
A Technique to Test Refactoring Detection Tools
Osmar Leandro

Federal University of Campina Grande
Brazil

osmarleandro@ufcg.edu.br

Rohit Gheyi
Federal University of Campina Grande

Brazil
rohit@dsc.ufcg.edu.br

Leopoldo Teixeira
Federal University of Pernambuco

Brazil
lmt@cin.ufpe.br

Márcio Ribeiro
Federal University of Alagoas

Brazil
marcio@ic.ufal.br

Alessandro Garcia
Pontifical Catholic Univ. of Rio de Janeiro

Brazil
afgarcia@inf.puc-rio.br

ABSTRACT

Refactoring detection tools, such as RefactoringMiner and RefD-
iff, are helpful to study refactorings applied to software repositories.
To evaluate them, the tools’ authors study software repositories
and manually classify transformations as refactorings. However,
this is a time-consuming and an error-prone activity. It is unclear
to what extent the refactoring mechanics is consistent with refac-
toring implementations available in IDEs. In this paper, we propose
a technique to test refactoring detection tools. In our technique,
we apply a single refactoring using a popular IDE, and then we
run the refactoring detection tool to check whether it detects the
transformation applied by the IDE. We evaluate our technique
by automatically performing 9,885 transformations on four real
open-source projects using eight Eclipse IDE refactorings. Refac-
toringMiner and RefDiff detect more refactorings in 20.41% and
14.11% of the analyzed transformations, respectively. In the remain-
ing cases, RefactoringMiner and RefDiff either do not detect the
refactoring or classify it as other types of refactorings. We report 34
issues to refactoring detection tools, and developers fixed 16 bugs,
and 3 bugs are duplicated. In other cases, 3 issues are not accepted.
This study brings evidence for the need of a shared understanding
of refactoring mechanics.

1 INTRODUCTION

Refactoring [9, 15, 24] is the process of changing a program to im-
prove its internal structure while preserving its observable behavior.
For a given refactoring, we use the term mechanics to denote the
description of how to carry out such refactoring, as some works
describe [9, 15, 24]. Popular IDEs, such as Eclipse, typically include
a number of refactoring implementations. Moreover, tools that de-
tect refactorings have been proposed in the literature. Currently,
the best tools available in the state of the art are Refactoring-
Miner [37] and RefDiff [31]. Recovering refactoring information
can provide useful insights to researchers focused on understanding
software evolution. Some studies address important aspects related

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2024 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

to refactorings, such as its motivations [19, 20, 39], improvements
of detection algorithms [21, 26, 31, 37], understanding the perspec-
tive of developers [11, 19, 20, 22], and detecting behavioral changes
introduced by refactorings [33, 34]. Knowing which refactoring
operations were applied in the version history of a system may
help in practical tasks, such as code reviews, proposing better diff
visualization tools, and facilitating API library migration [31].

To evaluate the accuracy of refactoring detection tools, develop-
ers manually mine open-source projects to identify transformations
based on their experience. Then, they create a dataset of manually
classified transformations to evaluate their tools. For example, Tsan-
talis et al. [37] manually identified 7,226 refactorings in open-source
projects for 40 different refactoring types. However, this process
is time-consuming and error-prone. Since there is no refactoring
mechanics specification widely accepted, refactoring detection tool
developers may have different refactoring mechanics in mind [22].
It is unclear to what extent the refactoring mechanics is consistent
with refactoring implementations available in popular IDEs.

In this paper, we propose a technique to test refactoring detection
tools. In short, the technique consists of applying a refactoring using
a popular IDE, and then running the refactoring detection tool to
check whether it detects the transformation performed by the IDE.
For instance, we apply the Move Method refactoring to a program
using Eclipse. Then, we run a detection tool, such as RefDiff, to
see whether it correctly detects the refactoring.

To evaluate our technique, we use the Eclipse IDE to apply 9,885
transformations of the following refactoring types: RenameMethod,
Rename Class, Move Method, Pull Up Method, Push Down Method,
Extract Interface, Inline Method, and Extract Method. All of these
refactorings are supported by both RefactoringMiner and RefD-
iff. This allows comparing the mechanics of these tools with the
Eclipse IDE’s. RefactoringMiner and RefDiff are aligned with
the refactoring mechanics of Eclipse in 74.28% and 78.45% of the
transformations, respectively. They detect more refactorings in
20.41% and 14.11% of the analyzed transformations, respectively.
RefactoringMiner and RefDiff do not detect refactorings or
detect other types of refactorings in other cases. We reported 34
issues to the developers of both tools, out of which 16 were fixed.
At the moment, 12 bug reports are still open, 3 bugs are duplicated,
and 3 issues are not accepted, which might indicate possible prob-
lems in the mechanics of refactoring implementations. Developers
fixed bugs related to the Move Method (4), Inline Method (3), Re-
name Method (3), Extract Method (2), Extract Interface (2), Pull Up

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Osmar Leandro, Rohit Gheyi, Leopoldo Teixeira, Márcio Ribeiro, and Alessandro Garcia

@@ class RefactoringSet

- public getRevision() {

+ public getRevisionID() {

return revision;

} ...

Listing 1: Using the Eclipse Rename Method refactoring.

Method (1), and Push Down Method (1) refactorings. In summary,
our main contributions are the following:

• A technique to test refactoring detection tools (Section 3);
• An evaluation comprising 9,885, which found 34 issues, out
of which 16 are fixed (Section 4).

All experimental data are available online [12].

2 MOTIVATING EXAMPLE

Fowler [9] describes the mechanics of some refactorings. For
instance, the Rename Method refactoring changes a method
name to a new one that better reveals its purpose. Popular
IDEs, such as Eclipse, implement this refactoring. Consider the
RefactoringSet class declared in the RefactoringMiner source
code. We can rename the getRevision method, changing its name
to getRevisionID. This process can be automated using Eclipse.
Listing 1 presents part of the actual transformation applied by
Eclipse. Eclipse also performs similar transformations in all places
where getRevision is used. The lines with - and + indicate lines
of code that are removed and added, respectively.

We can use refactoring detection tools, such as Refactoring-
Miner and RefDiff, to detect refactorings applied by developers. If
we use them to evaluate the transformation in Listing 1, Refactor-
ingMiner 2.0.3 indicates that the Rename Parameter refactoring
was applied, while RefDiff yields the Rename Method refactoring.

This example shows that the refactoring mechanics implemented
by Eclipse is not consistent with the refactoring mechanics used by
RefactoringMiner 2.0.3. In this particular example, we reported
issue #141, and developers fixed it in RefactoringMiner 2.1.0.

The developers of refactoring detection tools create datasets
to evaluate their tools. They manually mine open-source projects
to identify refactorings based on their experience. For instance,
Silva [30] uses a manual-validated dataset proposed by Tsantalis et
al. [38], which contains non-refactoring and refactoring changes.
However, this process is time-consuming and can be error-prone.
It is unclear to what extent the refactoring mechanics of detection
tools is consistent with refactoring implementations available in
IDEs. Knowing the differences may help researchers using refactor-
ing detection tools to better understand their results.

3 TECHNIQUE

Next we present our technique to test refactoring detection tools.

3.1 Overview

Figure 1 shows the main steps of our technique. It receives as input
a program and a particular refactoring type, hereafter called X, to
be evaluated. First, it searches for all possible locations where X

can be applied in the input program. Then, for each location, using
an implementation of X, it applies a single refactoring to the input

program, producing a new version of the input program as output.
Notice that this step yields a set of output programs containing
the application of a single refactoring for each possible location
identified in Step 1. Finally, we run a refactoring detection tool
(Y) to check whether Y detects the application of refactoring X in
each input and output program pair. The technique then produces
a report indicating whether the refactoring detection tool was able
to detect each refactoring application.

