
Received 14 August 2022, accepted 13 October 2022, date of publication 25 October 2022, date of current version 31 October 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3216569

Distributed Repository for Software Packages
Using Blockchain
FELIPE Z. DA N. COSTA , RUY J. G. B. DE QUEIROZ,
GUSTAVO P. BITTENCOURT , AND LEOPOLDO TEIXEIRA
Centro de Informática, Universidade Federal de Pernambuco, Recife 50740-560, Brazil

Corresponding author: Felipe Z. da N. Costa (felipe@zimmerle.org)

ABSTRACT A package repository is an essential piece of a software ecosystem. In FOSS, the software
repositories are oftentimes hosted using limited donations, given the technical solutions adopted in the
implementation. This work proposes a package repository using Blockchains with experiments and statistics
based on a real-world scenario. The Blockchain described has its consensus algorithm crafted to befit the
purpose of a package repository without financial appeal; Also, the proposed Blockchain keeps a compatible
layer with the traditional repositories, easing its adoption. Furthermore, this work also presents a package
search over peer-to-peer, computed on untrusted nodes, yet guaranteeing that the results are trusted. Finally,
we present a functional Blockchain that cohesively exposes the PyPi catalog.

INDEX TERMS Blockchain, distributed consensus, repository.

I. INTRODUCTION
Modern software development is commonly developed on top
of different reusable components, which are constantly evolv-
ing [1]. Those components are often distributed in the format
of packages, described by stanzas of meta-information [2].
Meta-information is often interpreted by a Package Manager
by creating a simple interface for the user to manage the
download, installation, update, and removal of packages.
Frequently, package managers also provide functionality for
searching and dependency solving [3].
In Free and Open Source Software (FOSS), a package

catalog is also known as repository. Repositories and the
infrastructure needed to host them are typically maintained
by a community. Hence, it is essential to count on com-
munity members for providing contributions in the form of
donations, or by establishing partnerships to guarantee the
healthy functioning of the repository. The lack of computing
power may threaten some functionalities of those reposito-
ries, or even the repository itself. As an example, search has
been disabled since 2020 on PyPI/PIP, the biggest software
catalog for the Python programming language [4].

Distribution architecture for repositories ‘‘in the wild’’
[5], [6], [7], [8], [9] is either limited or nonexistent. Using
mirrors [10] does not encourage minor or occasional con-

The associate editor coordinating the review of this manuscript and

approving it for publication was Taehong Kim .

tributors, thus limiting contributions by the few willing or
able to share greater computing power. Facilitating contribu-
tion in terms of computing power has numerous advantages,
including having peers close to each other, reducing network
latency and allowing to create local cache via a Peer-to-Peer
network [11], [12], [13]. The combination of both kinds of
contributors, those with great power, as well as small or occa-
sional contributors, can considerably increase the amount of
computing power available for the repositories. As a conse-
quence, enabling off-load processing on the network.

On open-source projects, it is expected that the community
holds all the data [14]. Ideally, no central authority con-
centrates the power to control the repository. Instead, each
contributor bears some responsibility, just as in a Blockchain
Decentralized, distributed, and often public, a Blockchain
consists of a sequence of blocks where a given block contains
the cryptographic hash of the previews block. The calculation
of the block hash considers the previous block hash. There-
fore, validating one block implies on validating its predeces-
sor, until the first block. In a Blockchain, the decision on
what is published on each block is made upon Distributed
Consensus. In a Peer-to-Peer network, the unknown and
unauthenticated peers have to agree on the next block based
on a set of simple rules.

The repository hosts metadata and source code for the
packages. The metadata contains version information and
the dependencies list. Layered security guarantees that an

112502 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0003-1326-0146
https://orcid.org/0000-0002-1757-4591
https://orcid.org/0000-0002-6154-1666
https://orcid.org/0000-0001-6246-6218


F. Z. D. N. Costa et al.: Distributed Repository for Software Packages Using Blockchain

exposed server or a malicious mirror will not temper a pack-
age going to the end-user. The current model used for the
software repositories is well suited to handle the technical
challenges associatedwith providing good security protection
to the users. Therefore, the intention is to use the samemodel,
keeping the Blockchain repository backward compatible with
the security solutions adopted in the current models. Hence,
easing the adoption of the Blockchain.

The initial challenge for the Blockchain-based solution
was how to establish an agreement on a new block giving
no financial incentives or connection with other financial-
oriented Blockchains. The different distributions and main-
tainers are the most interested ones to keep the correctness of
the Blockchain. Thus, it was natural to assume the popularity
of the involved ones as a stake, where the forger became
selected in a model created for this purpose. Initially, the
popularity was set at a fixed pace with stakes. Neverthe-
less, the popularity can be further dynamic calculated as
suggested at Proof-of-Download, demonstrated by Zimmerle
and Queiroz on A Blockchain using proof-of-download [15].
Lastly, the block publication shall happen on time so that
security software updates won’t be delayed given missing
block publication.

One of the advantages of adopting the Blockchain for
the package repository is to preserve the history of every
package. The repository tools force the most recent package
version’s installation (or update). Similarly to a regular pack-
age repository, a bad package - either poorly constructed or
malicious crafted - can be superseded by a new package with
incremented version. Atop the software version, distributions
also count with the package versions, usually represented by a
dash and a number, following the software version [16]. On a
Blockchain, even if the software version is the same, the one
represented in the topmost block prevails.
The Problem: Centralized repositories or with minimal
decentralization narrow the list of potential contributors,
therefore limiting the computing power of the repository
and hedging user functionalities.


Regarding the state of our work:

Our Goal: Assisting anyone on the internet to share a
small portion of computing power for a package repository.
Ultimately, we assist in removing the figure of a central
node by using a Blockchain.


A. CONTRIBUTIONS
Ourwork provides the following contributions: 1)Blockchain.
Description of a Blockchain to support a software repository;
2) Distributed Consensus. A consensus-based approach for
publishing the latest software versions; 3) Forger Selection.
New algorithm for semi-random forger selection.

1) BLOCKCHAIN
Unlike financial-based Blockchains, whereas the incentive is
merely financial, the Blockchain hereby presented considers
the consistency of package publication based on the pop-
ularity of the stakeholders. In our Blockchain, every block

holds a Merkle root; this provides the manners to check that a
giving package version is held on a given block. Nevertheless,
we also introduce the native support to exchanging packages
over p2p network [11].

2) DISTRIBUTED CONSENSUS
Differently from other Blockchains, we present a method for
an agreement based on stake that is ultimately connected
to distribution popularity. Considering the FOSS model of
Web-Of-Trust [17], we propose a thrust worth of the pack-
ages based on the previously agreed amount of Tokens.
Detainers of those tokens can freely exchange them over the
Blockchain. In a further version, the tokens can be calculated
using the Proof-of-Download as demonstrated by Zimmerle
and Queiroz on A Blockchain using proof-of-download [15].

3) FORGER SELECTION
The mutual agreement on the package publication is vocal-
ized by the forger. The forger is semi-randomly selected given
a group of possible forgers. We propose an algorithm for the
group of forgers to randomly select one of them for block
publication.

B. EVALUATION
Ultimately, validating the suggested Blockchain is checking
the coherence of the published packages. The Blockchain
needs to be coherent in terms of: (i) delay on package pub-
lishing; (ii) guaranteeing the consistency and integrity of each
published package; (iii) no missing or unexpected package
published.

