
Information and Software Technology 162 (2023) 107273

A
0

T
t
J
B
a

b

c

A

K
R
M
P

1

i
a
t
a
o

t
s
d
d
i
e
e
r
c
u

(

h
R

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

owards a better understanding of the mechanics of refactoring detection
ools
onhnanthan Oliveira a,∗, Rohit Gheyi a, Leopoldo Teixeira b, Márcio Ribeiro c, Osmar Leandro a,
aldoino Fonseca c

Federal University of Campina Grande, Brazil
Federal University of Pernambuco, Brazil
Federal University of Alagoas, Brazil

R T I C L E I N F O

eywords:
efactoring
echanics

rogram comprehension

A B S T R A C T

Context: Refactoring is a crucial practice used by many developers, available in popular IDEs, like Eclipse.
Moreover, refactoring detection tools, such as RefDiff and RefactoringMiner, help improve the comprehension
of refactoring application changes.
Objective: In this article, we better understand to what extent refactoring detection tools (RefDiff and
RefactoringMiner) identify refactoring operations that developers apply in practice.
Methods: We survey with 53 developers of popular Java projects on GitHub. We asked them to identify six
refactoring transformations applied to small programs.
Results: There is no unanimity in all questions of our survey. Refactoring detection tools do not detect many
refactoring operations expected by developers. In 4 out of 6 questions, most developers prefer the Eclipse
refactoring mechanics.
Conclusion: The results highlight the importance of diving deep into the refactoring mechanics and defining
a baseline. Empirical studies focused on mining refactoring operations may be limited by an incomplete or
unrepresentative sample of such operations, thus posing a challenge for researchers in this field.
. Introduction

Refactoring [1] is the process of changing a program to improve its
nternal structure while preserving its observable behavior. IDEs, such
s Eclipse and NetBeans, have automated many refactorings. Besides
hat, researchers have implemented tools [2,3] to identify refactoring
pplications considering step-by-step descriptions [1] of how to carry
ut the refactorings.

Nowadays, RefactoringMiner [2] and RefDiff [3] are the best refac-
oring detection tools available in the state-of-the-art. RefDiff can ab-
tract programming language particularities, allowing it to support
ifferent languages, such as JavaScript, C, and Java. RefactoringMiner
etects more than 40 refactoring types using an AST-based algorithm
n the Java programming language. Identifying some refactoring op-
rations in source code changes is valuable to understand software
volution, such as using refactoring tools, the motivations driving
efactoring, the risks of refactoring, and the impact of refactoring on
ode quality metrics [3]. Refactoring detection tools help developers
nderstand and review their code after a change scenario. Developers

∗ Corresponding author.
E-mail addresses: jonhnanthan@copin.ufcg.edu.br (J. Oliveira), rohit@dsc.ufcg.edu.br (R. Gheyi), lmt@cin.ufpe.br (L. Teixeira), marcio@ic.ufal.br

M. Ribeiro), osmar@copin.ufcg.edu.br (O. Leandro), baldoino@ic.ufal.br (B. Fonseca).

report a lack of tool support for refactoring change integration, code
review tools targeting refactoring edits, and sophisticated refactoring
engines in which a user can easily define new refactoring types bringing
difficulties to integrate code changes after refactoring operations [4].
Vakilian et al. [5] identified factors that affect the developers’ use of au-
tomated refactorings, making their output unpredictable. Furthermore,
Oliveira et al. [6] found that most developers expect the refactoring
output based on their experience. However, we need to find out to what
extent refactoring detection tools identify refactoring operations that
developers apply in practice.

In this work, we conduct a survey (Section 2) with 53 developers
of popular Java projects on GitHub to better understand whether the
mechanics of refactoring detection tools, such as RefactoringMiner [2]
and RefDiff [3], are accepted by developers in practice. We asked them
about the output of six refactoring types that are available in popular
IDEs (Eclipse). We asked developers to identify the application of the
Inline Method, Extract Method, Move Method, Push Down Method,
Extract Interface, and Rename Class refactorings on small programs.
vailable online 16 June 2023
950-5849/© 2023 Elsevier B.V. All rights reserved.