3.2 Steps

Step 1 consists of identifying all locations where we can apply a
refactoring (X). In this step, the technique automatically searches for
all possible refactoring targets in the input source code. We follow
a similar approach as Gligoric et al. [10]. For example, suppose we
would like to evaluate the Rename Class refactoring. Our technique
finds all classes (locations) in the program received as input. As
another example, consider we would like to evaluate the Rename
Method refactoring. Our technique searches for all methods (loca-
tions) declared in the input program. The result of Step 1 is a set of
locations (L). Locations are then dependent on the particular refac-
toring type. For instance, it might be a method call for the Inline
Method refactoring, statements for the Extract Method refactoring,
or a method declaration for the Move Method refactoring.

In Step 2, we apply the implementation of X to all possible lo-
cations L. Consider the Move Method refactoring as X. In Step 1,
we find all method declarations in the input program. In Step 2,
we apply the Move Method refactoring to each location, such as
the doHealthCheck method from Listing 2. We move it from the
ElasticRestHealthInd class to the Health class.

@@ class ElasticRestHealth

- doHealthCheck(builder, ...);

+ builder.doHealthCheck(this, ...);

- private void doHealthCheck(Health.Builder b, String json) {

- builder.withDetails(response); ...

@@ class Health

+ public void doHealthCheck(ElasticRestHealth e, String json) {

+ withDetails(response); ...

Listing 2: Using the EclipseMove Method refactoring.

Listing 2 presents a pair of input and output programs. We repeat
this process to all locations L identified in Step 1. The result of this
step is a set of pairs (P) containing the input and output programs.
We reinforce that each pair consists of an output program yielded
by a single application of X to the input program. We do so to make
it simpler to compare with the refactoring detection tool output. It
also makes it easier to report issues to developers. If the refactoring
implementation does not apply a transformation, or the resulting
code does not compile, we ignore it.

In Step 3, we run the refactoring detection tool for each pair in
P. For example, consider Listing 2 in which we apply the Eclipse
implementation of Move Method to the doHealthCheck method.
RefactoringMiner yields a single instance of the Move Method
refactoring. For this pair, we then report that the refactoring me-
chanics of RefactoringMiner aligns with the refactoring imple-
mentation of Eclipse.

https://github.com/tsantalis/RefactoringMiner/issues/141

A Technique to Test Refactoring Detection Tools Conference’17, July 2017, Washington, DC, USA

Figure 1: A technique to compare refactoring mechanics of refactoring detection tools and refactoring implementation.

Now, consider the example presented in Listing 3, in whichwe ap-
ply the Eclipse implementation of Rename Class to the UMLJavadoc
class. For this pair, RefactoringMiner yields seven refactorings:
Rename Class (1), Change Return Type (2), Change Attribute Type
(2), and Change Parameter Type (2). For this pair, since the output
of RefactoringMiner contains the refactoring applied by Eclipse
amidst other refactorings, we report that the refactoring mechanics
of RefactoringMiner is partially aligned with the refactoring
implementation of Eclipse.

@@ class UMLJavadoc

- public class UMLJavadoc {

+ public class UMLDocJava {

@@ class UMLClass

- public void setJavadoc(UMLJavadoc javadoc) {

+ public void setJavadoc(UMLDocJava javadoc) {

Listing 3: Using the Eclipse Rename Class refactoring.

As another example, supposewe now use Eclipse to apply the Re-
name Method refactoring to the getRevisionmethod, changing its
name to getRevisionID. We partially present this in Listing 1. Run-
ning RefactoringMiner on this pair yields the Rename Parameter
refactoring. For this pair, since the output of RefactoringMiner is
not the refactoring applied by Eclipse and the output is not empty,
we report that the refactoring mechanics of RefactoringMiner is

different from the refactoring applied by Eclipse.
In some cases, RefactoringMiner yields an empty output. Sup-

pose we apply the ExtractMethod refactoring illustrated in Listing 4.
RefactoringMiner 2.0.3 yields an empty set of refactorings, and
does not detect the refactoring applied by Eclipse. We reported
this problem to RefactoringMiner developers as issue #159, and
RefactoringMiner 2.1.0 correctly detects the applied refactoring.

@@ class PrometheusPushGatewayManager

- String host = ex.getMessage();

- String message = ...

+ String message = extracted(ex);

@@ class PrometheusPushGatewayManager

+ private String extracted(UnknownHostException ex) {

+ String host = ex.getMessage(); ...

+ return message;

Listing 4: Using the Eclipse Extract Method refactoring.

Our technique classifies each pair into one of the four previously
mentioned categories, and reports the results to the user. We sum-
marize our categorization in Table 1. Our main goal is to detect

differences between the refactoring mechanics implemented by
IDEs and refactoring detection tools. When such a difference is
found, it does not necessarily mean that the issue is on the refac-
toring detection tool side. Sometimes, the refactoring mechanics
implemented by refactoring implementations may add some addi-
tional optional changes, such as introducing temporary variables
when inlining a method. Some previous approaches found a number
of bugs in refactoring implementations of popular IDEs [4, 10, 29].

Table 1: Classification of transformations. x = refactoring

type applied by the refactoring implementation A; Y = the list

of refactorings types detected by the refactoring detection

tool B.

Category Definition

A and B are different x ∉ Y ∧ Y ≠ ∅
A is aligned with B x ∈ Y ∧ #Y=1
A is partially aligned with B x ∈ Y ∧ #Y>1
B yields an empty set Y = ∅

3.3 Tool Support

For simplicity, we use a default parameter for other options avail-
able in the refactoring implementation. In Step 1, we use the Eclipse
AST to perform code analysis and identify all possible locations
where we might apply a refactoring, such as classes, methods, in-
terfaces, fields, and so on. We use the refactoring implementations
from Eclipse [6] in Step 2. So far, we have tool support for the
following refactoring implementations: Rename Method, Rename
Class, Move Method, Push Down Method, Pull Up Method, Extract
Interface, Inline Method, and Extract Method, which are all of the
refactorings that are present in Eclipse IDE and both of the refac-
toring detection tools assessed in this work. A similar approach
can be used to include other refactoring implementations. Finally,
in Step 3 we consider two refactoring detection tools currently,
namely RefactoringMiner [37] and RefDiff [31].

4 EVALUATION

In this section, we use our technique to evaluate eight refactoring
implementations of Eclipse using two refactoring detection tools
in four open-source projects. We run two instances of the technique
for each detection tool, first using Eclipse and RefactoringMiner,
and next using Eclipse and RefDiff.

https://github.com/tsantalis/RefactoringMiner/issues/159

Conference’17, July 2017, Washington, DC, USA Osmar Leandro, Rohit Gheyi, Leopoldo Teixeira, Márcio Ribeiro, and Alessandro Garcia

4.1 Study Definition

Our goal is to apply our technique to test refactoring detection
tools, with the aim of finding mismatches between their refactor-
ing mechanics and the ones implemented in Eclipse. We analyze
RefactoringMiner, RefDiff, and the refactoring implementations
of Eclipse. We address the following research questions:
RQ1 To what extent the refactorings applied by Eclipse are de-

tected by RefactoringMiner or RefDiff?
We count the number of refactorings detected by Refac-
toringMiner (RQ1.1) or RefDiff (RQ1.2) that are aligned
with Eclipse, as well as the number of refactorings that are
partially aligned and different. Finally, we also count the
number of times that the detection tool yields an empty set.

RQ2 How many bugs can our technique detect in Refactoring-
Miner and RefDiff?
We submit issues to the developers of refactoring detection
tools and count the number of accepted and fixed bugs.