The experiment performed in this work shows that latency
was not significant. Often, packages were available to the
end user even faster than the traditional mirror package pub-
lishing. The Blockchain package repository was shown to be
consistent and resilient, not only to network instability but
also to the presence of impostors.

II. BACKGROUND
Linux distributions heavily depend on package repositories
to provide their users with a straightforward manner for
installing and updating new software. The repositories are
often configurable in terms of packages stability; they also
allow the selection of an end-point server (mirror). The selec-
tion is usually automatically set to the geographically closest
server in an attempt to reduce latency. Most distributions
adopt the schema of mirrors and, thus, naturally impose a
hierarchy on the distribution. Distributed architecture in the
popular package repositories [5], [6], [7], [8], [9] is either
limited or nonexistent. Table 1 contains examples of popular
FOSS repositories.
Application Stores: are a slightly different kind of software

repositories [18], [19], [20]. In essence, all repositories are
meant to provide software for their users. Different from
the FOSS repositories, application stores provide the func-
tionality for users to buy or subscribe to applications (or
services) on their mobile phones, tablets, or computers. Such
application stores are not in the scope of this work.

VOLUME 10, 2022 112503



F. Z. D. N. Costa et al.: Distributed Repository for Software Packages Using Blockchain

TABLE 1. Example of package repositories provided or used by Linux
distributions and development communities. (a) Linux distributions;
(b) Developement communities.

FIGURE 1. States a Merkle tree whereas the proof of information (d) is
highlighted. One that presents: d + hash (i) + hash (c) and the Merkle
root (a) can confirm that (d) is presented on such tree.

A. MERKLE TREE
A Merkle tree, or Hash tree, allows verifying the contents of
large data structures efficiently and safely by using hashes as
its kernel [21]. This reduces the size to store the verification
that a given data belongs to a given structure. As illustrated
on Fig. 1 verifying whether a data belongs to a tree depends
on proof; that proof is given by the hashes of some leaves on
the tree and other important data, as follows [22].

1) The root hash of the Merkle tree;
2) The hash values to be verified;
3) The paths from the root to the nodes containing the

values under consideration;
4) The hash values of branches not taken along those

paths.

The proof size increases as the amount of information
grows, making proof size O(log2n) where n is the number
of elements stored on the tree.

B. InterPlanetary FILE SYSTEM
The InterPlanetary File System (IPFS) is a peer-to-peer hyper
media protocol [23]. In a P2P network such as IPFS, if one
node is down, other nodes in the network can serve needed
files [24].

IPFS uses content addressing to identify content by the
content itself, as oppose to where it is located. Every piece
of content included in IPFS has a Content Identifier. The
Content Identifier (CID) is merely the file representation in
the format of a multibase string; The CID includes:

• Multibase: The encoding that was used on the CID
string-encode representation of the original byte repre-
sentation [25].

• Multicodec: Identifier for the codec used on the ID
generation. [26]

• Multihash: Identifies the hash type and size used in the
CID computation. [27]

By default, the IPFS uses the sha256 hashing algorithm,
but virtually, any hashing algorithm can be used. Multiple
hashing functions can co-exist on a single IPFS network.
As important characteristics of content addressing, we can
cite that (i) any difference in the content will produce a new
CID; and (ii) the same content will produce the same CID,
regardless of the computing node.

In order to download a file from an IPFS network, an user
can be either part of the network as a node or to use a gateway.
The gateways are implemented to create a compatible layer
between IPFS and popular protocols such as HTTP, allowing
anyone to fetch a file from an IPFS network using the HTTP
protocol. Any node can present itself as a gateway [28].

C. BLOCKCHAIN
In addition to the predecessor’s block hash, the blocks in
a Blockchain also contains a payload. The payload is the
data that is meaningful to the final application. The prede-
cessor’s hash is part of the block structure, also known as
metadata.

As blocks contain the hash of its previous Block, the data
in any given block cannot be changed unless the subsequent
blocks are also changed. Although the blocks have a single
parent, a block may have multiple children. Each of those
child blocks refers to and contains the hash of the same
previews block. This scenario happens on a Blockchain fork
or Soft fork. The fork can be a consequence of two (or
more) peers proposing a block in (almost) the same time.
That is a temporary situation, as eventually new blocks will be
generated atop of those, and the longest chain is considered
to the best history [29].

1) NETWORK STRUCTURE
On aBitcoin peer-to-peer network every node is treated equal.
There is no hierarchy, and there are no centralized or master
nodes. Every node on Bitcoin is an equal peer. The network
has a random topology running over TCP, where nodes are
randomly peered with other random nodes [30].

Every participant of the peer-to-peer is capable of vali-
dating any given block. The validation of the Blockchain
is relatively inexpensive [31]. To be validated, the hash of
the block in question needs to be computed. If the cal-
culated hash matches with hash registered in the parent
block, it is valid, and every subsequent block is consequently
valid.

2) DISTRIBUTED CONSENSUS
The consensus mechanism needs to ensure that the decision
upon the newest block is acceptable and fair to all legit nodes
as it will define the truth of the Blockchain. This process of
generating a new block is referred to asmining.

The mining process in Bitcoin use Proof-of-Work (PoW),
which consists in guaranteeing that the odds to be selected
to craft the next block is given to the node that puts more
‘‘work’’ on it. The new block has to follow a set of basic
rules; otherwise, it will be treated as invalid by the network.

112504 VOLUME 10, 2022



F. Z. D. N. Costa et al.: Distributed Repository for Software Packages Using Blockchain

TABLE 2. Block structure on the proposed blockchain. 225 bytes wide,
the blocks are bigger than a normal blockchain block due to support to
stake holders list and packages summary.

Together with PoW, there are other methods of Proof, such
as Proof-of-Download (PoDl), and Proof-of-Stake (PoS).

a: PROOF-OF-STAKE
In Blockchain terms, stake is what the user has and pledges
to participate in the decision on the next Block. Unlike the
name suggests, the consensus is not arbitrated exclusively by
the one who holds more resources, but by a set of arbitration
‘‘voters’’ that decides. Thus, making sure that it is not cen-
tralized in one single peer.

In PoS, the miner of a new block is known as the forger.
Before the selection, in order to participate in the selection
party, the forger has to deposit some tokens into the network,
using it as collateral to vouch for the Block.

b: PROOF-OF-DOWNLOAD
PoDl selects forgers by popularity. Assuming that forgers
provide files, the ones with must downloads (most popular)
will be recognized as forgers. PoDl securely establishes the
number of downloads for later computing the popularity of
the providers; the most popular providers are the ones eligible
to be forgers. [15].

III. PROPOSAL: THE BLOCKCHAIN
Several Blockchain implementations already use IPFS as a
method for distributed content [32], [33], [34], [35], [36].
The block payloads are somewhat limited in size, infeasible
to hold larger information such as package meta-information
(described at Section II-C) or the package sources. The
payloads are usually limited to a hash, that is later used to
compose the block Merkle Tree (Section II-A).

Using IPFS is natural, as its Peer-to-Peer (p2p) nature
allows an easy setup and facilitates contributions in the format
of bandwidth and storage space. As the network expands,
it increases the chances of having a geographically close
node, possibly reducing latency and increasing transmission
speed. The setup-less network cache is easy to deploy, serving
an entire local network without the need for setup on the
clients. The files are served/reachable after its content (in the
format of CIDs), therefore auto verifiable and easy to store
on a Blockchain.

