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ABSTRACT

Developers are continuously implementing changes to meet de-
mands coming from users. In the context of test-driven develop-
ment, before any new code is added, a test case should be written to
make sure new changes do not introduce bugs. During this process,
developers and testers might adopt bad design choices, which may
lead to the introduction of the so-called Test Smells in the code. Test
Smells are bad solutions for implementing or designing test code.
We perform a broader study to investigate the participants’ percep-
tions about the presence of Test Smells. We analyze whether certain
factors related to the participant’ profiles concerning background
and experience may influence their perception of Test Smells. Also,
we analyze if the heuristics adopted by developers influence their
perceptions about the existence of Test Smells. We analyze commits
of open source projects to identify the introduction of Test Smells.
Then, we conduct an empirical study with 25 participants that eval-
uate instances of 10 different smell types. For each Test Smell type,
we analyze the agreement among participants, and we assess the
influence of different factors on the participants’ evaluations. Alto-
gether, more than 1250 evaluations were made. The results indicate
that participants present a low agreement on detecting all 10 Test
Smells types analyzed in our study. The results also suggest that fac-
tors related to background and experience do not have a consistent
effect on the agreement among the participants. On the other hand,
the results indicate that the agreement is consistently influenced
by specific heuristics employed by participants. Our findings reveal
that the participants detect Test Smells in significantly different
ways. As a consequence, these findings introduce some questions
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concerning the results of previous studies that do not consider the
different perceptions of participants on detecting Test Smells.
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1 INTRODUCTION

Test Smells indicate bad programming practices, when developers
organize or implement test cases, which might indicate potential
design problems in the test code [23]. Therefore, Test Smells de-
tection is an elementary technique for supporting a wide range of
quality improvement tasks, such as writing new test cases, avoid
bugs, and ensure that the code is working as expected [12]. How-
ever, detecting Test Smells in practice is much harder than usually
assumed or advertised [16]. Because, developers may diverge on
the presence of Test Smells.

Developers might have divergent perceptions about the presence
of the same Test Smells. In particular, the informal and subjective
definition of certain Test Smell types [23] may lead professionals to
reason about each Test Smell occurrence differently [23]. In spite of
the extensive tool support for Test Smell detection available nowa-
days (e.g. [2, 5, 25]), developers still need to individually analyze
each Test Smell and confirm its occurrence on the system. While
a developer may confirm a test snippet as the host of a particular
Test Smell, other developers may have different perceptions. For
instance, an Assertion Roulette occurs when a test method has
multiple non-documented assertions; this may lead developers not
to agree on how many assertions should be considered a Test Smell.

https://doi.org/10.1145/3629479.3629485
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The detection of different types of Test Smells follows a similar
rationale. It is generally believed that high consensus among par-
ticipants is advantageous for a variety of reasons. First, it promotes
consistency in code reviews. However, achieving these benefits
becomes more difficult when disagreement among professionals
is more common than agreement. Currently, little is understood
about how professionals detect Test Smells in a similar manner. It
is important to explore whether certain factors affect the similarity
or dissimilarity of professionals’ perceptions regarding Test Smells
occurrences. Factors such as professionals’ characteristics (e.g. sim-
ilar or diverse backgrounds and experiences) may play a role in the
Test Smells detection process. Moreover, personal factors, such as
each participants’s individual heuristic for detecting Test Smells,
may also influence their detection process.

In this context, this paper presents a study aiming at investigating
the (dis)agreement among participants on detecting occurrences
of 10 test smell types. The study also analyzes whether certain
factors may influence such (dis)agreement. The study involves 25
participants who evaluate the presence of Test Smells into a set of
test snippets from real projects, collected with a manual analysis
commits from 32 java projects and validated by 2 researchers. Al-
together, more than 1250 evaluations were collected and analyzed.
We analyze the influence of factors on the participants’ agreement.
Such factors are mainly related to participants’ background and
experience. Also, we investigate how similar are the heuristics
formulated by different participants to detect Test Smells.

We discovered three conclusions in our study. Firstly, partici-
pants exhibited low levels of agreement when evaluating all 10
Test Smells types, which contradicts key findings from prior stud-
ies [8, 17]. Secondly, participants’ background and experience did
not consistently affect their agreement levels. Lastly, the heuristic
factor played the most significant role in determining agreement
among participants. These findings highlight the importance of
developing customizable techniques for detecting Test Smells that
take into account each participants unique perception.