4.2 Experimental Setup

We ran the experiment on a laptop computer with Core i7 3.1 GHz
and 8 GB RAM running Fedora 33 and Oracle JDK 1.8. Table 2 shows
the four open-source projects used as inputs: Apache Gobblin,
Google Maps Services Java, RefactoringMiner, and Spring
Boot. All of them use Gradle1 for build automation, and we used
them in previous studies.

Table 2: Projects used in our evaluation.

Project Domain KLOC Stars Contributors

Apache Gobblin A distributed data
integration framework 454 2,100 90

Google Maps Services Java A Java client for
Google Maps Services 38 1,500 93

Spring Boot A framework to create
Spring-based applications 674 61,200 908

RefactoringMiner A refactoring detection tool 127 237 13

We use eight refactoring implementations of Eclipse JDT 4.16 in
Step 2. Eclipse is a widely used IDE and has a number of refactoring
implementations. In this work, we consider eight refactoring imple-
mentations: Rename Method, Rename Class, Move Method, Push
Down Method, Pull Up Method, Extract Interface, Inline Method,
and Extract Method refactorings. In Step 3, we use two refactoring
detection tools: RefactoringMiner 2.0.32 (RQ1.1), and RefDiff
2.03 (RQ1.2). To answer RQ2, we analyze several transformations
to see whether it is possible to arrive at the refactored version of
the code by applying the detected refactorings. Then, we create an
issue to discuss that behavior with the refactoring detection tool
developers. All experimental data are available online [12].

For each refactoring implementation, we used the following
parameters [12]. For the Extract Interface refactoring, we select
all members of a class to declare in the interface. We use the class
name with “I” prefix. For the Inline Method refactoring, we select a
random method to inline. In the Pull Up Method refactoring, we
select a random method to pull up in a subclass. In the Push Down

1https://gradle.org/
2https://github.com/tsantalis/RefactoringMiner/commit/fee2968
3https://github.com/aserg-ufmg/RefDiff/commit/2a06cfd

Method refactoring, we select a random method to push down
in a class that has a subclass. In the Rename Class and Method
refactoring, we use the old class and method name with a suffix.
For the Extract Method refactoring, we only apply it to methods
that contain at least three statements. First, it tries to extract the
second statement. If it cannot apply a refactoring, it tries to extract
the second and third statements. We repeat this process by adding
more statements until we successfully apply a refactoring using the
IDE, or we reach the last statement. For the other parameters, we
used the default value from Eclipse.

4.3 Results

Our technique analyzed a total of 9,885 transformations applied
by Eclipse using eight refactoring types implemented by Eclipse,
which were evaluated using RefactoringMiner and RefDiff. Ta-
ble 3 summarizes our results.

We apply 2,740 transformations using the Rename Method
refactoring implementation. RefactoringMiner and RefDiff are
aligned in 2,696 (98.39%) and 2,380 (86.86%) transformations with
Eclipse’s refactoring mechanics, respectively. In five of the trans-
formations, RefactoringMiner detects more refactorings. For in-
stance, it detects the Change Variable Type and the Rename Param-
eter refactorings. In seven transformations, RefDiff detects other
refactoring types. For example, RefDiff detects a combination of
the Extract and Move Method refactorings instead of the Rename
Method refactoring. Finally, RefactoringMiner and RefDiff do
not detect any refactoring in 39 (1.42%) and 353 (12.88%) transfor-
mations, respectively.

We apply 643 transformations using the Rename Class refactor-
ing implementation of Eclipse. RefactoringMiner and RefDiff
are aligned in 399 (62.05%) and 523 (81.34%) transformations with
Eclipse’s refactoring mechanics, respectively. In 234 (36.39%) and
118 (18.35%) transformations, RefactoringMiner and RefDiff
detect more refactorings. For instance, RefactoringMiner detects
the Change Attribute Type, the Change Parameter Type, the Change
Return Type, and the Change Variable Type refactorings. Refac-
toringMiner did not detect any refactoring in 7 transformations,
while RefDiff failed to detect refactorings in 2 transformations.
Finally, RefactoringMiner detects other refactorings in 3 trans-
formations. For example, it reports the Change Attribute Type, the
Change Parameter Type, the Change Return Type, and the Change
Variable Type refactorings instead of the Rename Class refactoring.

We apply 1,558 transformations using the Move Method refactor-
ing implementation. RefactoringMiner and RefDiff are aligned
in 720 (46.21%) and 1,432 (91.91%) transformations with Eclipse’s
refactoring mechanics, respectively. In 669 (42.94%) transforma-
tions, RefactoringMiner yields more refactorings. For example, it
yields up to 11 different refactoring types, such as the Add Param-
eter, the Change Parameter Type, the Inline Method and the Pull
Up Method refactorings. RefactoringMiner and RefDiff detect
other refactorings in 15 and 17 transformations, respectively. Finally,
RefactoringMiner and RefDiff do not detect any refactoring in
154 (9.88%) and 109 (7%) transformations, respectively.

Using the Push Down Method refactoring implementation, we
apply 145 transformations. Both tools are aligned with the Eclipse
refactoring mechanics in 10 transformations. In 130 (89.66%) and

https://gradle.org/
https://github.com/tsantalis/RefactoringMiner/commit/fee2968
https://github.com/aserg-ufmg/RefDiff/commit/2a06cfd

A Technique to Test Refactoring Detection Tools Conference’17, July 2017, Washington, DC, USA

Table 3: Summary of the results. The second from the last column indicates the total number of refactorings applied by Eclipse

JDT 4.16. The last column indicates the total number of reported issues. RM = RefactoringMiner; RD = RefDiff.

Refactoring Tool Aligned

Partially

Aligned

Different Empty Total Issues

RM 2,696 5 0 39 3Rename Method RD 2,380 0 7 353 2,740 3
RM 399 234 7 3 1Rename Class RD 523 118 2 0 643 2
RM 720 669 15 154 4Move Method RD 1,432 0 17 109 1,558 4
RM 10 130 0 5 2Push Down Method RD 10 134 1 0 145 2
RM 23 0 0 2 1Pull Up Method RD 25 0 0 0 25 0
RM 1,000 373 1 2 2Extract Interface RD 740 636 0 0 1,376 1
RM 263 396 13 229 4Inline Method RD 503 346 0 52 901 1
RM 2,212 205 1 52 3Extract Method RD 2,121 157 0 192 2,470 1

134 (92.41%) transformations, RefactoringMiner and RefDiff
identify more refactorings. For example, they consider an instance
of the Push Down Method refactoring for each subclass we push
down instead of a single transformation. If we push down a method
to five subclasses using Eclipse, the refactoring detection tools
yield five instances of the Push Down Method refactoring. In 5
transformations, RefactoringMiner does not detect any refactor-
ing. RefDiff detects the Move Method refactoring when we apply
Push Down Method to a method that has a parameterized type
replaced by a concrete type. We discuss this behavior in issue #16.

We use the Pull Up Method refactoring implementation to apply
25 transformations. RefactoringMiner and RefDiff are aligned in
23 (92%) and 25 (100%) transformations with Eclipse’s refactoring
mechanics, respectively. In 2 (8%) transformations, Refactoring-
Miner does not yield any transformation.

Using the Extract Interface refactoring implementation, we apply
1,376 transformations.RefactoringMiner andRefDiff are aligned
with Eclipse’s refactoring mechanics in 1,000 (72.67%) and 740
(53.78%) transformations, respectively. RefactoringMiner and
RefDiff detect more refactorings in 373 (27.11%) and 636 (46.22%)
transformations, respectively. For instance, RefactoringMiner
detects the Change Variable Type and the Change Parameter Type
refactorings. In addition, RefactoringMiner does not report any
refactoring only in a single transformation. For example, it yields
the Change Return Type refactoring, but it does not detect the
Extract Interface refactoring. Finally, RefactoringMiner detects
other refactorings in 2 transformations.