The file can be fetched from untrusted peers on the p2p
network, as the verification can be performed using the file
CIDs, stored on the Blockchain. Every block also holds CIDs
pointers to digital documents, including the Package Sum-
mary. It is expected to have blocks of 225 bytes in total,

containing Block Version, Block Timestamp,Merkle root, and
the Previous block hash. Further details are shown inTable 2.

At the cost of fewer bytes, the package summary and
stakeholders list are published on every block. This list can be
easy computed giving the Blockchain history at any height.
The computation comes at a cost, which may pose a diffi-
culty for smaller or ad-hoc contributors. Providing such a list
already computed speeds up the contributions, removing the
barrier of downloading the blocks information and indexing
the package summary.

A. THE PACKAGE SUMMARY
The package summary is a Comma-Separated Values
(CSV) [37] list, whereas all the packages already published
on the Blockchain are described in its latest version. In the
package summary document, it is expected to be encountered:
package version, package description, package publication
date, and block prove for every package. That information
is later used for peers that want to search packages or pro-
vide the search functionality. The package summary file also
makes it possible to look up the latest package versions.

As the package summary file is available in a p2p manner,
via IPFS, the clients may opt to provide the list partially to
whatever size fits on the amount of computer power that they
are willing to share. Likewise, the local search can be made in
a stream fashion, as the download goes. Therefore, limiting
the number of resources used to process a file whose size is
arbitrary.

B. THE STAKE HOLDER SUMMARY
The validation of stakeholders (possible block forgers) can
be made easily with the utilization of the stake holder file.
The file contains information on the stakes of every forger.
Allowing the easy look up, by any peer who may concern
about the authenticity of a block. With such a list, the clients
does not need to compute the entire Blockchain in order to
identify possible publishers.

The stake holder summary is a CSV list containing the
public key of the node, the amount of stakes that it may has
at the given height, and the proof of the stake transaction.
Oppose to the Package summary, this file does not meant
to grow indefinitely. But, at the control of the stake. The
file can grow or shrink upon on the amount of possible
forgers.

C. FILE AND METADATA STORAGE
All package metadata, as well as source files, are meant to
be distributed over IPFS. As the CID is a representation
of the data, it automatically suits as self-validation of the
file integrity. The self-validation property makes it possible
to retrieve files from public sources yet guarantees their
integrity. The CIDs for the metadata are published on the
blocks.

Critical infrastructure in server rooms or public internet,
where restrictions are imposed on internet access, may rely
on IPFS web gateways (Section II-B) for download packages
and meta-information. The utilization of web gateways is

VOLUME 10, 2022 112505



F. Z. D. N. Costa et al.: Distributed Repository for Software Packages Using Blockchain

TABLE 3. Resource provide identifications. (a) Package search.
(b) Blockchain update.

discouraged, as it implies not taking full advantage of p2p
benefits.

Guarantee the availability of the files on the IPFS network
is critical to avoid dangling packages. It is expected multiple
IPFS servers hosting the same file. Either because a node used
the file and kept a copy or because the node has the file down-
loaded to serve others. Mirrors are easy to be deployed as a
new IPFS node. Different mirror strategies can be adopted,
for instance, only mirroring the most recent packages instead
of mirroring the entire Blockchain data.

The package publication depends on simple rules to guar-
antee the file’s existence while the block is being forged.
In the event of a package publication, it is expected that
the publisher has the package available on an IPFS node.
If available, the package will also be provided by the block
publisher, making sure to have at least two nodes on the
IPFS providing the package. Without having the package
files (source or meta-information), the forger will discard
the package. If any block got to be published without the
associated files, it is automatically considered invalid.

In a software life-cycle, it is expected that the package
will become deprecated. The files for deprecated packages
may not be distributed or available on the IPFS. Deprecated
packages may imply security risks, so not serving those could
benefit the users. [38].

1) THE DEPRECATED PACKAGE
Different metrics could be used to understand the package
deprecation. The deprecation comes as discretion at the dis-
tribution that vouches for the package. It is possible to layout
package depreciation metrics on a Blockchain. Having the
blocks being tentatively published on an equaled spaced time
allow us to understand the publication time based on the tip of
the Blockchain, therefore having the block publish age. One
option for distributions is the re-publication of the package
(with the same version) at certain fixed age (or block interval).
If the distribution does not re-publish old packages at a given
time, automatically consider those as deprecated. Likewise,
packages that depend on deprecated ones shall be treated as
deprecated.

2) THE MISSING PACKAGE
Network failure and server outage are two of the many rea-
sons why a package may be unavailable. The availability is
somewhat proportional to the number of mirrors. Thus, the
easy way to avoid the missing packages is to at least provide
one copy of the file on a reliable server. One interested in
providing such a mirror server may have to walk over the
digital ledger, downloading every single file to its instance
of the IPFS node. While constructing the mirror, it is also
possible to identify the already missing files. The distribution
may want to ponder walking the ledger, having as a metric the

TABLE 4. Different types of nodes on the suggested blockchain.

availability of its files considering external factors such as the
geographical position of the potential users.

D. PEER-TO-PEER NETWORK
Considering the goal of having an autonomous Blockchain,
and so, avoiding any centerpiece on the communication, the
p2p was a natural choice. Notice that the nodes communica-
tion happens in different network from the IPFS. Having the
files distributed over a common IPFS comes with the ben-
efit to count with the already deploy infrastructure, holding
about 2 (two) million of new users per week [39].

One of the challenges in a p2p network is ensuring that
all nodes are part of the same network. Nodes can find each
other on a local area network, benefiting from low latency
and fast local area network transfer without overusing the
Internet. Yet, the internet node lookup is vital to ensure
network integration globally. The node finder method may
vary depending on the characteristics of the node’s network.

For the local area network node finding, the mDNS [40]
was chosen, as it allows nodes to find each other with
zero configuration by using a multi-cast system of the DNS
records. For the Internet node finder, the bootstrap allows
nodes to find each other by querying pre-fixed nodes; once
connected to these hard-coded nodes, the local nodes tables
are filled with other connected nodes [41]. As soon as the
node become part of the network, all the resources (and
nodes) lookup are made through a protocol based on Kadem-
lia DHT [42].

Every node on the p2p network has its ID; that ID is a cor-
respondent to its public key. So, if one node wants to establish
communication with the other node, they can find each other
via its ID. Likewise, the look up could be performed on a
resource ID (Table 3). The node private key is also use to sign
the packages and blocks, validating the origin of the block.

The network contains different types of nodes. All is meant
for different functionality. It is worth distinguishing incen-
tives to the sharing of different resource types: CPU, Disk
Space or Bandwidth. Table 4 presents the different types of
nodes and the expected resource to be shared.

The forger node (Table 4-v) is a special node meant to
forge new blocks. The block forger needs to perform a block
signature using a key in which the privilege for signing blocks
was given.

The client node (Table 4-iv) does not cooperate with
the network as it may be running in a device with limited
resources (such as an IoT device). The client nodes only
consume resources from the network.

Implementation wise, the contributors or supply nodes can
support the three types of contribution (or any combination
of Table 4-i to iii) in the same node. Some limited resource

112506 VOLUME 10, 2022



F. Z. D. N. Costa et al.: Distributed Repository for Software Packages Using Blockchain

contributors, such as the search node (Table 4-i), are mini-
malist enough to run in a browser.

The p2p network is meant to have two different resources:
A. Package search; B. Blockchain update. Listed on
Table 3.