ttps://doi.org/10.1016/j.infsof.2023.107273
eceived 12 September 2022; Received in revised form 30 May 2023; Accepted 5 J
une 2023

https://www.elsevier.com/locate/infsof
http://www.elsevier.com/locate/infsof
mailto:jonhnanthan@copin.ufcg.edu.br
mailto:rohit@dsc.ufcg.edu.br
mailto:lmt@cin.ufpe.br
mailto:marcio@ic.ufal.br
mailto:osmar@copin.ufcg.edu.br
mailto:baldoino@ic.ufal.br
https://doi.org/10.1016/j.infsof.2023.107273
https://doi.org/10.1016/j.infsof.2023.107273
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2023.107273&domain=pdf


Information and Software Technology 162 (2023) 107273J. Oliveira et al.
There is no unanimity in all questions of our survey. Few devel-
opers are aligned with the refactoring mechanics used by refactoring
detection tools. In 4 out of 6 questions, most developers prefer the
Eclipse refactoring mechanics. Refactoring detection tools do not detect
many refactoring operations expected by developers. Previous studies
have different results [5–8] for how developers apply refactorings.
Researchers interested in mining refactoring operations are looking
at an incomplete or even unrepresentative set of refactoring opera-
tions while doing their empirical studies. Moreover, this may impact
developers’ communication and misuse of complex refactorings with
various parameters to customize a refactoring application in IDEs.
Consider a team of developers discussing the impact of applying refac-
toring X to program Y. Since the mechanics are not precisely defined,
each developer may have different ideas about refactoring mechanics.
Other developers applying a refactoring X to Y might result in various
programs (Y’ and Y’’). For instance, this scenario is worse when
considering composite refactorings to change architecture.

The problem is that there are no complete mechanics specifications
for all refactoring types that developers widely accept. Since there is
no baseline, we cannot say which tool is correct. We decided to survey
some developers to understand better the refactoring mechanics they
expect. This may be one step towards defining a baseline and helping
the refactoring community to know about this problem and work on
how to solve it better.

2. Survey

We survey developers of popular Java projects on GitHub to under-
stand whether developers follow the refactoring mechanics of refactor-
ing detection tools in practice. To recruit participants, we sent e-mails
to 1,000 developers randomly selected from popular GitHub projects,
including Google, Facebook, and the Apache Foundation projects.

2.1. Planning

We divided the survey into three main sections. The first section
asks developers which refactoring types were applied using six exam-
ples of transformations. We present a pair of programs illustrating a
transformation and ask if any refactorings were applied. The output
program in all questions can be yielded by applying a single refactoring
of Eclipse. Developers were not aware of this. Each question shows a
transformation relating to two Java programs with at most 18 LOC.
We present four to six options. We include options indicating the
refactoring mechanics used by RefactoringMiner and RefDiff. To yield
their refactoring mechanics, we run RefactoringMiner and RefDiff on
each transformation presented in a question and include an answer
option for each output. We also include one option representing the
Eclipse refactoring applied. Therefore the answer options extent may
vary. All respondents answered the same questions in the same order.
The second section asks for background information. Finally, the third
section asks for additional comments.

Fig. 1 shows the first question of our survey. It presents a single
application of the Inline Method refactoring using Eclipse and shows
six options. The first option is aligned with the Eclipse refactoring
mechanics. The second option is aligned with the RefDiff and Refactor-
ingMiner refactoring mechanics. Our goal is to analyze the refactoring
mechanics of refactoring detection tools to understand preferences from
the viewpoint of developers in the context of small transformations. We
address the following research question:

RQ1 To what extent do refactoring detection tools identify refactoring
operations that developers apply in practice?
2

Fig. 1. First question of our survey.

Fig. 2. Preferences of developers in each question.

2.2. Results and discussion

Fifty-three developers from different countries, e.g., Brazil, Canada,
France, Germany, The Netherlands, Slovenia, Switzerland, Sweden, and
the USA, completed the survey.1 More than 30% of developers have
more than 10 years of experience in refactoring programs, and more
than 65% have 5 or more years of experience. In four out of six
questions, more than 58% of developers are aligned with the Eclipse
refactoring mechanics (Fig. 2).

