978-3-030-30985-5_18
https://doi.org/10.1145/2635868.2635919
https://doi.org/10.1145/2635868.2635919
https://doi.org/10.1145/1173706.1173738
https://doi.org/10.1145/1595696.1595733
https://doi.org/10.1145/2048066.2048113
https://doi.org/10.1007/s00165-019-00479-y
https://doi.org/10.1007/s10270-015-0503-z
https://doi.org/10.1145/1147249.1147254
https://doi.org/10.1145/1147249.1147254
https://doi.org/10.1109/ISSRE.2011.25
https://doi.org/10.1016/j.infsof.2012.07.017
https://doi.org/10.1016/j.infsof.2012.07.017
https://doi.org/10.1007/s10009-010-0146-x
https://doi.org/10.1007/s10009-010-0146-x

A Formal Framework of Software Product Line Analyses 35

2012, Proceedings, Part I. Springer, 32–46. https://doi.org/10.1007/978-3-642-34026-0_4

[41] Gerard Holzmann. 2003. Spin Model Checker, the: Primer and Reference Manual (first ed.). Addison-Wesley Professional.

[42] Michael Huth, Radha Jagadeesan, and David Schmidt. 2001. Modal Transition Systems: A Foundation for Three-Valued

Program Analysis. In Programming Languages and Systems. Lecture Notes in Computer Science, Vol. 2028. Springer,

155–169.

[43] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson. 1990. Feature-Oriented Domain Analysis (FODA)
Feasibility Study. Technical Report. Carnegie-Mellon University, Software Engineering Institute.

[44] Christian Kästner, Sven Apel, and Martin Kuhlemann. 2008. Granularity in software product lines. In Proceedings of
the 30th International Conference on Software Engineering (ICSE). ACM, 311–320.

[45] Christian Kästner, Sven Apel, and Martin Kuhlemann. 2009. A Model of Refactoring Physically and Virtually Separated

Features. In Proceedings of the 8th International Conference on Generative Programming and Component Engineering
(GPCE ’09). ACM, 157–166. https://doi.org/10.1145/1621607.1621632

[46] Sergiy Kolesnikov, Alexander von Rhein, Claus Hunsen, and Sven Apel. 2013. A comparison of product-based, feature-

based, and family-based type checking. In Proceedings of 12th International Conference on Generative Programming:
Concepts and Experiences (GPCE’13). ACM, 115–124. https://doi.org/10.1145/2517208.2517213

[47] Matthias Kowal, Max Tschaikowski, Mirco Tribastone, and Ina Schaefer. 2015. Scaling Size and Parameter Spaces

in Variability-Aware Software Performance Models. In Proceedings of the 30th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 407–417. https://doi.org/10.1109/ASE.2015.16

[48] M. Kwiatkowska, G. Norman, and D. Parker. 2011. PRISM 4.0: Verification of Probabilistic Real-time Systems. In

Proceedings of the 23rd International Conference on Computer Aided Verification (CAV) (Lecture Notes in Computer
Science), Vol. 6806. Springer, 585–591. https://doi.org/10.1007/978-3-642-22110-1_47

[49] André Lanna, Thiago Castro, Vander Alves, Genaina Rodrigues, Pierre-Yves Schobbens, and Sven Apel. 2017. Feature-

Family-Based Reliability Analysis of Software Product Lines. Information and Software Technology 94 (2017), 59–81.

https://doi.org/10.1016/j.infsof.2017.10.001

[50] Michael Lienhardt, Ferruccio Damiani, Lorenzo Testa, and Gianluca Turin. 2018. On checking delta-oriented product

lines of statecharts. Science of Computer Programming 166 (2018), 3–34. https://doi.org/10.1016/j.scico.2018.05.007

[51] Flávio Medeiros, Christian Kästner, Márcio Ribeiro, Rohit Gheyi, and Sven Apel. 2016. A Comparison of 10 Sampling

Algorithms for Configurable Systems. In Proceedings of the 38th International Conference on Software Engineering (ICSE)
(ICSE ’16). ACM, 643–654. https://doi.org/10.1145/2884781.2884793

[52] Jens Meinicke, Thomas Thüm, Reimar Schröter, Fabian Benduhn, and Gunter Saake. 2014. An overview on analysis

tools for software product lines. In Proceedings of the 18th International Software Product Line Conference (SPLC). ACM,

94–101. https://doi.org/10.1145/2647908.2655972

[53] Bertrand Meyer. 1992. Applying "Design by Contract". Computer 25, 10 (Oct. 1992), 40–51. https://doi.org/10.1109/2.