E. BLOCKCHAIN
Releasing a new block on every two hours, we suggest having
a Blockchain with blocks of 225 bytes, containing Block
Version, Block Timestamp, Merkle root, and the Previous
block hash, as detailed in Table 2.
Although the download size is 225 bytes, after verification,

the information is saved in 32 bytes. Only the block hash is
needed to be saved. By keeping all blocks hash in a file, the
offset will denote the block number (1). Therefore, the vali-
dation data is proportional to the size of the chain in blocks.
The block can always be downloaded and later compared
to the saved hash. Keeping the hash for elderly blocks may
not be necessary as those may hold outdated or discontinued
software.

f (x) = x × 32 (1)

where:

f (x) = Offset for the Trusted Block Hash

x = Block height

F. BLOCKCHAIN UPDATE
All nodes that depend on an up-to-date version of the
Blockchain shall update as frequently as 2 hours. The updates
could either be via the p2p network or via WEB. The updates
are expected to happenwith the download of the entire blocks.
The nodes entitled to mirror the Blockchain (Table 4-iii)
would also provide the real information on every package
published on the Merkle tree, not only the hash. Over and
above that, peers can listen to the block publication broadcast,
keeping a live updated version of the ledger.

The p2p mirror nodes are meant to provide the updates per
block; The block height can be used to identify blocks. It is
possible to have more than one valid block at a given height.
Alternatively, blocks can be retrieved by their unique identi-
fier: the block hash. That block hash can be later validated at
the ledger’s largest chain. Additionally, mirrors can validate
the integrity of each block and all the provided information.

Updates on the package’s source files (or metadata) are
only necessary when packages need to be installed or
updated. Mirrors that may want to host packages source files
and metadata (Table 4-ii) can keep an IPFS copy of every file
on the chain.

In practice, the package manager will update the tree on
every operation, leading the user to know if packages are
available for update. The chain update should be faster if fre-
quently updated. Otherwise, cumulative updates may delay
the update process.

G. PACKAGE SEARCH
As the name suggests, the main goal of the functionality is
to provide a search under every available package on the

Blockchain. The lookup is meant to happen over the package
name and package description. To perform a search, the
client first have to identify the nodes that provides the search
functionality: over the p2p network, the client has to lookup
the ‘‘search resource’’ (Table 3) using the Kademlia DHT.
Once identified, the client will place a search request for the
selected search node (Table 4-i). The search supports limited
regular expressions patterns. Limitation aimed at avoiding
ReDoS attacks [43].

As a return of every search result, the search node provides
name, version, description, and block proof for every match.
The proof establishes that the given information belongs to
a given block. The proof contains all the hashes required to
establish whether a given data belongs to a Merkle root.
By downloading the block, the user can confirm that it is trust-
fully by comparing its hash with the local register; further-
more, the Merkle root is used to validate that the information
obtained is part of the block.
SEARCH as Web API: Via p2p gateway or local database,

websites can provide the search functionality. Regardless of
the usedmethod the proof for every record are necessary to be
presented, providing the user who have requested the search
a receipt for later validation. The web interface is specially
necessary for infrastructures where the internet access is
limited. The p2p gateway can present itself for the network
as a regular node, performing the search and giving back
the search results to the end user. The local database can be
either downloaded giving the summary list on the last block
or computed giving the Blockchain history.
Local Search: Nodes whereas storage size and process-

ing power are not limited, the user could can keep the last
summary list saved, updating as new packages are released.
Within the saved list the users could perform search in its own
local database. Depending on the CPU power availability it is
expected to have faster results within that method.
Building the Search List: Any peer that is willing to coop-

erate with the network by providing the search functionality
(Table 4-i) has to either build or download its search table.
Computing the search table means indexing the Blockchain
by package, keeping the latest version of all packages and
their respective name, description, and version.

To facilitate such computation, a summary list is also pub-
lished on every block via IPFS allowing a node to retrieve
latest package information without needing to compute the
packages on the entire Blockchain. When downloaded from
doubtful peer, the list hash can be validated against the CID
published on the last block.

1) SEARCH RESULT TREAT MODEL
The treat model considers the search to prevent bogus results
from being presented. For that, the user participation is
needed:

• The user shall validate that the search keyword is part of
the package description or name.

• The user must validate that the package information was
published on the given Block.

VOLUME 10, 2022 112507



F. Z. D. N. Costa et al.: Distributed Repository for Software Packages Using Blockchain

If such criteria are not met, the user shall disregard the
search result. Furthermore, the user shall consider the latest
package’s version in the package summary file on the tip
block. It is up to the user whether to install a package that is
not the most recent version of a given package. The conceal-
ment of package information may be at the user’s perception
via the different responses on the network. Ultimately, the
client may consider the results for multiple searches.

The negative response while searching for network nodes
that provide the search functionality could be due to the
nonexistence of search nodes (Table 4-i). The former may
indicate the deprecation of the network.

H. DISTRIBUTED CONSENSUS
There are a few nodes that could issue a block, and those are
the ones most interested in having a consistent network: the
block forger (Table 4-v). Since the network is made out of
nodes that do not necessarily trust each other, it must agree
on the block publications and their contents. The consensus
is obtained via a set of pre-established rules that happens over
the p2p network.

Forger nodes are nodes that proves the possession of a
private key in which the correspondent public key has granted
the permission to issue blocks. The permission is given in
the format of tokens. Tokens can be interchanged among the
peers; every token transaction is also held on the Blockchain.

At the first block, 1,000 tokens are granted to the first
forger, and later the forger distributes the tokens to other
forgers at convenience. Blocks that are published on the
network without a valid signature from a valid forger shall
be disregarded. For a block to be considered valid, it has to
follow a minimal set of rules:
• The forger signature on the block must be valid.
• The forger must present at least one token.
• All package publication signatures must be valid.

– All publishers have to be validated.
• Files needs to be reached over the IPFS network. The
forger must provide a copy.

• Transferred tokens must be valid.
• Summary for packages and tokens have to be valid
accordingly to the Blockchain history.

Blocks that do not meet one of the above-mentioned items
are automatically regarded as invalid and should not be
trusted by the users. Since all validation data are public, block
validation can be held by any peer on the network, including
other forgers.

Since it is expected to have more than one forger interested
in publishing a block, there is a criterion in which a forger
is semi-randomly elected to forge a block. This computation
follows an agreement labeled: The forger party.

1) THE FORGER PARTY
Every 118 minutes, one of the forgers initiates the forger
party. The forger party is the process where a forger
gets selected to forger a block. The party is divided into
phases: Participation announcement, Ticket revealing,

TABLE 5. Example of a party-table information, sorted by rand-I. Notice
this table is held by each participant in the party while electing the forger
for a block.

Block publication. All those phases are due to its time-out.
The party takes no longer than two and a half minutes.

a: PARTICIPATION ANNOUNCEMENT
Participation in the forger party is not mandatory. If the forger
happens to be interested in forging a block, it has to announce
such interest.

The interest announcement is combined with a payload
that is later used to select the forger node. This payload is
a sha256 hash that is a representation of the concatenation
of the message timestamp and two 32-bits numbers picked at
random (2), so-called Ticket.

Ticket = sha256(timestamp+ randI + randII) (2)

This computed hash is later signed (using the forger key)
and published on the p2p network for all the listeners. Mean-
while, the forger also listens for the other nodes’ publications
and saves each publication in a table. If the signature does not
match or is not given by a valid forger, the publication will be
automatically discarded.