1 Survey: https://forms.gle/jGNTiCKtRyhceTYE6

https://forms.gle/jGNTiCKtRyhceTYE6


Information and Software Technology 162 (2023) 107273J. Oliveira et al.

a
1
t
i
d
a

p
E
i
U
a

p
2

Next, we explain the results of all questions in our survey. In Q1
and Q3, we show a single instance of the Inline Method and Move
Method refactorings applied by Eclipse, respectively. Eclipse introduces
a new variable in Q1 and associates it with the original one. This
causes RefactoringMiner to detect Rename Variable. Creating another
variable in the same line as the older one causes misunderstanding
when the developers see the differences in the code. Moreover, in Q3,
Eclipse changes the name and method parameter type. Because of this
change, developers partially align with the detection performed by
RefactoringMiner. Some developers are aligned with the Eclipse refac-
toring mechanics, while others are aligned with the RefactoringMiner or
RefDiff refactoring mechanics. Less than 50% prefer other refactoring
mechanics. Two other options of Q1 (see Fig. 2) have almost the same
preference. The community needs to discuss the refactoring mechan-
ics. Q2 presents a single instance of the Extract Method refactoring
applied by Eclipse. RefactoringMiner and RefDiff are partially aligned
with Eclipse. Refactoring detection tools detect the Extract Method
refactoring and many other refactorings (e.g., Rename Variable). More
than 58% of developers are aligned with the refactoring mechanics of
Eclipse.

Listing 1: Multiple instances of the Push Down Method refactoring in
RefactoringMiner and RefDiff.

@@ class Replacement
- public double normalizedEditDistance() { ... }
@@ class CompositeReplacement extends Replacement
+ public double normalizedEditDistance() { ... }
// 10 other subclasses changed

Q4 presents a single instance of the Push Down Method refactoring
pplied by Eclipse. It is similar to the transformation shown in Listing
. RefactoringMiner and RefDiff are partially aligned with Eclipse. If
he superclass has N subclasses, the refactoring detection tools yield N
nstances of the Push Down Method refactoring. More than 55% of the
evelopers agree with the refactoring mechanics of Eclipse, identifying
single application of the Push Down Method.

Q5 presents a single instance of the Extract Interface refactoring ap-
lied by Eclipse. RefactoringMiner and RefDiff are partially aligned with
clipse. Refactoring detection tools detect the Extract Interface refactor-
ng and many other refactorings (Change Signature, Move Method, Pull
p Method, Change Parameter Type). More than 65% of developers
gree with the refactoring mechanics of Eclipse.

Listing 2: Using the Eclipse Rename Class refactoring.

@@ class UMLJavadoc
- public class UMLJavadoc {
+ public class UMLDocJava {
@@ class UMLClass
- public void setJavadoc(UMLJavadoc javadoc) {
+ public void setJavadoc(UMLDocJava javadoc) {

Q6 presents a single instance of the Rename Class refactoring ap-
lied by Eclipse. It is similar to the transformation presented in Listing
. RefactoringMiner and RefDiff are partially aligned with Eclipse. Refac-

toring detection tools detect the Rename Class refactoring and many
other refactorings (Change Parameter Type, Change Variable Type,
Change Return Type, Change Attribute Type). More than 75% of de-
velopers agree with the refactoring mechanics of Eclipse. We submitted
some of these transformations as an issue to RefDiff developers, but
they did not answer yet.

RefactoringMiner developers may consider developers’ opinions in
previous questions to improve their tools by aligning with developers’
preferences. For instance, based on the answers to Q4, most developers
expect one instance of the Push Down refactoring operation. Developers
may consider improving the detection of Push Down refactoring to
consider one instance instead of multiple instances.
3

The problem that our survey identifies is that each tool implements
refactoring using its refactoring mechanics. Sometimes, this may not
match developers’ expectations, compromising the tool’s usefulness.
This may be why some developers still prefer to apply refactorings
manually. Tempero et al. [9] speculate that an unstated barrier is
difficult to translate a refactoring goal into refactoring operations.
In this work, we further explore this barrier. One recommendation
for those implementing refactoring operations is to show better each
customization applied. This way, developers can better understand the
refactoring mechanics before using the transformation.

Moreover, for those implementing refactoring detection tools, a
recommendation is to explain the relationship of some refactorings
better. For instance, a Rename Class refactoring may be associated with
many other refactorings, such as Change Parameter Type (see Q6). The
refactoring mechanics used in refactoring detection tools may inflate
the frequency of additional refactorings that are unexpected for devel-
opers who have only applied the primary refactoring in the IDE. Less
than 10% of developers agree with RefactoringMiner or RefDiff. A better
explanation of some refactorings’ relationships may help interpret the
results from such tools.