161279

[54] Jan Midtgaard, Aleksandar S. Dimovski, Claus Brabrand, and Andrzej Wąsowski. 2015. Systematic derivation of

correct variability-aware program analyses. Science of Computer Programming 105 (July 2015), 145–170. https:

//doi.org/10.1016/j.scico.2015.04.005

[55] Mukelabai Mukelabai, Damir Nešić, Salome Maro, Thorsten Berger, and Jan-Philipp Steghöfer. 2018. Tackling

Combinatorial Explosion: A Study of Industrial Needs and Practices for Analyzing Highly Configurable Systems.

In Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering. ACM, 155–166.

https://doi.org/10.1145/3238147.3238201

[56] Laís Neves, Leopoldo Teixeira, Demóstenes Sena, Vander Alves, Uirá Kulezsa, and Paulo Borba. 2011. Investigating

the safe evolution of software product lines. In Proceedings of the 10th ACM international conference on Generative
programming and component engineering - GPCE ’11, Vol. 47. ACM, 33–42. https://doi.org/10.1145/2047862.2047869

[57] Sam Owre and Natarajan Shankar. 2001. Theory Interpretations in PVS. Technical Report. NASA Langley Research

Center.

[58] S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. 2001. PVS Language Reference. Computer Science

Laboratory, SRI International, Menlo Park, CA.

[59] Leonardo Passos, Leopoldo Teixeira, Nicolas Dintzner, Sven Apel, Andrzej Wasowski, Krzysztof Czarnecki, Paulo Borba,

and Jianmei Guo. 2016. Coevolution of variability models and related software artifacts: A fresh look at evolution

patterns in the Linux kernel. Empirical Software Engineering 21, 4 (05 2016), 1744–1793. https://doi.org/10.1007/

s10664-015-9364-x

[60] Sven Peldszus, Daniel Strüber, and Jan Jürjens. 2018. Model-Based Security Analysis of Feature-Oriented Software

Product Lines. In Proceedings of the 17th ACM SIGPLAN International Conference on Generative Programming: Concepts
and Experiences (GPCE 2018). ACM, 93–106. https://doi.org/10.1145/3278122.3278126

[61] Malte Plath and Mark Ryan. 2001. Feature integration using a feature construct. Science of Computer Programming 41,

1 (2001), 53–84.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: December 2020.

https://doi.org/10.1007/978-3-642-34026-0_4
https://doi.org/10.1145/1621607.1621632
https://doi.org/10.1145/2517208.2517213
https://doi.org/10.1109/ASE.2015.16
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1016/j.infsof.2017.10.001
https://doi.org/10.1016/j.scico.2018.05.007
https://doi.org/10.1145/2884781.2884793
https://doi.org/10.1145/2647908.2655972
https://doi.org/10.1109/2.161279
https://doi.org/10.1109/2.161279
https://doi.org/10.1016/j.scico.2015.04.005
https://doi.org/10.1016/j.scico.2015.04.005
https://doi.org/10.1145/3238147.3238201
https://doi.org/10.1145/2047862.2047869
https://doi.org/10.1007/s10664-015-9364-x
https://doi.org/10.1007/s10664-015-9364-x
https://doi.org/10.1145/3278122.3278126

36 Thiago Castro, Leopoldo Teixeira, Vander Alves, Sven Apel, Maxime Cordy, and Rohit Gheyi

[62] Amir Pnueli. 1977. The Temporal Logic of Programs. In Proceedings of the 18th Annual Symposium on Foundations of
Computer Science (SFCS ’77). IEEE, 46–57. https://doi.org/10.1109/SFCS.1977.32

[63] Klaus Pohl, Günter Böckle, and Frank J. van der Linden. 2005. Software Product Line Engineering: Foundations, Principles
and Techniques. Springer.