The remaining of this document is structured as follows. Sec-
tion 2 describes the design of our empirical study and the research
questions. In Section 3 we present the results of the study and, Sec-
tion 4 details the threats of the study. Next, Section 5 presents the
related work. Finally, Section 6 presents the conclusions observed
in our study.

2 STUDY DESIGN

This study aims at investigating the participants’ agreement on
detecting Test Smells in test snippets from open-source projects.
We analyze whether participants tend to agree (or disagree) on the
occurrence of Test Smells in a wide range of types. In particular, we
investigate to what extent certain factors may influence common
perceptions shared by different participants. Participants evaluated
several instances of 10 smell types identified in real systems. As a
result, we analyze the agreement among participants according to
their evaluations. Also, we investigate if participants with common
characteristics identified Test Smells similarly. In this way, two
main research questions guide our study:

• RQ1: Do participants agree on the “smelliness” of test code?

This question investigates if participants agree on detecting
Test Smells in real projects. In addition, we analyze the degree
of such agreement to verify how differently the participants
detect Test Smells in the same test snippet. Particularly, such
analysis becomes difficult because it requires the participa-
tion of several participants with different characteristics to
create a relevant sample. Such requirements may have re-
duced the conclusions of previous studies that investigated
similar questions [10, 11]. Thus, we investigate deeper to
increase the knowledge about how similar participants de-
tect Test Smells in open-source test snippets. Furthermore,
our results may shed light on constructing more efficient
detection techniques.

• RQ2: What makes participants agree on the “smelliness” of
test code?

In this question, we analyze if certain factors may influence
participants’ (dis)agreement on smell detection. In particular,
we analyze whether participants detect Test Smells similarly
when grouped according to common characteristics (partic-
ipants’ background and experience). Also, we investigate
how participants’ (dis)similar judgment is influenced by the
heuristics that the participants formulate for test smell de-
tection. The results may reveal the potential and limitations
of customized detection techniques for smell detection.

2.1 Context Selection

In our study, we involve participants with different backgrounds
and experiences to investigate how differently the participants
detect smells in test snippets. We use the Prolific Platform [15]1
to recruit participants. Initially, we send a screening focused on
Unit Testing to the participants. Then, we select the participants
with minimum testing knowledge and who have already had some
contact with Test Smell detection to participate in the study. We
consider these requirements to avoid participants who did not have
previous knowledge about testing or Test Smell detection aiming
to avoid random answers given the lack of this knowledge. More
details about the participants’ profiles (in terms of their background
and experience) are described in the support material.2

Upon selecting the study participants, we began our data collec-
tion by searching for Test Smells in commits from 32 Java projects
on GitHub. We used test smell names as keywords in our search and
specifically filtered issues that contained pull requests or commits
associated with such keywords. From an initial set of 1250 commits
identified, two authors, consisting of one Ph.D. researcher and one
Ph.D. student researcher, manually analyzed each commit to extract
test smells, resulting in 71 test smell snippets. Among these, only
10 types of test smells had at least five snippets each, which gave
us the 50 test snippets that we used in our study. Subsequently,
a separate set of two researchers, also a Ph.D. researcher and a
Ph.D. student researcher, validated these commits. Our selection
criteria for commits specifically included those that introduced
modifications or insertions to a maximum of 2 test cases.

1https://www.prolific.co
2https://github.com/tests-smells/agreement

https://www.prolific.co
https://github.com/tests-smells/agreement
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The participants evaluate then test snippets of 10 test smell types,
as described in Table 1. We analyze these types because they are
the ones that most frequently appear in the projects analyzed in
our study.

For each smell type, the participants evaluated 10 test snippets
with different characteristics. Our goal is to expose participants
to snippets suspiciously containing the smell type under analysis.
To select the test snippets analyzed in our empirical study, we
analyze snippets from 32 open-source Java projects. To validate the
presence of smells, we consider the smells definitions described in
previous work [14, 23]. We select such projects because existing
smell detection techniques have been used them. Additionally, the
test code of these projects contains a variety of suspicious Test
Smells that enable the execution of our empirical study. The use of
these different projects is aimed at collecting potential suspicious
smell instances that are detected in different ways and that, possibly,
are defined by the different perceptions of their creators.