The Participation announcement takes no more than
60 seconds. After that, any new message will be discarded.
Likewise, messages published prior to 118 minutes after the
publication of the latest block will also be discarded.

b: TICKET REVEALING
Each forger reveals the Ticket over the p2p network one
minute after the hash publication. Every other saves this
Ticket information on the table. The Ticket information
is validated; if there is a mismatch between the Ticket
and the publish hash, the information is discarded. In this
step, the timestamp will also be validated; it must be befitting
to the message publication.

Once the tables are filled, every forger has a similar table.
The first random number must sort the table; lower numbers
first. By so, every forger (with access to the same announce-
ments) has a common position on the table.

After sorting the table (Table 5), a XOR operation takes
place, considering all of the random generated numbers. The
result of this operation leads to a seed number. The remainder
of the division of the seed number by the number of forgers
in the party is the elected node, considering its position on the
table.

When two (or more nodes) publish the same random num-
ber, the second random number can be used to untie the
selection. Suppose the second number also happens to be
equal. In that case, the untie is given to the node where the
name is lowest, considering its name’s ASCII characters.

Since this forger party happens in plain sight, every other
node can validate. If a node considers a different list of

112508 VOLUME 10, 2022



F. Z. D. N. Costa et al.: Distributed Repository for Software Packages Using Blockchain

forgers, a diverging tree is expected. One tree will be chosen
on the next block forger party. The tip common to more
forgers will prevail.

c: BLOCK PUBLICATION
Once the node becomes aware of its selection, the announce-
ment of the new block is expected on the p2p network.

If an impostor forger becomes selected, it won’t publish
invalid data as the block will be invalid. On the occasion of
never publishing the block, the chain will be fixed on the
next forger party, whereas a valid forger is likely to be picked
within 2 hours.

IV. EXPERIMENT
The experiment hereby presented consists of adding a set
of nodes acting on the construction (bootstrap) and main-
tenance/update of the Blockchain, parodying the packages
distributed on the PyPi repository. The experiment also counts
with the figure of the impostor nodes. The impostors have no
other goal other than to play as adversaries, making attempts
to subvert the Blockchain. The Blockchain uses as consen-
sus the proposal suggested on Section III-H as well as the
Blockchain characteristics described in Section III-E.
At the very least, it is expected that the Experimental

Blockchain will have all the packages published on the PyPi
repository, in addition to any other package added by the
publisher, straight on the Blockchain.

The Blockchain simulation was planned to count on having
twelve different nodes. Those nodes fell under categories
depending on their responsibility on the Blockchain. The
categories are described below.

• Whistleblower: The main responsibility of the whistle-
blower is to announce on the Blockchain new packages
publications. Either by going over the publication his-
tory of the PyPi repository or by tracking new publica-
tions.⇒ Node type defined in Table 4-iv.

• Forger: The forger nodes are the ones with stakes to
publish Blocks. Those will compete on the forger Party
(Section III-H1) to release new Blocks. ⇒ Node type
defined in Table 4-v.

• Impostor: Adversary nodes that are trying to subvert the
Blockchain in different manners. Detailed inTable 7.⇒
Node type defined in Table 4-iv.

• Listen: The Listen nodes are listening the peer-to-peer
network, observing packages/block publication to feed
their own database. That database will be later used for
verifying the packages availability consistence.⇒Node
type defined in Table 4-i,ii,iii and iv .

Each category had a different number of living nodes: four
nodes for whistleblower, three nodes for forgers, tree impos-
tors, and finally 2 listing nodes. The nodes were distributed
in different geographical locations to simulate a real-world
scenario where network latency pays a difference. The nodes
compete with each other on the package and block publi-
cation. Intending to generating readable statistics, the nodes
have received nicknames, as illustrated on Table 6. Also on

TABLE 6. Details on each of the nodes used on the blockchain
experiment.

FIGURE 2. Pipeline for feeding the Blockchain with different processes:
(a) bootstrap, (b) sync process, and (c) Continuous update.

Table 6 the geographical position of the nodes are revealed.
The hardware used in the experiments were Linux virtual
machines on a cloud service running an AMD EPYC with
4GB of dedicated RAM for each virtual server. [44].

The whistleblower nodes trust each other. For every pack-
age released, they also name the others tree whistleblowers as
trusted in that package publication. That way they may com-
pete with each other to figure each of the four whistleblower
will publish the next package update.

Under the simulation the stakes are divided equally in
between the tree forgers: 333 for each forger. Nibbler is the
forger for the genesis block. The subsequent blocks where
product of the forger Party exactly how it is described on
Section III-H1. The source for construction and test of the
Blockchain came from two distinct places: the package his-
tory and the continuous updates.

A. FEEDING THE BLOCKCHAIN
The mechanism to feed the Blockchain was based on a
producer-consumer pipe whereas items got to be removed
from the pipe, whenever confirmed to be processed by a
node. The consumers are the network nodes (whistleblowers),
listening to HTTP requests. The forger considers the package
information that came with the first whistleblower over p2p,
naturally, packages are validated before got accepted.

The produces are divided into tree different groups based
on the source of information. The first group is the one that
was enumerating the data from the PyPi history (bootstrap).
The second, was considering the continuous update of the
packages. Finally a third process fill the gap for the interval

VOLUME 10, 2022 112509



F. Z. D. N. Costa et al.: Distributed Repository for Software Packages Using Blockchain

FIGURE 3. Number of times that a forger got selected in the forger party versus the block height. Nodes downtime in highlight.

in between the PyPi snap shoot to the moment that the
Blockchain started to get the continuous update. The Fig. 2
demonstrate the dispositions for the produce and consumers
in this Blockchain feeding process.

1) BOOTSTRAP: FEEDING THE BLOCKCHAIN WITH PyPi
DATA
All the data from PyPi repository are available on their WEB
API. However, avoiding abuse on servers that are maintained
for free, there are some restriction on the amount of parallel
downloads, so as download frequency. Considering the limi-
tation and volume of data, to scrap all data was a challenging.

The PyPi API counts with a package index that was used
to indicate every package that was ever published on PyPi.
The repository scrappy counted a process to download all the
packages information, making a JSON files for every pack-
age. A bit of normalizationwas used in order to save packages
with names that could fit in the used file system (ext4) [45].
This process was gentle and counted with 4 different threads,
having a total processing time of 25 minutes and 12 seconds
to download over 6.2G of data finishing the snapshot at May
06, 2022 14:10:19 GMT-4

As the packages were already hosted in JSON format,
no normalization was needed to be made on the package data.
However, the release date for each package was used to orga-
nized the data into a Blockchain structure. At first, the script
identified the oldest package/release among the downloaded
packages. The oldest package timestamp (zconfig / Mar 21,
2005 15:59:25) was the timestamp for creating the genesis
block. In turn, for every package release, the timestamp was
computed to a block, respecting 2 hours between each block
creation. The script appended the package release informa-
tion on a JSON file named after the block number.

Notice that the same metadata from PyPi was kept on the
Blockchain, in additional references for the files CIDs were
added. As such, the dependency tracker used in PyPi is still
valid and backward compatible with the current PyPi.