We apply 901 transformations using the Inline Method refactor-
ing implementation. RefactoringMiner and RefDiff are aligned
in 263 (29.19%) and 503 (55.83%) transformations with Eclipse’s
refactoring mechanics, respectively. RefactoringMiner and RefD-
iff detect more refactorings in 396 (43.95%) and 346 (38.40%) trans-
formations, respectively. Besides, RefactoringMiner and RefD-
iff do not detect any refactoring in 229 (25.42%) and 52 (5.77%)

transformations, respectively. Finally, RefactoringMiner detects
other refactorings in 13 transformations. For example, it yields the
Change Variable Type and Extract Variable refactorings instead of
the Inline Method refactoring.

Finally, we apply 2,470 transformations using the Extract Method
refactoring implementation. RefactoringMiner and RefDiff are
aligned in 2,212 (89.55%) and 2,121 (85.87%) transformations with
Eclipse’s refactoring mechanics, respectively. RefactoringMiner
and RefDiff detect more refactorings in 205 (8.30%) and 157 (6.36%),
respectively. For instance, RefactoringMiner detects the Parame-
terize Variable, Rename Parameter and Rename Variable refactor-
ings. Moreover, RefactoringMiner and RefDiff do not yield any
transformation in 52 (2.11%) and 192 (7.77%) transformations, re-
spectively. Finally, RefactoringMiner detects another refactoring
in a single transformation only. For this case, it yields the Change
Parameter Type instead of the Extract Method refactoring.

4.4 Discussion

In this section, we discuss the results of our technique.

4.4.1 Bug Reports. After the last step of our technique (Figure 1),
we manually classify failures into distinct issues, which are then
reported to developers. For each mismatch in a cluster, the first
author took a fewminutes to better understand it and checkwhether
it was a real bug candidate to report to the refactoring detection tool.
We analyze all transformations in the Partially Aligned, Different,
and Empty categories (see Table 1).

We analyze the results of each refactoring detection tool sepa-
rately and discuss the main issues in the following sections. For the
Different and Empty categories, we randomly select one transfor-
mation to manually analyze. For the transformations in the Partially
Aligned category, we cluster the outputs based on the types of refac-
torings yielded by each refactoring detection tool. Then, we select
one instance of each cluster to manually analyze. To make it simpler

https://github.com/aserg-ufmg/RefDiff/issues/16

Conference’17, July 2017, Washington, DC, USA Osmar Leandro, Rohit Gheyi, Leopoldo Teixeira, Márcio Ribeiro, and Alessandro Garcia

Table 4: Summary of reported issues.

Submitted Duplicated Not Bug Open Fixed

RefactoringMiner 20 2 3 0 15
RefDiff 14 1 0 12 1

Total 34 3 3 12 16

to explain to refactoring detection tool developers, we manually
modify the program by removing the parts that are unrelated to
the bug, inspired by delta debugging [25, 41]. Next, we manually
analyze each candidate and discard the ones that we believe are
not bugs. For example, if a tool reports refactoring A and it is not
possible to transform, or even partially transform, the original code
into the code after applying A, we consider the candidate as an is-
sue. For the remaining ones, we report each pair of small input and
output programs to refactoring detection tool developers stating
that we expected the application of a single refactoring type.

By following this process, we submitted 34 issues. Table 4 sum-
marizes them. Developers fixed 16 bugs, where RefactoringMiner
fixed 15 bugs and RefDiff fixed 1 bug. Moreover, 3 issues are dupli-
cated, 3 issues were not accepted, and 12 issues are still open. We
run the technique in RefactoringMiner 2.1.04 and RefDiff 2.05
after bug fixing, and our technique does not detect new issues.

As mentioned before, our technique reveals differences between
the refactoring mechanics of IDEs and refactoring detection tools.
Therefore, when inconsistencies arise, it does not mean that the
issue is on the refactoring detection tool side. Furthermore, when a
refactoring detection tool reports multiple potential results, and we
classify it as Partially Aligned, it does not always mean that they
are wrong. Sometimes the refactoring mechanics implemented by
the IDE may add some additional optional changes.

Understanding the root cause of a bug is not an easy task, given
that authors are not the tool developers. In what follows, we discuss
our results in light of some of the comments we received while
submitting bugs to the developers [12] in RefactoringMiner and
RefDiff. Listing 6 is related to the support to Generic Types in the
Push Down Method refactoring added by RefactoringMiner’s
developers. When moving a method that returns Generic Types, it
returns the actual type corresponding to the type in each subclass.
As another example, Listing 5 may be caused because fan-in rela-
tionships (methods which call the refactored method) are ignored
in the replacement function implemented by the matching algo-
rithm in RefactoringMiner. A similar issue of that in Listing 6
was reported to RefDiff’s developers. It detects the Move Method
refactoring when we apply the Push Down Method refactoring.
Developers explain that the tool enforces the same signature when
searching Push Down Method candidates. Moreover, they do not
deal with situations when generic types are replaced by concrete
types. RefDiff may have classified it as the Move Method refactor-
ing because this type allows changes to the signature. On the other
hand, in Listing 7, RefDiff detects the Extract And Move Method
refactoring, but we apply the Rename Method refactoring. Some
code fragments are updated to a new method name. The renamed
method is a single-line method, and this can increase the similarity
score when comparing with updated code fragments.
4https://github.com/tsantalis/RefactoringMiner/commit/149468e
5https://github.com/aserg-ufmg/RefDiff/commit/3dabc79

Concerning the Extract Method refactoring, some of the addi-
tional refactorings reported by RefactoringMiner are due to the
IDE refactoring mechanics and RefactoringMiner correctly re-
ports them. For example, the Parameterize Variable refactoring
is reported when local variables declared in the original method
become parameters of the extracted method. Also, the Rename Pa-
rameter refactoring is reported when a parameter of the original
method is passed with a different name in the extracted method.

We tried to contact RefDiff developers, but we did not receive an
answer for 12 out of the 14 issues reported. In 6 of the 12 unanswered
issues of RefDiff, RefactoringMiner is aligned with Eclipse. In
3 out of 12 unanswered issues, RefDiff and Eclipse are different,
while RefactoringMiner is partially aligned with Eclipse.

4.4.2 Refactoring Detection Tools yield an empty set. In some cases,
the refactoring detection tools do not detect the refactoring applied
using Eclipse. For example, Listing 2 shows the application of the
Move Method refactoring to the doHealthCheck method (Step 1).
Eclipse moves the method to the Health class, changes its signa-
ture, and removes the original doHealthCheck method. Refactor-
ingMiner does not detect this transformation. The Move Method
refactoring mechanics described by Fowler [9] allows changing the
signature of the method. In our study, we identify 8 issues related to
this kind of refactoring. This example may help developers discuss
the correct refactoring mechanics for the Move Method refactoring.
One may argue that the correct refactoring mechanics is to enclose
operations that change the signature of the moved method, such
as Add parameter, Remove Parameter, Change Parameter Type in-
volving the Source or Target class types. We reported this problem
on issue #133 and developers fixed it. The fix intends to match the
body of methods when there is an inner class in the refactoring
relationship. The patch code checks if the removed parameter looks
like having the same type as the target class, but also if the added
parameter seems to have the same type as the source class.