2.2 Operation

We design our study to collect the opinion of participants about the
existence of Test Smells in certain test snippets. We collect the par-
ticipants’ perceptions from a series of evaluations obtained through
the Internet-based application Prolific. Firstly, for each participant
involved in the study, we register the Prolific ID, background (De-
velopers or Data Scientists), and their experience with Test Smells.
We randomly divide the participants into groups containing five
participants. Each group of participants evaluates 10 test snippets,
one for each smell type analyzed.

After defining the groups of developers, we send an individual
invite to each participant in Prolific Platform. Once the participant
accepts the invitation, we send a Google form containing 10 test
snippets to be evaluated, one for each smell type. For each test
snippet evaluated, we present a closed question to the developer:
Would you observe any issue in this test code (as to refactor it)?
and an open question: Justify your previous answer, where the
participants justified their answer.

2.3 Open Questions

As described in the previous section, the participant must answer
an open question reporting his understanding of the Test Smell
type analyzed. First, after the participant evaluates each snippet,
we expect he can report the heuristic used to detect the Test Smell
during his analysis. In this way, the open question is also used
as a control point to identify if the participant is negligent in his
evaluations.

The answers to the open questions play an important role in
the study since they help us to analyze how similar the partici-
pants detect Test Smells. Although we present a single definition
of each smell type during the evaluation phases, we assume that
the participants detect the same smell differently. Thus, from these
answers, we apply a coding procedure [19] to collect the heuristics
used by the participants to detect the Test Smells. Thereafter, we use
such heuristics to analyze if the participants who follow a similar
heuristic present a better agreement.

2.4 Data Analysis

To answer the research questions described in Section 2, we use a
measure that computes the inter-rater agreement among the partici-
pants’ evaluations. Such agreement is calculated using Fleiss’ Kappa,
a measure to evaluate the agreement amongmultiple raters [6]. This
measure reports a number lower or equal to 1. If the Kappa value is
equal to 1, then the raters are in complete agreement. If there is no
agreement among the raters, then the Kappa value is lower than 0.
In addition, we consider the Kappa categories proposed by Landis
and Koch [9], as described in Table 4. Such categories have been
used by previous work related to smell detection [7] to verify the
strength of the Kappa value.

We answer the research questions defined in our study by consid-
ering the use of the Kappa measure and the classification proposed
by Landis and Koch. Aiming at answering RQ1, we perform the
following procedure for each smell type:

(1) We collect the evaluations done by 25 participants. Each
participant evaluates 10 test snippets, one for each smell
type analyzed in our study. As a result, we produce a 10× 25
matrix containing YES or NO answers according to each
evaluation;

(2) From the evaluation matrix, we compute the Fleiss’ Kappa
measure [6] to obtain the degree of agreement among the
25 participants that evaluated the test snippets of the same
smell type. We then classify the strength of the assessed inter-
rater agreement according to the classification described in
Table 4.

After obtaining the Kappa measure and its classification, we
answer RQ1 by analyzing the strength of the agreement. To answer
RQ2, we investigate which factors can influence the agreement
among participants. We analyze the agreement among the evalu-
ations of a subgroup of participants defined from each factor, as
described in Table 5. The procedure to create these subgroups is
described in Section 3.

2.5 Execution and Data Preparation

The execution of the empirical study occurred over three months,
beginning on January/2022. In total, we invite 92 participants, but
only 25 of them completed all the study phases. After collecting
the data produced from the study execution, we perform a series of
procedures to ensure the quality of the observed data. In particular,
we analyze the participants’ evaluations and their answers to the
open question Would you observe any issue in this test code (as to
refactor it)?, aiming at identifying any problem that could prejudice
the data analysis.

We obtain answers from 25 participants with different experi-
ences in testing. As mentioned, we select participants from the
Prolific platform, and we use screening to filter them according to
the testing experience. Their current job includes Developers and
Data Scientists.

3 RESULTS

In what follows, we describe the main results of our study. To
answer RQ1, we analyze the agreement levels assessed from the
participants’ evaluations. In the RQ2, we investigate the agreement
among the participants by considering different factors related to
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Table 1: Common Test Smells.

Test Smell Definition

Assertion Roulette A collection of unexplained assertions in a single test method that makes it difficult to trace which exact
assertion had a problem in the event of test failure.

Eager Test Occurs when a test method invokes several methods of the production object. This smell results in difficulties
in test comprehension and maintenance.

Lazy Test Occurs when multiple test methods invoke the same method of the production object.
Mystery Guest Occurs when a test method utilizes external resources (e.g. files, database, etc.). Use of external resources in

test methods will result in stability and performance issues. Developers should use mock objects in place of
external resources.