Concerning that all package data was aligned with their
respective blocks, a different process was used to broadcast

the information on to the whistleblowers. The whistleblow-
ers were collecting the received package information and
publishing as new packages for the attention of the forgers.
Consequently, creating a snapshot of the PyPi database at
a given time. Yet, it was still necessary to continue updat-
ing the Blockchain with newer package publications out-
side the package history. The block publishing interval was
reduced from 2 hours to about 4 seconds per block dur-
ing the simulation. On average, it took about 4 seconds
per block, finishing the simulation in 3 days and 12 hours
of execution. A total of 75062 blocks were used in the
experiment.

2) CONTINUING UPDATE OF THE PACKAGES RELEASES
Although the method bootstrapping the Blockchain was
shown to be effective, it was somewhat abusive. As the
resources for PyPi are limited, the continuous download of
the entire PyPi database would be unfair. More elegantly,
a continuous process spotting only the new updates would
be a good fit. That is exactly what is provided by PyPi
updates RSS feed [46]. Available athttps://pypi.org/
rss/updates.xml the PyPi update feed contains themost
recent released packages.

Every two minutes a script performs a download of PyPi’s
update feed and sent to the different whistleblowers in the
same way that was done while the Blockchain was being
bootstrapped. Those produce nodes are known by the whistle-
blower that once authenticate the data will proceed with the
package announcement/broadcast to the forgers.

If a package is claimed - published by the author straight on
the Blockchain - the whistleblower will not be able to update
it unless the whistleblower is also marked as publisher by
the original publisher. Packages that are already claimed can
only be published by whoever claims them or happens to be
authorized by the original claimer. The network may count
on various whistleblowers; it is alright for the whistleblowers
to compete with each other on the package publishing. The
block forger should avoid any conflict by picking the first
package announced.

112510 VOLUME 10, 2022

https://pypi.org/rss/updates.xml
https://pypi.org/rss/updates.xml


F. Z. D. N. Costa et al.: Distributed Repository for Software Packages Using Blockchain

FIGURE 4. Number of packages and packages new versions published at
a given block.

There is no guarantee on the update frequency of the PyPi
feed. Therefore, a package may be published on PyPi but not
published immediately on the Blockchain. Furthermore there
is a gap in time between the time that the repository snapshot
was taken and the time that the Blockchainwas ready to recive
updates. That gap is filled by a sync process.

3) SYNC: MISSING PACKAGE VERIFICATION
The verification to check if a package is missing on the
Blockchain consists of downloading the packages from PyPi
and comparing whether they are present or not on the
Blockchain. If not present, the packages are added via whis-
pleblower altogether with the packages for the next block.
In this case, it is expected a delay. The package will only
appear in a later block, therefore being late to be available
to the user. The best effort is used to add the packages to
the Blockchain. It is guaranteed that every package will be
published in the long run. Eventually, packages may not be
published on the next block immediately.

This third process runs with an extended interval to avoid
draining the resources from PyPi servers. Hence the need for
the three different processes: bootstrap, continuing updates
and verification.

B. THE WHISTLEBLOWER
Apart from listen the network for updates, the whistleblower
is also responsible for parsing the package JSON, download-
ing every package file and provide a copy on an IPFS node.
Once the CID of the files are generated, the whistleblower
adds an extra entry to JSON, mapping the URI with the CID
content. In way that the user was provided with both options:
regular download, or download via IPFS whenever available.
IPFS was made optional in order to reduce the amount of
space necessary for storage all the packages files during the
simulation.

TABLE 7. The tree adversary nodes used in the blockchain simulation
followed by each attack description.

The whistleblower must validate that a package informa-
tion is coming from a trusted origin. If information is not
authenticated or corrupted, it most be discarded. Likewise,
every package publication sent by the whistleblower shall be
digitally signed, otherwise discarded by forgers.

C. THE LISTENING NODES
Listing to blocks publication the listen nodes are the ones
responsible for creating a parallel database contains the infor-
mation on all the packages. This informationwill be later used
to compare the data published on the PyPi network to data
that we have published on the Blockchain. Additionally the
listen nodes will also be providing search functionality and
Blockchain mirror on the p2p network Table 4-i,ii,iii and iv.

Important to note that the listen nodes are not aware the
Blockchain construction stage. They meant to be executed
in the beginning of the Blockchain creation process and kept
alive till the end of the simulation. To facilitate the statistics
generation those nodes are creating their own local database.
The database will be later used to understanding the package
publication timing.

D. BAD ACTORS: THE ADVERSARY NODES
The treat model is hereby defined by tree different actors:
Zapp, Zoidberg and Mon. Those three nodes are responsi-
ble for bad behaving in different manners, as described in
Table 7.

Every 10 seconds, the node Zapp retrieved the first pack-
age published on the p2p network, re-branding the signature
as he has published the package (regardless of the original
publisher). Zapp is not trusted as the publisher of any package
nor recognized as a whistleblower. In the same 10 seconds,
Zoidberg was also publishing a package with an invalid sig-
nature. In the Zoidberg attack, the original author’s signature
was changed in the first byte, leading to a corrupt signature.

Mon’s attack was the most relevant, as the node was pub-
lishing old packages (at most 100 randomly selected pack-
ages from previous blocks) with valid signatures, leading the
forger to look up if the packages had already been published.

V. RESULTS
The presence of the impostor nodes was recognized as a great
value in the development of the experiment, as it surfaced
implementation errors otherwise not noticed. The impostors
helped to understand that the signature validation made at
the package announcement arrival is less memory intensive.

VOLUME 10, 2022 112511



F. Z. D. N. Costa et al.: Distributed Repository for Software Packages Using Blockchain

FIGURE 5. Amount of new packages published per whistleblower.

FIGURE 6. Delay on Pip releases in relation to the correspondent block
publishing. Average time is highlighted on the dashed line.

Thus, making the forger nodes less prone to DoS attacks for
invalid signatures or ‘‘fake whistleblowers’’.

The forger implementation had to be changed several
times for package lookup optimization. In the end, a parallel
GDBM1 database was used, as Mon attacks were leading to
CPU spikes before the GDBM adoption.

The problems that became evident in the simulation it is
unlike to happens in a real-world scenario, the 4 seconds
per second on simulation leads the processing on the simu-
lator nodes to be 100% per almost all the simulation, some-
thing that would happen is sparse intervals such as 2 hours
per block. The cited problems would not represent a treat.

1GNU dbm (or GDBM, for short) is a library of database functions that
use extensible hashing and work similarly to the standard UNIX dbm. These
routines are provided to a programmer needing to create and manipulate a
hashed database.

TABLE 8. Number of packages published by each whistleblower (or bad
actor).

Nevertheless, apart from the possible collateral damage, the
attacks proved to fail in their main objective. As shown on
Table 8, the node Zapp did not managed to publish any
package. Also, no package was observed to be published with
an invalid signature. Ultimately, Mon’s attack did not manage
to fake any package version.

The semi-random selection for block forgers proved to be
even, as the distribution seems not to favor any particular
node, as demonstrated on Fig. 3. Network issues and power
outages led to downtime for the nodes, Heber and Nibbler.
As expected, Heber and Nibbler’s downtime did not affect the
well functioning of the Blockchain; Cubert was publishing
blocks without damage.

Finally, the exact number of packages were encountered
in The PyPI repository and Blockchain. There aren’t diver-
gences in the package publications. There were 282,794,8
packages (or new package versions) published on the snap-
shot taken on May 24, 2022. The Fig. 4 illustrates the growth
of the package publication on PyPi, consequently, the growth
of packages being published on the Blockchain.