Listing 5 shows the result of Eclipse applying the Rename
Method refactoring to the setAttribute method. Refactoring-
Miner does not detect this refactoring. We analyzed the resulting
code and identified that the transformation applied by Eclipse hap-
pens in a method containing a single line of code. The developers
fixed issue #140 of Listing 5 in RefactoringMiner 2.1.0.

@@ class UMLModelASTReader

- variableDeclaration.setAttribute(true);

+ variableDeclaration.setAttr(true);

@@ class VariableDeclaration

- public void setAttribute(boolean isAttribute) {

+ public void setAttr(boolean isAttribute) {

Listing 5: Using the Eclipse Rename Method refactoring.

Furthermore, they mention that single-line methods are tricky to
detect. In general, it is harder to match statements near to similar
single-line methods. RefactoringMiner uses abstraction and argu-
mentation to deal with changes taking place in code statements. It
matches two versions of the same method if they have an identical
signature, that is same name, parameters, return type, parent class,
and body. Their algorithm matches the added and deleted code
elements to find code elements with signature changes, but similar
methods in the same class can be confusing.

https://github.com/tsantalis/RefactoringMiner/commit/149468e
https://github.com/aserg-ufmg/RefDiff/commit/3dabc79
https://github.com/tsantalis/RefactoringMiner/issues/133
https://github.com/tsantalis/RefactoringMiner/issues/140

A Technique to Test Refactoring Detection Tools Conference’17, July 2017, Washington, DC, USA

In Listing 6, Eclipse applies the Push Down Method refactoring
to the awaitIgnoreError method, which returns a generic type.
The actual return type is replaced in each subclass. Refactoring-
Miner 2.0.3 yields an empty set. We submitted issue #137, and this
problem is fixed in RefactoringMiner 2.1.0. The fix checks if the
return type T in the superclass is replaced by the return type in
each subclass. We also submit an issue to RefDiff developers. They
explained that this behavior is a limitation of their implementation.
Some language constructs, such as generic types and lambdas, are
challenging for Java refactoring detection tools. Our technique can
help to improve them by showing some examples that may expose
new rules to be considered in refactoring detection tools.

@@ abstract class PendingResultBase

- @Override

- public final T awaitIgnoreError() { ... }

@@ class DistanceMatrixApiRequest

+ @Override

+ public final DistanceMatrix awaitIgnoreError() { ... }

Listing 6: Using the Eclipse Push Down Method refactoring.

4.4.3 Mechanics Are Different. In Listing 7, Eclipse applies the Re-
name Method refactoring to the isConstructor method. RefDiff
yields an Extract and Move Method refactoring for each method
call, in this case. This result shows that RefDiff does not yield the
applied refactoring, but several others that were not applied. We
report issue #19 to RefDiff’s developers.

@@ class UMLOperation

- public boolean isConstructor() {

+ public boolean isConst() {

return isConstructor;

}

@@ class UMLModelDiff

private void checkForOperationMoves()

...

- else if(r.isConstructor() == a.isConstructor() ...) {

+ else if(r.isConst() == a.isConst() ...) {

Listing 7: Using the Eclipse Rename Method refactoring.

As another example, Eclipse applies the Extract Interface refac-
toring to the StaticMapsRequest class. RefactoringMiner 2.0.3
does not detect the Extract Interface refactoring. Moreover, it yields
the Change Return Type (12) refactoring (see Listing 8). We verify
the resulting code and the default parameter of Eclipse is to replace
types where possible to the extracted interface type. This parameter
needs attention because additional transformations applied by the
IDE can directly impact the refactoring detection tools. Issue #146
of Listing 8 was fixed, and RefactoringMiner 2.1.0 correctly de-
tects the applied refactoring. Before fixing, the detection of Extract
Interface considers the same signature and return types. After, it
ensures the same signature but ignores the changed types.

@@ class StaticMapsRequest

- public StaticMapsRequest center(LatLng location) {

+ public IStaticMapsRequest center(LatLng location) {

@@ interface IStaticMapsRequest

+ public interface IStaticMapsRequest {

+ ...

+ IStaticMapsRequest center(LatLng location);

Listing 8: Using the Eclipse Extract Interface refactoring.

Eclipse applies the Inline Method refactoring to the
locationBias method (see Listing 9). RefactoringMiner
detects four instances of the Extract Variable refactoring. The
method is called in four different locations. This example may help
developers to further discuss the temporary variables introduced
by the Inline Method refactoring mechanics. Eclipse’s engine
introduces additional statements, causing variable renames or
the extraction of temporary variables. Thus, RefactoringMiner
correctly reports the Extract Variable refactoring. We report issue
#121, and it was fixed in RefactoringMiner 2.1.0. The fix checks
if the method call in the first statement is the expression, or
sub-expression, of the method invocation in the second statement,
and checks it from the second statement to the first statement. In
addition, the Extract Variable refactoring can be avoided in this
operation, because a single statement uses this variable.

@@ class FindPlaceFromTextRequest

- public ... locationBias(LocationBias lb) {

- return param("locationbias", lb);

- }

@@ class PlacesApiTest {

+ LocationBias lb = new LocationBiasIP();

...

.fields(...)

- .locationBias(new LocationBiasIP())

+ .param("locationbias", lb)

Listing 9: Using the Eclipse Inline Method refactoring.

4.4.4 Mechanics Are Partially Aligned. In Listing 10, Eclipse ap-
plies the Rename Method refactoring to getNonMappedLeavesT1

method. RefactoringMiner 2.0.3 yields that the Change Variable
Type refactoring is applied to the statement variable, but there is
no change in this variable. We report issue #139, and developers
fixed it in RefactoringMiner 2.1.0.

@@ class UMLOperationBodyMapper

- public ... getNonMappedLeavesT1() {

+ public ... getNonMLeavesT1() {

return nonMappedLeavesT1;

@@ class InlineOperationRefactoring

- for(StatementObject s : b.getNonMappedLeavesT1()) {

+ for(StatementObject s : b.getNonMLeavesT1()) {

...

for(CompositeStatementObject s :

↩→ b.getNonMappedInnerNodesT1()) {

Listing 10: Using the Eclipse Rename Method refactoring.

Listing 11 shows that Eclipse applies the Rename Class refactor-
ing to the Replacement class. RefactoringMiner detects the Re-
name Class refactoring along with other 245 refactoring instances,
such as the Change Attribute Type, the Change Parameter Type,
the Change Return Type, and the Change Variable Type refac-
torings, since the renamed class are used in several parts of the
program. RefDiff has a similar behavior, and yields 18 instances
of the Change Signature Method refactoring.

https://github.com/tsantalis/RefactoringMiner/issues/137
https://github.com/aserg-ufmg/RefDiff/issues/19
https://github.com/tsantalis/RefactoringMiner/issues/146
https://github.com/tsantalis/RefactoringMiner/issues/121
https://github.com/tsantalis/RefactoringMiner/issues/121
https://github.com/tsantalis/RefactoringMiner/issues/139

Conference’17, July 2017, Washington, DC, USA Osmar Leandro, Rohit Gheyi, Leopoldo Teixeira, Márcio Ribeiro, and Alessandro Garcia

The other refactoring types reported, such as the Change Vari-
able/Attribute/Return/Parameter Type refactorings, are updates
to the places where the renamed type is referenced in variable
types, return types, parameter types, and field types. Fowler [9]
states that changing each use to the new class name is a step in the
refactoring mechanics of the Rename Class refactoring. Refactor-
ingMiner yields a coarse-grained refactoring, such as the Rename
Class refactoring, and a number of fine-grained transformations
used to derive the coarse-grained refactoring, such as, the Change
Attribute Type, the Change Parameter Type, the Change Return
Type, and the Change Variable Type refactorings. Refactoring-
Miner developers reply to a related issue (#120) explaining that
they prefer to show multiple instances. The refactoring commu-
nity should discuss about the granularity of each refactoring, and
how they relate to coarse-grained transformations. This example
may help developers to discuss the correct refactoring mechanics
for the Rename Class refactoring. One may argue that the correct
refactoring mechanics is to exclude the instances of Change Vari-
able/Attribute/Return/Parameter Type refactoring for which the
type change corresponds to the Renamed Class.