Resource Optimism This smell happens when test methods make optimistic assumptions about the existence or the state of
external resources like files and databases.

Sensitive Eqality It is fast and easy to write equality checks using the toString method. A typical way is to compute an actual
result, map it to a string, which is then compared to a string literal representing the expected value.

Conditional Test Logic This Test Smell occurs when the test depends on a condition. It is a dangerous design since a test method
may result in a passed status without ever having asserted a unit result.

Duplicate Assert This smell occurs when a test method tests for the same condition multiple times within the same test
method. If the test method needs to test the same condition using different values, a new test method should
be utilized; the name of the test method should be an indication of the test being performed.

Sleepy Test Explicitly causing a thread to sleep can lead to unexpected results, as the processing time for a task can differ
on different devices. Developers introduce this smell when they need to pause execution of statements in a
test method for a certain duration (i.e. simulate an external event) and then continuing with execution.

Exception Handling This smell occurs when the test manually handles both exceptions and test outcome, and its frequency rivals
with Assertion Roulette on Java projects.

Table 2: Participant Distribution by Role

Role Number of Participants

Developers 18
Data Scientists 7

Table 3: Participant Distribution by Experience

Experience Level Number of Participants

Less Experienced (0—1 year) 11
More Experienced (2+ years) 14

Table 4: Landis and Koch classification for Kappa values

Kappa Statistic Strength of Agreement

< 0.00 Poor
0.00 - 0.20 Slight
0.21 - 0.40 Fair
0.41 - 0.60 Moderate
0.61 - 0.80 Substantial
0.81 - 1.00 Almost Perfect

them, such as background (Section 3.2), experience (Section 3.3),
and the heuristics reported by the participants in the open questions
(Section 3.4).

Table 5: Influencing factors investigated in the study

Factor Description

Developer’s background Indicates if the participant is a
developer.

Data Scientist’s background Indicates if the participant is a
data scientist.

Experience Indicates (in a scale from 1 to
10) the participant’s experience.

Detection heuristic Extracted from the open ques-
tions.

3.1 Overall Agreement

This section describes the agreement assessed from the participants
evaluations over a set of test snippets related to the types of test
smells analyzed in our study. A total of 25 participants evaluate 50
test snippets with different smell types and report if the evaluated
snippet contains a Test Smell or not. We then use these evaluations
to assess the agreement among the participants.

Table 6 reports how the 25 participants (columns) evaluate test
snippets. The first column describes the smell type of the test snip-
pet analyzed by the participants. The following columns represent
the participant’s evaluation. Each cell represents the YES/NO answer
to the question:Would you observe any issue in this test snippet (as
to refactor it)?. Grey cells represent YES, and white cells represent
NO answers.

We observe that the developers do not present a complete agree-
ment in any of the smell types. Notice also that while developer
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#15 agrees with the presence of smells in all the smell types ana-
lyzed, developer #21 disagrees in all the cases analyzed. From the
evaluations related to each smell type investigated in our study, we
calculate the Kappa measure to assess the agreement among the
participants. Then, we identify the category (or strength) of this
Kappa value by considering the classification described in Table 4.

Figure 1 illustrates the Kappa values obtained for each smell type
analyzed in our study. It also indicates the strength of the obtained
values. The Kappa values are attached to the bar associated with
each smell type, while the strength degree is represented by the
gray columns crosscutting the bars.

We observe that the developers reach their highest agreement
levels on evaluating the Resource Optimism, and Exception Han-
dling smells. However, these agreement levels are still low. They
range from 0.21 up to 0.28, thus not reaching a strength higher than
Fair. Actually, Resource Optimism and Exception Handling are
the only cases that achieve a Fair strength level. For the rest of the
analyzed smell types, the strength of agreement falls in the lowest
category (Slight). The developers only reach Slight agreement, with
all of the Kappa values being lower than 0.2. Note also that most
agreement levels are lower than 0.10.

These results suggest that participants tend to disagree on de-
tecting Test Smells, given the low agreement levels among their
evaluations, which do not reach even aModerate strength. Different
factors involved in the Test Smells detection may influence such
a tendency, such as the participant’ background and experience.
In addition, the absence of a formal definition for Test Smells, and
perhaps the impossibility for some test smells, might contribute to
participants detecting the same type of Test Smell in different ways.
Consequently, the participants tend to disagree on their evaluations.
In the following sections, we describe the agreement among the
participants’ evaluations by considering different factors.