The competition among the whistleblowers did not seem
to favor any particular node, as all nodes seem to have a
very similar amount of packages published. In the Fig. 5 it
is possible to understand how close is the amount of package
publication among the four different whistleblowers. Towards
the end of the Blockchain, Leela has a small discrepancy in
packages published. The difference seems to increase after
block 70,000, where Leela had less latency to reach forgers
Herbe and Nibbler. Yet, the difference is negligible given the
number of published packages.

The package pip was chosen as an example to understand
the amount of time in between the package publication (by the

112512 VOLUME 10, 2022



F. Z. D. N. Costa et al.: Distributed Repository for Software Packages Using Blockchain

FIGURE 7. Average package publication per minute on every block.

whistleblower) and the package availability to the final user.
The Blockchain associates the package availability to the
block publication (approximately every 2 hours). The Fig. 6
illustrates all pip releases together with the delay between the
package and the block publication. Notice the average delay
of 55 minutes. An excellent time compared with the mirrors
practice where servers are ‘‘synced’’ during the night for easy
network traffic.

The Transactions Per Second (TPS) usually seems to be a
critical factor on every Blockchain. In this experiment, the
TPS was considered low. In Fig. 7 illustrates the average
package publication per minute on every block. The highest
amount of publication was given at block 61507, where on
average, 13.65 packages were published per minute.

VI. CONCLUSION AND FURTHER WORK
The Blockchain proved to hold the same packages also pub-
lished by PyPi, even counting on network elements and the
presence of impostors. As most packages were added during
the simulation, the experiment was not significant enough to
show the package publication delay.

The forgers seem to be evenly selected during the
Blockchain construction, proving that the selection method
is working effectively. Therefore, having an honestly dis-
tributed consensus. Furthermore, allowing any contributor on
the internet to cooperate with the Blockchain with computer
power, disk space, and bandwidth - regardless of the amount
to share.

Overall, the Blockchain proves to be resilient and a good
fit for real-world deployment scenarios. The addition of
PoDl [15] in replacement of the stake is a perfect fit for sup-
porting multiple trails/distributions on the same Blockchain,
subject to be addressed in further publications.

REFERENCES
[1] G. Ferreira, L. Jia, J. Sunshine, and C. Kastner, ‘‘Containing malicious

package updates in npm with a lightweight permission system,’’ in Proc.
IEEE/ACM 43rd Int. Conf. Softw. Eng. (ICSE), May 2021, pp. 1334–1346.

[2] P. Abate, R. Dicosmo, R. Treinen, and S. Zacchiroli, ‘‘Mpm: A modular
package manager,’’ in Proc. Federated Events Component-Based Softw.
Eng. Softw. Archit. (CBSE), 2011, pp. 179–187.

[3] A. Hindle, Z. M. Jiang, W. Koleilat, M. W. Godfrey, and R. C. Holt,
‘‘YARN: Animating software evolution,’’ in Proc. 4th IEEE
Int. Workshop Visualizing Softw. Understand. Anal., Jun. 2007,
pp. 129–136.

[4] PyPi. (2020). Pip Search Has Been Temporarily Disabled. [Online]. Avail-
able: https://github.com/pypa/pip/issues/9312

[5] P. Software Foundation. Python Package Index. Accessed: Sep. 30, 2018.
[Online]. Available: https://pypi.org/

[6] A. Maven. (2021). Apache Maven Project. [Online]. Available:
https://maven.apache.org/

[7] NPM. (2021). Npm: Build Amazing Things. [Online]. Available:
https://www.npmjs.com/

[8] Crates. (2021). Crates: The Rust Community’s Crate Registry. [Online].
Available: https://crates.io/

[9] Yarn. (2021). Yarn: Safe, Stable, Reproducible Projects. [Online]. Avail-
able: https://yarnpkg.com/

[10] G. Lee, T. Moon, M. Jang, and H. Kim, ‘‘EAPT: Enhancing APT with a
mirror site resolver,’’ in Proc. IEEE Int. Symp. Softw. Rel. Eng. Workshops
(ISSREW), Oct. 2020, pp. 117–122.

[11] C. Dale and J. Liu, ‘‘Apt-p2p: A peer-to-peer distribution system for soft-
ware package releases and updates,’’ in Proc. IEEE INFOCOM, Apr. 2009,
pp. 864–872.

[12] H. Herry, E. Band, C. Perkins, and J. Singer, ‘‘Peer-to-peer secure updates
for heterogeneous edge devices,’’ in Proc. NOMS IEEE/IFIP Netw. Oper-
ations Manage. Symp., Apr. 2018, pp. 1–5.

[13] Q. Zhang, J. Yu, L. Luo, J. Ma, Q. Wu, and S. Li, ‘‘An optimized DHT
for Linux package distribution,’’ in Proc. 15th Int. Symp. Parallel Distrib.
Comput. (ISPDC), 2016, pp. 298–305.

[14] D. G. Feitelson, ‘‘‘We do not appreciate being experimented on’: Devel-
oper and researcher views on the ethics of experiments on open-source
projects,’’ 2021, arXiv:2112.13217.

[15] F. Z. da N. Costa and R. J. G. B. de Queiroz, ‘‘A blockchain using proof-of-
download,’’ in Proc. IEEE Int. Conf. Blockchain (Blockchain), Nov. 2020,
pp. 170–177.

[16] Debian. (2022). Debian Semantic Versioning. [Online]. Available:
https://www.debian.org/doc/debian-policy/ch-controlfields.html

[17] T. Mueller, ‘‘Let’s attest! Multi-modal certificate exchange for the
web of trust,’’ in Proc. Int. Conf. Inf. Netw. (ICOIN), Jan. 2021,
pp. 758–763.

[18] Google. (2022). Google Play Store. [Online]. Available: https://play.
google.com/store

[19] Microsoft. (2022). Microsof Application Store. [Online]. Available:
https://www.microsoft.com/en-us/store/apps/windows

[20] Apple. (2022). Apple Store. [Online]. Available: https://www.apple.
com/store

VOLUME 10, 2022 112513



F. Z. D. N. Costa et al.: Distributed Repository for Software Packages Using Blockchain

[21] M. Yu, S. Sahraei, S. Li, S. Avestimehr, S. Kannan, and P. Viswanath,
‘‘Coded merkle tree: Solving data availability attacks in blockchains,’’
in Financial Cryptography and Data Security (Lecture Notes in Com-
puter Science), vol. 12059, J. Bonneau and N. Heninger, Eds. Cham,
Switzerland: Springer, 2020. [Online]. Available: https://fc20.ifca.ai/, doi:
10.1007/978-3-030-51280-4_8.

[22] M. Friedenbach and K. Alm. (2017). Bip98: Fast Merkle Hash-
Tree. [Online]. Available: https://github.com/bitcoin/bips/blob/master/bip-
0098.mediawiki

[23] J. Benet, ‘‘IPFS–content addressed, versioned, P2P file system,’’ 2014,
arXiv:1407.3561.

[24] E. Nyaletey, R. M. Parizi, Q. Zhang, and K.-K.-R. Choo, ‘‘BlockIPFS–
blockchain-enabled interplanetary file system for forensic and trusted data
traceability,’’ in Proc. IEEE Int. Conf. Blockchain (Blockchain), Jul. 2019,
pp. 18–25.