@@ class Replacement;

- public class Replacement {

+ public class Replace {

@@ class AbstractCodeMapping

private boolean contains(String v) {

- for(Replacement r : getReplace()) {

+ for(Replace r : getReplace()) {

@@ class TernaryOperatorExpression

- public Replacement m(String s) {

+ public Replace m(String s) {

Listing 11: Using the Eclipse Rename Class refactoring.

In Listing 12, Eclipse applies the Move Method refactoring to the
consistencyCheck method. RefactoringMiner yields the Inline
Method and the Extract and Move Method refactorings. However,
Eclipse does not apply the Inline Method instances. We report issue
#143, and developers fixed it.

@@ class VariableDeclaration

+ boolean consistencyCheck(...) {

@@ class VariableReplacementAnalysis

- consistencyCheck(v1, v2, set);

+ v1.consistencyCheck(this, v2, set);

...

- private boolean consistencyCheck(...) {

Listing 12: Using the EclipseMove Method refactoring.

Suppose a developer pushed down a method to N subclasses.
RefactoringMiner and RefDiff yield N instances of the Push
Down Method refactoring. For example, Listing 13 shows that
Eclipse applies the Push Down Method refactoring to the
normalizedEditDistancemethod, moving it to 11 subclasses using
Eclipse. RefactoringMiner yields 11 instances of the Push Down
Method refactoring. RefDiff also yields the same output. Accord-
ing to Fowler’s Push Down Method mechanics [9], this should be
considered a single instance of the Push Down Method refactoring.

This example may help developers to discuss the correct refac-
toring mechanics for the Push Down Method, Extract Method and

Inline Method refactorings. Eclipse’s default refactoring parameter
is to copy/extract the same code fragments. This parameter can fix
design flaws, such as Duplicated Code [9]. However, the end user
can change this behavior in GUI and the refactoring mechanics
may be different when a user selects different parameters. One may
argue that the correct refactoring mechanics is to exclude the extra
refactoring instances reported due to the mechanics. We reported
issues #120 and #122 to RefactoringMiner’s developers, but they
did not accept the issues.

@@ class Replacement

- public double normalizedEditDistance() { ... }

@@ class CompositeReplacement extends Replacement

+ public double normalizedEditDistance() { ... }

// 10 other subclasses changed

Listing 13: Multiple instances of the Push Down Method

refactoring in RefactoringMiner and RefDiff.

4.5 Threats to Validity

In this section, we discuss some threats to validity. We do not
evaluate real transformations applied by developers. However, we
apply a number of transformations to four real open-source projects
using a popular IDE (Eclipse). In addition, we manually analyze
the candidates yielded after Step 3 of our technique. Since this
manual classification is a time consuming and error-prone activity,
we may miss some bugs. We submit 34 issues to the developers
of the refactoring detection tools. They fixed 16 bugs, 3 were not
accepted, and 12 issues are still open. During our manual analysis,
we did not find any bugs in Eclipse, even though they might be
present, as reported in previous works [16, 23].

In our study, we only evaluated open source projects hosted in
GitHub. However, the evaluated projects have been actively devel-
oped for more than six years. We analyze eight types of refactoring,
such as the Rename refactoring, which is frequently applied by
developers [20]. Table 3 presents the number of issues reported
to the Rename Method and Rename Class refactorings. Moreover,
refactoring implementations may introduce behavioral changes
when performing a refactoring [33]. As future work, we intend to
improve our technique by using SafeRefactor [35] after Step 2 to
discard transformations that introduce behavioral changes.

The default parameters used in our experiment are subject to
human errors. However, we addressed that point by inspecting the
source code after the refactoring when we intend to submit the
issues. For example, we specify the parameter of Rename Method
refactoring as the method’s same with a suffix. In future work, we
intend to verify new values for these parameters. We only eval-
uated the refactoring implementations of Eclipse, for a popular
programming language (Java). Eclipse is a popular IDE and is used
by developers to apply refactorings [22]. We also evaluate the best
refactoring detection tools available [31, 37].

5 RELATEDWORK

Silva et al. [31] propose a language-agnostic refactoring detection
tool RefDiff 2.0. It presents a new refactoring detection algorithm
that abstracts from specific programming languages through Code

https://github.com/tsantalis/RefactoringMiner/issues/120
https://github.com/tsantalis/RefactoringMiner/issues/143
https://github.com/tsantalis/RefactoringMiner/issues/143
https://github.com/tsantalis/RefactoringMiner/issues/120
https://github.com/tsantalis/RefactoringMiner/issues/122

A Technique to Test Refactoring Detection Tools Conference’17, July 2017, Washington, DC, USA

Structure Trees. This abstraction allows supporting different lan-
guages, such as Java, C, and JavaScript. Tsantalis et al. [37] propose
RefactoringMiner 2.0, a refactoring detection tool for Java. It re-
lies on an AST-based statement matching algorithm that determines
refactoring candidates without requiring user-defined thresholds
and covers 40 refactoring types, 25 more than the previous version.

Tsantalis et al. [37] execute RefactoringMiner 2.0, GumTreeD-
iff and two versions of RefDiff on all 536 commits from 185
open-source GitHub-hosted projects monitored over a two-months
period on an existing dataset [38] and considered the union of all
true positives as the ground truth. Two authors validated the refac-
toring instances [37]. It includes 7,226 true positives in total, for
40 different refactoring types detected by one (minimum) up to six
(maximum) different tools. RefDiff initially used this dataset [38]
to evaluate precision and recall. They also manually included other
instances. In our work, we propose a technique to automatically
test refactoring detection tools. We evaluate eight refactoring types
using 9,885 transformations applied by Eclipse to evaluate two
refactoring detection tools. Our work can help refactoring detection
tool developers to improve their dataset, and find some transfor-
mations that may help them improving the refactoring detection
rules, and also to improve refactoring implementations.

Prete et al. [26] develop Ref-Finder, which detects refactorings
using a template-based refactoring reconstruction approach. Their
tool can identify 63 of 72 refactoring types from Fowler’s catalog [9].
To evaluate their tool, they performed two case studies: they create
code samples from Fowler’s catalog, and they select version pairs
from open-source projects. Ref-Finder achieved an overall preci-
sion and recall of 79% and 95%, respectively. Dig et al. [5] present an
algorithm that detects refactorings performed during component
evolution. Their algorithm was implemented as an Eclipse plugin
called RefactoringCrawler. They evaluate their tool in three
components ranging with 17 KLOC up to 352 KLOC, and its accu-
racy was over 85% for seven types of refactorings. Out technique
may be used to test their refactoring detection tools.

Oliveira et al. [23] propose a technique to identify differences
in refactoring mechanics used by tool developers of refactoring
implementations. They perform a pairwise comparison of 10 types
of refactorings to 157,339 programs using 27 refactoring imple-
mentations from Eclipse, JRRT, and NetBeans. Oliveira et al. [22]
also conduct a survey with 107 developers of popular Java projects
to better understand the refactoring mechanics used by them in
practice. They found that most developers expect the refactoring
output based on their experience and there is no consensus in five
out of seven questions in their survey. However, over 50% of the
time, the IDEs used by developers yield an output that is different
than if they manually apply the same refactoring. In our work, we
apply eight types of refactorings to four real open-source projects,
and compare the differences between mechanics of two refactoring
detection tools and Eclipse IDE. The differences found motivate the
importance of discussing refactoring mechanics by our community.