Figure 1: Inter-rater agreement for each Test Smell (Kappa)

3.2 Agreement from the participants’

background factors

As described in Section 2.2, we collect the participants’ backgrounds,
indicating if they are Developers or Data Scientists. We use such
information to investigate if the participants from the same back-
ground present higher agreement levels. In particular, we divide the
25 participants into two subgroups according to their backgrounds:
Developers and Data Scientists. For each subgroup, we calculate the
agreement among the evaluations of the participants belonging to
the subgroup. Finally, we compare such subgroup agreement with
the overall agreement depicted in Figure 1.

3.2.1 Factor: Participants’ Background - Developers. Figure 2 il-
lustrates the agreement observed in the evaluations done by the
Developers. We use an orange line to represent the overall agree-
ment levels replicated from Figure 1. This representation helps
us to analyze if the Developers present higher agreement levels
than the overall. Moreover, in order to identify the strength of each
agreement, we represent (on top of each figure) the classification
described in Table 4.

Figure 2: Agreement among Developers

We observe that the developers reach an agreement that varies
from 0.02 up to 0.23. Similarly to the overall sample, the devel-
opers reach, at maximum, a Fair level. However, notice that we
have a large increase in the agreement related to the Sensitive
Eqality when we only consider the developers. While the overall
sample reaches an agreement of 0.01 (Slight), the developers reach
an agreement of 0.23 (Fair). On the other hand, while the overall
sample presents a Fair agreement in the Resource Optimism and
Exception Handling, the developers present a Slight agreement
in these smells types.
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Table 6: Grey cells represent YES answers and white cells represent NO answers

Smell Type 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Total YES

AssertionRoulette 17
EagerTest 12
LazyTest 14
MysteryGuest 10
ResourceOptimism 11
SensitiveEquality 14
ConditionalTestLogic 13
DuplicateAssert 13
SleepyTest 13
ExceptionHandling 12

This result is surprising since we expect the results for Asser-
tion Roulette and Duplicate Assert to present a better agree-
ment than Eager Test, and Sensitive Eqality. After all, As-
sertion Roulette is usually the smell type that developers are
more knowledgeable about [22]. Duplicate Assert can also be
easily identified since it is an instance of duplicated code. We also
expect developers to have a better agreement in general because
the assumption is that they would usually do more automated tests.

3.2.2 Factor: Participants’ Background - Data Scientists. Figure 3
illustrates the agreement observed in the evaluations done by the
Data Scientists. Differently from the other samples, the agreement
level for one of the smells reaches 0.44, which constitutes a Moder-
ate agreement. Also, when compared with the overall sample, we
observe an increase in the agreement in the cases of theMystery
Guest, Lazy Test, and Sensitive Eqality. The agreement in-
creases from Slight to Fair in such cases. On the other hand, we
also observe a decrease in the agreement from Fair to Slight in the
cases of the Resource Optimism and Exception Handling.

These results suggest that Data Scientists tend to agree on the
Conditional Test Logic and Mystery Guest smells. The first
relates to the presence of conditional statements on the test, while
the second indicates the presence of an external resource such as
a file or a database record. Contrasted with the results from the
developers’ groups, we notice a surprisingly higher agreement level.

3.3 Agreement from the participants’

experience factors

Besides investigating if the background can influence the agree-
ment among participants, we also investigate the influence of the
participants’ experience in the agreement. To do that, we analyze
the agreement among the participants according to two subgroups:
less and more experienced. The first subgroup contains participants
with testing experience ranging between 0-2 years, and the second
subgroup contains participants with more than three years of test-
ing experience. The experience of each participant is defined by
considering their self-reported experience in testing. In this way,
we obtain two subgroups composed of at least five participants,
which allows us to assess the agreement among their evaluations.

Figure 3: Inter-rater agreement among Data Scientist

3.3.1 Factor: Participants’s Experience - Less Experience. Figure 4
describes the agreement among the participants with less expe-
rience. We observe that the agreement levels vary from 0.02 up
to 0.23. Similarly to the overall and developers sample, the less
experienced reach, at maximum, a Fair agreement. Notice also that
in both less experienced and developers groups, there is an increase
in the agreement of the Sensitive Eqality (from Slight to Fair),
and a decrease in the agreement of the Resource Optimismand
Exception Handling(from Fair to Slight).