[64] Christian Prehofer. 1997. Feature-Oriented Programming: A Fresh Look at Objects. In Proceedings of the 11th European
Conference on Object-Oriented Programming (Lecture Notes in Computer Science), Vol. 1241. Springer, 419–443. https:

//doi.org/10.1007/BFb0053389

[65] Genaína Nunes Rodrigues, Vander Alves, Vinicius Nunes, André Lanna, Maxime Cordy, Pierre-Yves Schobbens,

Amir Molzam Sharifloo, and Axel Legay. 2015. Modeling and Verification for Probabilistic Properties in Software

Product Lines. In Proceedings of the 16th IEEE International Symposium on High Assurance Systems Engineering (HASE).
IEEE, 173–180. https://doi.org/10.1109/HASE.2015.34

[66] Gabriela Sampaio, Paulo Borba, and Leopoldo Teixeira. 2019. Partially safe evolution of software product lines. Journal
of Systems and Software 155 (2019), 17 – 42. https://doi.org/10.1016/j.jss.2019.04.051

[67] Pierre-Yves Schobbens, Patrick Heymans, Jean-Christophe Trigaux, and Yves Bontemps. 2007. Generic Semantics of

Feature Diagrams. Computer Networks 51, 2 (Feb. 2007), 456–479.
[68] Rok Strniša, Peter Sewell, andMatthew Parkinson. 2007. The Java Module System: Core Design and Semantic Definition.

In Proceedings of the 22nd annual ACM SIGPLAN conference on Object-oriented programming systems and applications
(OOPSLA) (OOPSLA ’07). ACM, 499–514. https://doi.org/10.1145/1297027.1297064

[69] Leopoldo Teixeira, Vander Alves, Paulo Borba, and Rohit Gheyi. 2015. A product line of theories for reasoning about

safe evolution of product lines. In Proceedings of the 19th International Conference on Software Product Line (SPLC).
ACM, 161–170. https://doi.org/10.1145/2791060.2791105

[70] Maurice H. ter Beek, Ferruccio Damiani, Stefania Gnesi, Franco Mazzanti, and Luca Paolini. 2015. From Featured Transi-

tion Systems toModal Transition Systemswith Variability Constraints. In Proceedings of the 13th International Conference
on Software Engineering and Formal Methods (SEFM). Springer, 344–359. https://doi.org/10.1007/978-3-319-22969-0

[71] Maurice H. ter Beek, Ferruccio Damiani, Stefania Gnesi, Franco Mazzanti, and Luca Paolini. 2019. On the expressiveness

of modal transition systems with variability constraints. Science of Computer Programming 169 (2019), 1–17. https:

//doi.org/10.1016/j.scico.2018.09.006

[72] Maurice H. ter Beek, Alessandro Fantechi, Stefania Gnesi, and Franco Mazzanti. 2016. Modelling and analysing

variability in product families: Model checking of modal transition systems with variability constraints. Journal of
Logical and Algebraic Methods in Programming 85, 2 (2016), 287 – 315.

[73] Thomas Thüm, Sven Apel, Christian Kästner, Ina Schaefer, and Gunter Saake. 2014. A Classification and Survey of

Analysis Strategies for Software Product Lines. Comput. Surveys 47, 1 (June 2014), 1–45. https://doi.org/10.1145/2580950

[74] Thomas Thüm, Ina Schaefer, Martin Kuhlemann, and Sven Apel. 2011. Proof Composition for Deductive Verification

of Software Product Lines. In 2011 IEEE 4th International Conference on Software Testing, Verification and Validation
Workshops. IEEE, 270–277. https://doi.org/10.1109/ICSTW.2011.48

[75] Thomas Thüm, Leopoldo Teixeira, Klaus Schmid, Eric Walkingshaw, Mukelabai Mukelabai, Mahsa Varshosaz, Goetz

Botterweck, Ina Schaefer, and Timo Kehrer. 2019. Towards Efficient Analysis of Variation in Time and Space. In

Proceedings of the 23rd International Systems and Software Product Line Conference (SPLC) (SPLC ’19). ACM, 57–64.