Soares et al. [34] compare three different approaches based on
manual analysis, commit message and dynamic analysis using
SafeRefactor [35] to detect refactorings considering behavioral
preservation and found the Ref-Finder presented a low precision
and recall. Mongiovi et al. [17, 18] improve SafeRefactor by in-
cluding change impact analysis and skips. Similar bugs occur in

other domains [7, 13, 14]. We intend to use SafeRefactor after
Step 2 to only consider behavior-preserving transformations.

Gligoric et al. [10] automatically apply a number of refactor-
ings to identify bugs in refactoring implementations. They find a
number of bugs related to compilation errors. We also propose a
tool to automatically apply refactorings in all possible locations
in a program. However, our goal is to identify differences in the
refactoring mechanics of Eclipse and refactoring detection tools.

There are several works that find the sets of statements to be ex-
tracted. Tsantalis and Chatzigeorgiou [36] propose an approach to
select related statements that can be extracted. They consider two
aspects to identify related statements. First, it selects all statements
that computes a given variable. Second, it extracts the statements
affecting the state of a given object. Their approach allows produc-
ing meaningful and behavior preserving refactoring opportunities.
Silva et al. [32] propose a rank function to classify initial candidates
according to their potential to improve program comprehension.
Their approach tends to encapsulate well-defined computation with
its own set of dependencies and that is also independent of remain-
ing statements of the original method. Charalampidou et al. [3]
suggest resolving the Long Method smell by using the Single Re-
sponsibility Principle to identify opportunities of Extract Method
refactoring. The approach calculates cohesion between pairs of
statements to determine code fragments that collaborate for func-
tionality. Moreover, the approach identifies statements that perform
the same functionality. Xu et al. [40] propose a machine-learning-
based approach to recommend Extract Method refactorings based
on complexity, cohesion and coupling. They use samples, which
were obtained from real-world Extract Method refactorings, to
train the probabilistic model. Their tool was evaluated on five open-
source repositories and compared against state-of-art approaches:
SEMI [3], JExtract [32] and JDeodorant [8]. In our work, first we
try to extract the second statement. If we cannot apply a refactoring,
we try to extract the second and third statements. We repeat this
process by adding more statements until we successfully apply a
refactoring using the IDE or we reach the last statement.

6 CONCLUSION

We propose a technique to test refactoring detection tools. We eval-
uate 9,885 transformations applied to four real open-source projects
using eight refactoring types of Eclipse. RefactoringMiner and
RefDiff are aligned with the refactoring mechanics of Eclipse in
74.28% and 78.45% of the transformations, respectively. We report 34
issues to the developers of RefactoringMiner and RefDiff. They
fixed 16 bugs, 12 bug reports are still open, 3 bugs are duplicated,
and 3 issues are not accepted.

Our results may be useful for developers of refactoring detection
tools and refactoring implementations to discuss about what should
be considered in the refactoring mechanics of each refactoring
type. This process may help to improve both tools. Moreover, our
technique may be useful to improve the process of creating a better
dataset to be used to evaluate refactoring detection tools, since it
can automatically yield a number of transformations. Furthermore,
it avoids the bias of the authors of the refactoring detection tool to
manually classify transformations [37]. To minimize the problem
of depending on the refactoring mechanics implemented by IDEs,

Conference’17, July 2017, Washington, DC, USA Osmar Leandro, Rohit Gheyi, Leopoldo Teixeira, Márcio Ribeiro, and Alessandro Garcia

developers may use advanced refactoring tools, such as Refazer [27,
28]. The tool is able to generate a transformation based on few
examples of transformations given by the user.

As future work, we intend to evaluate more types of refactorings
and increase the number of evaluated projects. We aim at improving
our oracle since the current version requires some manual steps
and rely on Eclipse’s implementations. We also intend to evaluate
composite refactorings [1, 2] by applying a sequence of refactor-
ings using Eclipse and use refactoring detection tools to identify
them. We also aim at evaluating refactorings implemented by other
popular IDEs, such as IntelliJ. We also intend to use our technique
in other programming languages, such as C or JavaScript. RefDiff
can detect refactorings applied to them. We also aim at improving
our technique to focus on applying refactorings only on realistic
opportunities. Furthermore, we will consider using the previous ap-
proaches [3, 32, 36, 40] to find the sets of statements to be extracted
in the Extract Method refactoring.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their insight-
ful suggestions. This work was partially supported by CNPq and
CAPES grants.

REFERENCES

[1] Ana Bibiano, Wesley Assunção, Daniel Coutinho, Kleber Santos, Vinícius Soares,
Rohit Gheyi, Alessandro Garcia, Baldoino Fonseca, Márcio Ribeiro, Daniel
Oliveira, Caio Barbosa, João Marques, and Anderson Oliveira. 2021. Look Ahead!
Revealing Complete Composite Refactorings and their Smelliness Effects. In
Proceedings of the International Conference on Software Maintenance and Evolution
(ICSME). 298–308.

[2] Ana Bibiano, Vinicius Soares, Daniel Coutinho, Eduardo Fernandes, João Lucas
Correia, Kleber Santos, Anderson Oliveira, Alessandro Garcia, Rohit Gheyi, Bal-
doino Fonseca, Márcio Ribeiro, Caio Barbosa, and Daniel Oliveira. 2020. How
Does Incomplete Composite Refactoring Affect Internal Quality Attributes?. In
Proceedings of the Int. Conference on Program Comprehension (ICPC). 149–159.

[3] Sofia Charalampidou, Apostolos Ampatzoglou, Alexander Chatzigeorgiou, Anto-
nios Gkortzis, and Paris Avgeriou. 2017. Identifying Extract Method Refactoring
Opportunities Based on Functional Relevance. TSE 43, 10 (2017), 954–974.

[4] Brett Daniel, Danny Dig, Kely Garcia, and Darko Marinov. 2007. Automated
testing of refactoring engines. In ESEC/FSE. ACM, 185–194.

[5] Danny Dig, Can Comertoglu, Darko Marinov, and Ralph Johnson. 2006. Auto-
mated Detection of Refactorings in Evolving Components. In Proceedings of the
European Conference on Object-Oriented Programming (ECOOP). 404–428.

[6] Eclipse.org. 2022. Eclipse Project. http://www.eclipse.org.
[7] Leonardo Fernandes, Márcio Ribeiro, Luiz Carvalho, Rohit Gheyi, Melina Mon-

giovi, André Santos, Ana Cavalcanti, Fabiano Cutigi Ferrari, and José Carlos
Maldonado. 2017. Avoiding useless mutants. In Proceedings of the Generative
Programming: Concepts and Experiences (GPCE). 187–198.

[8] Marios Fokaefs, Nikolaos Tsantalis, Eleni Stroulia, and Alexander Chatzigeorgiou.
2011. JDeodorant: Identification and Application of Extract Class Refactorings.
In ICSE. 1037–1039.

[9] Martin Fowler. 1999. Refactoring: improving the design of existing code. Addison-
Wesley.

[10] M. Gligoric, F. Behrang, Y. Li, J. Overbey, M. Hafiz, and D. Marinov. 2013. Sys-
tematic Testing of Refactoring Engines on Real Software Projects. In ECOOP.
629–653.

[11] Miryung Kim, Thomas Zimmermann, and Nachiappan Nagappan. 2012. A Field
Study of Refactoring Challenges and Benefits. In FSE. 50:1–50:11.