The results suggest that less experienced participants tend to
disagree with the presence of Test Smell. They are the only ones to
have a fair agreement on Sensitive Eqality. This smell occurs
when the toStringmethod is used within a test method. In general,
we expect that less experienced participants would have a higher
disagreement than experienced ones.
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Figure 4: Inter-rater agreement for participant less experi-

ence (Kappa)

3.3.2 Factor: Participants’s Experience - More Experience. Figure 5
describes the agreement among the participants with more expe-
rience. We observe that these participants reach, at maximum, a
Slight agreement, varying from 0.02 up to 0.18. Similarly to the
previous subgroups analyzed, when compared to the overall sam-
ple, the subgroup with more experience presents a decrease in the
agreement in the Exception Handling smell (from Fair to Slight).

Figure 5: Inter-rater agreement for participant more experi-

ence (Kappa)

These results suggest that even the Most Experienced Partici-
pants tend to not agree with the presence of Test Smells. This result
is a surprise because we do not expect the participants with more
experience to have a lower agreement than the less experienced
ones.

3.4 Agreement from the participants’ heuristic

factor

In addition to the analysis of the participants’ background and
experience, we also investigate if the heuristics to detect the Test
Smells, which have been reported by the participants, influence
the agreement among the participants’ evaluations. Such heuristics
are extracted from the participants’ answers to the open questions
provided during the study, as described in Section 2.3. In short, three
specialists in Test Smell (three Ph.D. Students) applied a coding
technique [19] to analyze the answers to recognize the heuristics
adopted by the participants to detect the Test Smells analyzed in
our study.

For example, from the participants’ evaluations concerning the
Assertion Roulette, the specialists recognize three different heuris-
tics reported by the participants to detect this smell: (H1) Analysis
of the test size, H2 Analysis of code duplication, and H3 Exception
not properly handled. In this particular heuristic, the respondents
are not specifically focused on a measurable attribute or language
structure.

Table 7 describes the three heuristics identified and the IDs of
the participants that reported each heuristic. We observe that seven
participants detect this smell considering the H1 heuristic. Two
participants consider the H2 heuristic, and the other one detects the
smell by following the H3 heuristic.

Table 7: Assertion Roulette heuristics reported in open

questions

# Heuristic Participants’ ID

H1 Analysis of the test size only 22, 23, 25, 31, 41, 43, 55
H2 Analysis of code duplication 32, 33
H3 Exception not handled properly 24

The same procedure is also applied to identify the heuristics
related to the other smell types. Table 8 reports the number of
recognized heuristics for each smell type. Note that not all the
smells types has recognized heuristics, since we identified those
using the justification used by the participants for their answers.
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Table 8: Heuristics recognized for each smell

Test Smell Number of Heuristics

Assertion Roulette 3
Mystery Guest 1
Sensitive Eqality 1
Conditional Test Logic 2
Eager Test 2
Sleepy Test 1
Exception Handling 2

We observe the most cited heuristic for each smell type, then we
evaluate the agreement level among the participants who reported
this heuristic. For example, considering the Exception Handling,
we assess an agreement value of 0.63 (Substantial). This is the
highest kappa value if we compare it with the corresponding Kappa
values derived from the analysis described in the previous sections.
By applying the same procedure to the other smells, we obtained
the agreement levels depicted in Figure 6. We also observe that the
Mystery Guest is the only smell type in which we have a decrease
in the agreement when compared to the overall agreement.

Figure 6: Inter-rater heuristics (Kappa)

4 THREATS TO VALIDITY

In this section, we discuss the validity threats in line with Wohlin
et al.’s validity criteria [26].

4.1 Construct Validity

Construct validity involves potential threats during the study de-
sign and construction process. We do not provide participants with
a definition of Test Smells to avoid introducing bias or influenc-
ing their responses. Instead, we aim for participants to assess test
snippets based on their individual background and experience.

We manually gather Test Smells instances and perform cross-
validation of test snippets tominimize potential issues. There should
be any remaining false positives after inspection, we can still ex-
amine whether participants agree or disagree on the presence of
Test Smells in those snippets, regardless of detection approach
outcomes.

During the study, participants evaluate if a test snippet contains
a specific Test Smell type. The scope of a test snippet may be insuf-
ficient for participants to make an accurate judgment, which we
acknowledge and accept as a limitation.