In summary, there is no consensus on all questions. Refactoring
detection tools only detect some refactoring operations expected by
developers. In 4 out of 6 questions, most developers follow Eclipse’s
refactoring mechanics. In Q3, the majority of developers indicate a
preference for refactoring mechanics different from the ones used by
Eclipse, RefactoringMiner, and RefDiff. Researchers mining refactoring
operations in software repositories should be aware of the limitation
of refactoring detection tools, which only detect some or even identify
an unrepresentative set of refactoring operations. Refactoring detection
tools can improve their tools by considering developers’ preferences.
This may help researchers and developers better understand program
evolution, increasing the popularity of these tools. Since we do not have
a consensus on all questions, the results also highlight the importance
of diving deep into the refactoring mechanics and defining a baseline.

3. Related work

Vakilian et al. [5] studied 26 developers working in their natural
settings on their code for 1,268 programming hours over three months
to understand how they interact with automated refactorings. They
found that the interviewees did not know the mechanics of more than
eight automated refactorings on average, and more than half could not
describe the applied transformation. In our work, developers do not
agree with some refactoring mechanics used by tools in practice.

Murphy-Hill et al. [10] find that some names of automated refactor-
ings need to be clarified, and developers cannot predict the outcomes
of complex tools. Even refactorings applied to small programs may lead
to misunderstandings in identifying whether one or more refactorings
were used.

Oliveira et al. [6] surveyed 107 developers of popular Java projects
to understand their refactoring mechanics in practice better. They
found that most developers expect the refactoring output based on their
experience, and there is no unanimity in five out of seven questions in
their survey. However, over 50% of the time, the IDEs used by devel-
opers yield an output that is different than if they manually apply the
same refactoring. They found some differences. In our work, we survey
with 53 developers and find more evidence of misunderstandings of the
refactoring mechanics considering refactoring detection tools.

4. Conclusions

We surveyed 53 developers to better understand to what extent
refactoring detection tools identify refactoring operations that devel-
opers apply in practice. Our survey has no unanimity, and most de-

velopers do not follow the refactoring mechanics used by refactoring



Information and Software Technology 162 (2023) 107273J. Oliveira et al.
detection tools. This scenario may be even worse when considering
coarse-grained refactorings applied to larger Java programs.

The misunderstandings explained in our work may be a starting
point to improve refactoring detection tools. Improving refactoring
implementations to detect a more extensive and representative set
of refactoring operations that developers apply in practice may help
increase their adoption. It may also help researchers mining software
repositories to understand their results better about the motivations
driving refactoring, the risks of refactoring, the impact of refactoring on
code quality metrics, among other studies conducted using refactoring
detection tools [2,3]. Since we do not have a consensus on all questions,
our community needs to work on a refactoring mechanics specification
widely used by developers. This may impact developers’ communica-
tion and misuse of complex refactorings with various parameters to
customize a refactoring application in IDEs [9].

In future work, we aim to include questions in the survey con-
sidering Java programs using more constructs, such as interfaces, ab-
stract classes. We aim to dive deep into the step-by-step description of
refactoring mechanics to identify improvement opportunities based on
developers’ preferences. This might make it easier for tool developers to
follow them. We also intend to survey more developers and interview
some to understand the problem better. For example, for a specific
refactoring, considering changes in the accessibility constraints may
be important for most developers. So, such constraints must be better
detailed in the refactoring mechanics. We will select survey questions
to which we do not have an alternative that the majority of developers
chose to discuss during the interview, such as Q1 and Q3. During
the interviews, we intend to dive deep into the refactoring mechanics
and understand why they prefer one refactoring mechanics instead of
others. We will show them real code examples and ask developers
for real scenarios. Moreover, developers use other IDEs in practice,
such as IntelliJ. In some cases, like in the transformation evaluated
in Q3, IntelliJ may have different refactoring mechanics than Eclipse.
We intend to assess whether developers prefer IntelliJ’s refactoring
mechanics during the interviews. Based on their feedback, we aim to
describe the refactoring mechanics’ baseline in more detail. We also
intend to analyze if the developers’ preferences can be associated with
specific factors, for instance, on coupling, cohesion, or other metrics.
This way they might decide to either apply or avoid such changes.
The baseline specification can be similar to those presented before [1]
but must be complete. Considering all the programming language
constructs, it will describe all changes that should and should not be
performed for a given refactoring.
4

CRediT authorship contribution statement

Jonhnanthan Oliveira: Methodology, Investigation, Conceptual-
ization, Data curation, Supervision, Writing – original draft. Rohit
Gheyi: Methodology, Investigation, Conceptualization, Supervision,
Writing – review & editing. Leopoldo Teixeira: Methodology, In-
vestigation, Conceptualization, Supervision, Writing – review & edit-
ing. Márcio Ribeiro: Methodology, Investigation, Conceptualization.
Osmar Leandro: Methodology, Data curation. Baldoino Fonseca:
Methodology, Writing – review & editing.