[12] Osmar Leandro, Rohit Gheyi, Leopoldo Teixeira, Márcio Ribeiro, and Alessandro
Garcia. 2022. A Technique to Test Refactoring Detection Tools (artifacts). https:
//github.com/osmarleandro/comparing-mechanics.

[13] Flávio Medeiros, Márcio Ribeiro, Rohit Gheyi, Sven Apel, Christian Kästner,
Bruno Ferreira, Luiz Carvalho, and Baldoino Fonseca. 2018. Discipline Matters:
Refactoring of Preprocessor Directives in the #ifdef Hell. IEEE Transactions on
Software Engineering 44, 5 (2018), 453–469.

[14] Flávio Medeiros, Iran Rodrigues, Márcio Ribeiro, Leopoldo Teixeira, and Rohit
Gheyi. 2015. An empirical study on configuration-related issues: investigating
undeclared and unused identifiers. In Proceedings of the Generative Programming:

Concepts and Experiences (GPCE). 35–44.
[15] Tom Mens and Tom Tourwé. 2004. A Survey of Software Refactoring. IEEE

Transactions on Software Engineering 30, 2 (2004), 126–139.
[16] Melina Mongiovi, Rohit Gheyi, Gustavo Soares, Márcio Ribeiro, Paulo Borba, and

Leopoldo Teixeira. 2018. Detecting Overly Strong Preconditions in Refactoring
Engines. IEEE Transactions on Software Engineering 44, 5 (2018), 429–452.

[17] Melina Mongiovi, Rohit Gheyi, Gustavo Soares, Leopoldo Teixeira, and Paulo
Borba. 2014. Making refactoring safer through impact analysis. Science of
Computer Programming 93 (2014), 39–64.

[18] Melina Mongiovi, Gustavo Mendes, Rohit Gheyi, Gustavo Soares, and Márcio
Ribeiro. 2014. Scaling Testing of Refactoring Engines. In Proceedings of the Int.
Conference on Software Maintenance and Evolution (ICSME). 371–380.

[19] Emerson Murphy-Hill, Moin Ayazifar, and Andrew P. Black. 2011. Restructuring
software with gestures. In VL/HCC. 165–172.

[20] Emerson Murphy-Hill, Chris Parnin, and Andrew P. Black. 2012. How We
Refactor, and How We Know It. TSE 38, 1 (2012), 5–18.

[21] Stas Negara, Nicholas Chen, M. Vakilian, Ralph Johnson, and Danny Dig. 2013. A
Comparative Study of Manual and Automated Refactorings. In ECOOP. 552–576.

[22] Jonhnanthan Oliveira, Rohit Gheyi, Melina Mongiovi, Gustavo Soares, Márcio
Ribeiro, and Alessandro Garcia. 2019. Revisiting the Refactoring Mechanics.
Information and Software Technology 110 (2019), 136–138.

[23] Jonhnanthan Oliveira, Rohit Gheyi, Felipe Pontes, Melina Mongiovi, Márcio
Ribeiro, and Alessandro Garcia. 2020. Revisiting Refactoring Mechanics from
Tool Developers’ Perspective. In Proceedings of the Brazilian Symposium on Formal
Methods (SBMF). 25–42.

[24] WilliamOpdyke. 1992. Refactoring Object-oriented Frameworks. Ph.D. Dissertation.
University of Illinois at Urbana-Champaign.

[25] Felipe Pontes, Rohit Gheyi, Sabrina Souto, Alessandro Garcia, and Márcio Ribeiro.
2019. Java reflection API: revealing the dark side of the mirror. In Proceedings of
the Foundations of Software Engineering (FSE). 636–646.

[26] Kyle Prete, Napol Rachatasumrit, Nikita Sudan, andMiryung Kim. 2010. Template-
based Reconstruction of Complex Refactorings. In ICSM. 1–10.

[27] Reudismam Rolim, Gustavo Soares, Loris D’Antoni, Oleksandr Polozov, Sumit
Gulwani, Rohit Gheyi, Ryo Suzuki, and Björn Hartmann. 2017. Learning syntac-
tic program transformations from examples. In Proceedings of the International
Conference on Software Engineering (ICSE). 404–415.

[28] Reudismam Rolim, Gustavo Soares, Rohit Gheyi, Titus Barik, and Loris D’Antoni.
2021. Learning Quick Fixes from Code Repositories. In Proceedings of the Brazilian
Symposium on Software Engineering (SBES). 74–83.

[29] Max Schäfer and Oege de Moor. 2010. Specifying and implementing refactorings.
In OOPSLA. 286–301.

[30] Danilo Silva. 2020. Mining Refactorings from version histories: studies, tools, and
applications. Ph.D. Dissertation. Federal University of Minas Gerais.

[31] Danilo Silva, João Paulo da Silva, Gustavo Santos, Ricardo Terra, and Marco Tulio
Valente. 2021. RefDiff 2.0: A Multi-language Refactoring Detection Tool. IEEE
Transactions on Software Engineering 47, 12 (2021), 2786–2802.

[32] Danilo Silva, Ricardo Terra, and Marco Tulio Valente. 2014. Recommending
Automated Extract Method Refactorings. In ICPC. 146–156.

[33] Gustavo Soares, Rohit Gheyi, and Tiago Massoni. 2013. Automated Behavioral
Testing of Refactoring Engines. IEEE Transactions on Software Engineering 39, 2
(2013), 147–162.

[34] Gustavo Soares, Rohit Gheyi, Emerson Murphy-Hill, and Brittany Johnson. 2013.
Comparing Approaches to Analyze Refactoring Activity on Software Repositories.
Journal of Systems and Software 86, 4 (2013), 1006–1022.

[35] Gustavo Soares, Rohit Gheyi, Dalton Serey, and Tiago Massoni. 2010. Making
Program Refactoring Safer. IEEE Software 27, 4 (2010), 52–57.

[36] Nikolaos Tsantalis and Alexander Chatzigeorgiou. 2011. Identification of extract
method refactoring opportunities for the decomposition of methods. Journal of
Systems and Software 84, 10 (2011), 1757–1782.

[37] Nikolaos Tsantalis, Ameya Ketkar, and Danny Dig. 2022. RefactoringMiner 2.0.
IEEE Transactions on Software Engineering 48, 3 (2022), 930 – 950.

[38] Nikolaos Tsantalis, Matin Mansouri, Laleh Mousavi Eshkevari, Davood Mazi-
nanian, and Danny Dig. 2018. Accurate and efficient refactoring detection in
commit history. In ICSE. 483–494.

[39] Mohsen Vakilian, Nicholas Chen, Stas Negara, Balaji Ambresh Rajkumar, Brian P.
Bailey, and Ralph E. Johnson. 2012. Use, Disuse, and Misuse of Automated
Refactorings. In ICSE. 233–243.

[40] Sihan Xu, Aishwarya Sivaraman, Siau-Cheng Khoo, and Jing Xu. 2017. GEMS:
An Extract Method Refactoring Recommender. In ISSRE. 24–34.

[41] Andreas Zeller. 2009. Why Programs Fail: A Guide to Systematic Debugging (2nd
ed.). Morgan Kaufmann Publishers.

http://www.eclipse.org
https://github.com/osmarleandro/comparing-mechanics
https://github.com/osmarleandro/comparing-mechanics

	Abstract
	1 Introduction
	2 Motivating Example
	3 Technique
	3.1 Overview
	3.2 Steps
	3.3 Tool Support

	4 Evaluation
	4.1 Study Definition
	4.2 Experimental Setup
	4.3 Results
	4.4 Discussion
	4.5 Threats to Validity

	5 Related Work
	6 Conclusion
	References