Another potential threat pertains to the participants’ assess-
ments. We offer only "YES" or "NO" options, which may not allow
them to express the confidence level in their responses. To mitigate
this, we include open questions for participants to elaborate on
their understanding of and uncertainties about test smells, enabling
deeper analysis of their evaluations.

4.2 Internal Validity

Participants evaluate one test snippet for each smell type (10 in to-
tal), which might lead to some evaluations being completed without
due diligence.

Conducting the study online helps us reach a reasonable num-
ber of participants, but we cannot strictly control communication
among them during evaluations. To mitigate this, we randomize
the order of test snippets and note the high disagreement in Section
3.1, suggesting limited collaboration among participants.

We do not thoroughly analyze whether participants properly
applied the heuristics they reported, although we observe their
application for Conditional Test Logic in Section 3.4.

Lastly, we examine the impact of participants’ self-reported ex-
perience on evaluation agreement. Although self-assessment may
be imprecise, previous work [7] suggests it is a reasonable proxy
for experience.

4.3 External Validity

Our study involves 32 Java projects of varying sizes and domains,
which are well-known and widely used in previous Test Smells
detection research [4, 13, 20, 24]. However, our findings may not
be generalizable to other projects with distinct characteristics.

We use 25 participants with diverse backgrounds and experiences
(Section 2.4), but our results might not be universally applicable
due to subjective factors affecting Test Smellsunderstanding.

Finally, participants evaluate 10 different Test Smell types, with
generally high disagreement on detection. Our results may not
extend to other smell types not analyzed in this study.

5 RELATEDWORK

The study performed by Bavota et al. [1] analyzes the Test Smells
distribution in software systems and whether their presence is
harmful. As part of the investigation, they perform a controlled
experiment involving 61 participants among students and industrial
developers, which are asked to perform maintenance activities on
smelly and refactored test code of two software systems. The results
of the study indicate the negative impact of Test Smells in program
comprehension during maintenance activities. Similarly to Bavota
et al., our study performs experiments involving developers in the
context of Test Smells, but our study focuses on the participants’
perceptions about the existence of Test Smells.

The study performed by Soares et al. [3] conducts a study aiming
to assess open-source developers’ awareness about the existence of
test smells and their refactoring strategies. They conduct a study by
applying a survey with 73 open-source developers to assess their
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preference and motivation to choose between 10 smelly test code
examples, and the results indicate that most of the surveyed devel-
opers preferred the refactored proposal. Based on the results, they
provide a empirical validation for the literature-proposed refactor-
ing strategies.

Santana et al. [18] evaluated a tool called RAIDE, designed for
the automatic identification and refactoring of Test Smells. They
presented an empirical assessment of RAIDE, in which they ana-
lyzed its capability to refactor Assertion Roulette and Duplicate
Assert Test Smells and compared the results against both manual
refactoring and a state-of-the-art approach. The results showed
that RAIDE provides a faster and more intuitive approach for han-
dling Test Smells than using an automated tool for smell detection
combined with manual refactoring.

6 CONCLUSIONS

We conducted an empirical study aimed at investigating the pos-
sible factors that influence the agreement of participants when
evaluating Test Smells. To carry out our study, we collected test
snippets from open-source projects and presented them to 25 par-
ticipants.Precisely, we analyzed whether participants tend to agree
(or disagree) on the occurrence of 10 different types of Test Smells.

Our study showed that, overall, software developers presented
low agreement levels when evaluating all smell types, contradicting
key results from previous studies [3, 21]. On top of that, although the
developers’ background and experience did not present a consistent
influence on the level of agreement, the heuristics used by the
developers for identifying test smells played an important role,
being the factor that was better correlated with the agreement on
the evaluations.

Our findings suggest that although many studies have been re-
cently conducted on the topic, researchers and practitioners should
not take for granted that developers will agree on the presence and
harmfulness of test smells. This can be partially influenced by the
fact that the definition of some test smells is naturally vague, but
more studies are required to investigate this hypothesis.

We discovered three conclusions in our study. Firstly, partici-
pants exhibited low levels of agreement when evaluating all 10
Test Smells types, which contradicts key findings from prior stud-
ies [8, 17]. Secondly, participants’ background and experience did
not consistently affect their agreement levels. Lastly, the heuristic
factor played the most significant role in determining agreement
among participants. These findings highlight the importance of
developing customizable techniques for detecting Test Smells that
take into account each participants unique perception. The artifacts
produced as part of our study are publicly available 3.
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