[25] PL Inc. (2016). A Protocol for Disambiguating the Encoding. [Online].
Available: https://github.com/multiformats/multibase

[26] (2016). Canonical Table of of Codecs Used by Various Multiformats.
[Online]. Available: https://github.com/multiformats/multicodec

[27] (2016). Self Identifying Hashes. [Online]. Available:
https://github.com/multiformats/multihash

[28] IPFS-Devs. (2020). IPFS Gateway. [Online]. Available:
https://docs.ipfs.io/concepts/ipfs-gateway/#overview

[29] Y. Wang, Z. Su, J. Ni, N. Zhang, and X. Shen, ‘‘Blockchain-empowered
space-air-ground integrated networks: Opportunities, challenges, and solu-
tions,’’ IEEE Commun. Surveys Tuts., vol. 24, no. 1, pp. 160–209,
1st Quart., 2022.

[30] S. Nakamoto. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System.
[Online]. Available: https://bitcoin.org/bitcoin.pdf

[31] A. Antonopoulos, Mastering Bitcoin, 2nd ed. Sebastopol, CA, USA:
O’Reilly Media, May 2017.

[32] Q. Zheng, Y. Li, P. Chen, and X. Dong, ‘‘An innovative IPFS-based storage
model for blockchain,’’ in Proc. IEEE/WIC/ACM Int. Conf. Web Intell.
(WI), Dec. 2018, pp. 704–708.

[33] M. Steichen, B. Fiz, R. Norvill, W. Shbair, and R. State, ‘‘Blockchain-
based, decentralized access control for IPFS,’’ in Proc. IEEE Int. Conf.
Internet Things (iThings) IEEE Green Comput. Commun. (GreenCom)
IEEE Cyber, Phys. Social Comput. (CPSCom) IEEE Smart Data (Smart-
Data), Jul. 2018, pp. 1499–1506.

[34] Y. Chen, H. Li, K. Li, and J. Zhang, ‘‘An improved P2P file system scheme
based on IPFS and blockchain,’’ in Proc. IEEE Int. Conf. Big Data (Big
Data), Dec. 2017, pp. 2652–2657.

[35] N. Nizamuddin, K. Salah, M. A. Azad, J. Arshad, and M. H. Rehman,
‘‘Decentralized document version control using ethereum blockchain and
IPFS,’’ Comput. Electr. Eng., vol. 76, pp. 183–197, Jun. 2019.

[36] N. Nizamuddin, H. R. Hasan, and K. Salah, ‘‘IPFS-blockchain-based
authenticity of online publications,’’ in Blockchain—ICBC (Lecture
Notes in Computer Science), vol. 10974, S. Chen, H. Wang, and
L. J. Zhang, Eds. Cham, Switzerland: Springer, 2018. [Online]. Available:
http://blockchain1000.org/2018/, doi: 10.1007/978-3-319-94478-4_14.

[37] C. Format and M. T. Comma-Separated Values (CSV) Files. (2005).
Shafranovich. [Online]. Available: https://datatracker.ietf.org/doc/html/
rfc4180

[38] F. R. Cogo, G. A. Oliva, and A. E. Hassan, ‘‘Deprecation of packages
and releases in software ecosystems: A case study on NPM,’’ IEEE Trans.
Softw. Eng., vol. 48, no. 7, pp. 2208–2223, Jul. 2022.

[39] PL Building the Next Generation of the Internet. (2022). Protolabs.
[Online]. Available: https://protocol.ai/

[40] J. Heun. (2021). JavaScript Libp2p MulticastDNS Discovery Implementa-
tion. [Online]. Available: https://github.com/libp2p/js-libp2p-mdns

[41] V. Santos. (2021). JavaScript libp2p Implementation of the Railing Pro-
cess of a Node Through a Bootstrap Peer List. [Online]. Available:
https://github.com/libp2p/js-libp2p-bootstrap

[42] P. Maymounkov and D. Mazières, ‘‘Kademlia: A peer-to-peer information
system based on the XOR metric,’’ in Peer-to-Peer Systems (Lecture
Notes in Computer Science), vol. 2429, P. Druschel, F. Kaashoek, and
A. Rowstron, Eds. Berlin, Germany: Springer, 2002. [Online]. Avail-
able: https://dblp.org/db/conf/iptps/iptps2002.html, doi: 10.1007/3-540-
45748-8_5.

[43] M. Claver, J. Schmerge, J. Garner, J. Vossen, and J. McClurg, ‘‘REGIS:
Regular expression simplification via rewrite-guided synthesis,’’ 2021,
arXiv:2104.12039.

[44] Linode. (2022). Linode and AMD. [Online]. Available: https://www.
linode.com/amd/

[45] A. Mathur, M. Cao, S. Bhattacharya, A. Dilger, A. Tomas, and L. Vivier,
‘‘The new ext4 filesystem: Current status and future plans,’’ in Proc. Linux
Symp., vol. 2. Princeton, NJ, USA: Citeseer, 2007, pp. 21–33.

[46] J. Wusteman, ‘‘RSS: The latest feed,’’ Library Hi Tech, vol. 22, no. 4,
pp. 404–413, Dec. 2004.

FELIPE Z. DA N. COSTA is currently pursuing
the Ph.D. degree with the Federal University of
Pernambuco, where he is conducting researches
about blockchains. He is also an Architect of Mod-
Security version 3. He was ModSec’s Lead Dev
for eight years. He has a strong background on
the (in-)security of GSM networks. Engaged with
open source development, he has contributions on
assorted projects, from web browsers to 3D printer
software.

RUY J. G. B. DE QUEIROZ received the B.Eng.
degree in electrical engineering from the Escola
Politécnica de Pernambuco, in 1980, the M.Sc.
degree in informatics from the Universidade Fed-
eral de Pernambuco, in 1984, and the Ph.D. degree
in computing from the Imperial College London,
in 1990, for which he defended the dissertation
Proof Theory and Computer Programming: An
Essay into the Logical Foundations of Computa-
tion. He is currently an Associate Professor at the

Universidade Federal de Pernambuco and holds significant works in the
research fields of mathematical logic, proof theory, foundations of mathe-
matics, and philosophy of mathematics. He is the Founder of the Workshop
on Logic, Language, Information and Computation (WoLLIC), which has
been organised annually, since 1994, typically in June or July.

GUSTAVO P. BITTENCOURT received the B.Sc.
degree in computer engineering from the Federal
University of Pernambuco (UFPE), in 2017, where
he is currently pursuing the M.Sc. degree in com-
puter science. Since 2006, he has been working
in the private sector with cybersecurity, dedicating
the last few years of his professional career on the
security assessment of digital solutions for finan-
cial institutions.

LEOPOLDO TEIXEIRA is currently an Assistant
Professor with the Informatics Center (CIn), Fed-
eral University of Pernambuco, where he leads the
Software Testing and Analysis Research Group,
and is also affiliated with the Software Productiv-
ity Group. In 2022, he is also a CAPES-Alexander
von Humboldt Experienced Research Fellow,
working at the Universität des Saarlandes. His
research interests include software engineering,
with a focus on providing strong foundations for

improving software quality and productivity. In particular, he worked on soft-
ware product lines and configurable systems, refactoring, formal methods,
software testing, and mobile development.

112514 VOLUME 10, 2022

http://dx.doi.org/10.1007/978-3-030-51280-4_8
http://dx.doi.org/10.1007/978-3-319-94478-4_14
http://dx.doi.org/10.1007/3-540-45748-8_5
http://dx.doi.org/10.1007/3-540-45748-8_5