https://doi.org/10.1145/3307630.3342414

[76] J. van Gurp, J. Bosch, and M. Svahnberg. 2001. On the notion of variability in software product lines. In Proceedings
Working IEEE/IFIP Conference on Software Architecture. IEEE, 45–54. https://doi.org/10.1109/WICSA.2001.948406

[77] Mahsa Varshosaz, Lars Luthmann, Paul Mohr, Malte Lochau, and Mohammad Reza Mousavi. 2019. Modal transition

system encoding of featured transition systems. Journal of Logical and Algebraic Methods in Programming 106 (2019),

1–28. https://doi.org/10.1016/j.jlamp.2019.03.003

[78] Alexander von Rhein, Sven Apel, Christian Kästner, Thomas Thüm, and Ina Schaefer. 2013. The PLA model: on the

combination of product-line analyses. In Proceedings of the Seventh International Workshop on Variability Modelling of
Software-intensive Systems (VaMoS). ACM, 1. https://doi.org/10.1145/2430502.2430522

[79] Alexander von Rhein, Jörg Liebig, Andreas Janker, Christian Kästner, and Sven Apel. 2018. Variability-Aware Static

Analysis at Scale: An Empirical Study. ACM Transactions on Software Engineering and Methodology (TOSEM) 27, 4,
Article 18 (Nov. 2018), 33 pages. https://doi.org/10.1145/3280986

[80] Alexander von Rhein, Thomas Thüm, Ina Schaefer, Jörg Liebig, and Sven Apel. 2016. Variability encoding: From

compile-time to load-time variability. Journal of Logical and Algebraic Methods in Programming 85, 1 (jan 2016),

125–145. https://doi.org/10.1016/j.jlamp.2015.06.007

[81] Eric Walkingshaw, Christian Kästner, Martin Erwig, Sven Apel, and Eric Bodden. 2014. Variational Data Structures:

Exploring Tradeoffs in Computing with Variability. In Onward! 2014, Proceedings of the 2014 ACM International
Symposium on New Ideas, New Paradigms, and Reflections on Programming & Software, part of SPLASH ’14. ACM,

213–226. https://doi.org/10.1145/2661136.2661143

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: December 2020.

https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1007/BFb0053389
https://doi.org/10.1007/BFb0053389
https://doi.org/10.1109/HASE.2015.34
https://doi.org/10.1016/j.jss.2019.04.051
https://doi.org/10.1145/1297027.1297064
https://doi.org/10.1145/2791060.2791105
https://doi.org/10.1007/978-3-319-22969-0
https://doi.org/10.1016/j.scico.2018.09.006
https://doi.org/10.1016/j.scico.2018.09.006
https://doi.org/10.1145/2580950
https://doi.org/10.1109/ICSTW.2011.48
https://doi.org/10.1145/3307630.3342414
https://doi.org/10.1109/WICSA.2001.948406
https://doi.org/10.1016/j.jlamp.2019.03.003
https://doi.org/10.1145/2430502.2430522
https://doi.org/10.1145/3280986
https://doi.org/10.1016/j.jlamp.2015.06.007
https://doi.org/10.1145/2661136.2661143

A Formal Framework of Software Product Line Analyses 37

[82] Stephan Weißleder and Hartmut Lackner. 2013. Top-Down and Bottom-Up Approach for Model-Based Testing of

Product Lines. In Proceedings 8thWorkshop onModel-Based Testing, (MBT), Alexander K. Petrenko and Holger Schlingloff
(Eds.), Vol. 111. EPTCS, 82–94. https://doi.org/10.4204/EPTCS.111.7

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: December 2020.

https://doi.org/10.4204/EPTCS.111.7

	Abstract
	1 Introduction
	2 Background
	2.1 Software Product Lines
	2.2 Analysis Taxonomy
	2.3 Transition Systems
	2.4 Algebraic Decision Diagrams

	3 Product-Line Analysis Strategies: Two Examples
	3.1 Reliability
	3.2 Qualitative Temporal Logic Properties

	4 A Formal Framework for Software Product Line Analysis
	4.1 Analysis Framework Overview
	4.2 Formalization

	5 Discussion
	5.1 Framework's Generality
	5.2 Abstractions
	5.3 Threats to Validity

	6 Related Work
	7 Conclusion
	References