Declaration of competing interest

There are no interests to declare.

Data availability

Data will be made available on request.

Acknowledgments

We want to thank the anonymous reviewers for their insightful
suggestions. This work was partially supported by CNPq, Brazil, CAPES,
Brazil, and FAPEAL, Brazil grants.

References

[1] M. Fowler, Refactoring: Improving the Design of Existing Code, Addison-Wesley,
1999.

[2] N. Tsantalis, A. Ketkar, D. Dig, RefactoringMiner 2.0, TSE 48 (3) (2022) 930–950.
[3] D. Silva, J. Silva, G. Santos, R. Terra, M. Valente, RefDiff 2.0: A multi-language

refactoring detection tool, TSE 47 (12) (2021) 2786–2802.
[4] M. Kim, T. Zimmermann, N. Nagappan, A field study of refactoring challenges

and benefits, in: FSE, 2012, pp. 50:1–50:11.
[5] M. Vakilian, N. Chen, S. Negara, B.A. Rajkumar, B. Bailey, R. Johnson, Use,

disuse, and misuse of automated refactorings, in: ICSE, 2012, pp. 233–243.
[6] J. Oliveira, R. Gheyi, M. Mongiovi, G. Soares, M. Ribeiro, A. Garcia, Revisiting

the refactoring mechanics, IST 110 (2019) 136–138.
[7] M. Kim, T. Zimmermann, N. Nagappan, An empirical study of refactoring

challenges and benefits at Microsoft, IEEE TSE 40 (7) (2014) 633–649.
[8] E. Murphy-Hill, C. Parnin, A. Black, How we refactor, and how we know it, TSE

38 (1) (2012) 5–18.
[9] E. Tempero, T. Gorschek, L. Angelis, Barriers to refactoring, CACM 60 (10)

(2017) 54–61.
[10] E. Murphy-Hill, M. Ayazifar, A.P. Black, Restructuring software with gestures,

in: VL/HCC, 2011, pp. 165–172.

http://refhub.elsevier.com/S0950-5849(23)00127-1/sb1
http://refhub.elsevier.com/S0950-5849(23)00127-1/sb1
http://refhub.elsevier.com/S0950-5849(23)00127-1/sb1
http://refhub.elsevier.com/S0950-5849(23)00127-1/sb2
http://refhub.elsevier.com/S0950-5849(23)00127-1/sb3
http://refhub.elsevier.com/S0950-5849(23)00127-1/sb3
http://refhub.elsevier.com/S0950-5849(23)00127-1/sb3
http://refhub.elsevier.com/S0950-5849(23)00127-1/sb4
http://refhub.elsevier.com/S0950-5849(23)00127-1/sb4
http://refhub.elsevier.com/S0950-5849(23)00127-1/sb4
http://refhub.elsevier.com/S0950-5849(23)00127-1/sb5
http://refhub.elsevier.com/S0950-5849(23)00127-1/sb5
http://refhub.elsevier.com/S0950-5849(23)00127-1/sb5
http://refhub.elsevier.com/S0950-5849(23)00127-1/sb6
http://refhub.elsevier.com/S0950-5849(23)00127-1/sb6
http://refhub.elsevier.com/S0950-5849(23)00127-1/sb6
http://refhub.elsevier.com/S0950-5849(23)00127-1/sb7
http://refhub.elsevier.com/S0950-5849(23)00127-1/sb7
http://refhub.elsevier.com/S0950-5849(23)00127-1/sb7
http://refhub.elsevier.com/S0950-5849(23)00127-1/sb8
http://refhub.elsevier.com/S0950-5849(23)00127-1/sb8
http://refhub.elsevier.com/S0950-5849(23)00127-1/sb8
http://refhub.elsevier.com/S0950-5849(23)00127-1/sb9
http://refhub.elsevier.com/S0950-5849(23)00127-1/sb9
http://refhub.elsevier.com/S0950-5849(23)00127-1/sb9
http://refhub.elsevier.com/S0950-5849(23)00127-1/sb10
http://refhub.elsevier.com/S0950-5849(23)00127-1/sb10
http://refhub.elsevier.com/S0950-5849(23)00127-1/sb10

	Towards a better understanding of the mechanics of refactoring detection tools
	Introduction
	Survey
	Planning
	Results and Discussion

	Related Work
	Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References


