
On the Expressive Power of Languages for Static Variability

PAUL MAXIMILIAN BITTNER, Paderborn University and Ulm University, Germany

ALEXANDER SCHULTHEISS, Paderborn University, Germany and University of Bern, Switzerland

BENJAMIN MOOSHERR, Ulm University, Germany

JEFFREY M. YOUNG, Input Output Global, USA
LEOPOLDO TEIXEIRA, Federal University of Pernambuco, Brazil

ERIC WALKINGSHAW, Unaffiliated, USA

PARISA ATAEI, Input Output Global, USA
THOMAS THÜM, Paderborn University and TU Braunschweig, Germany

Variability permeates software development to satisfy ever-changing requirements and mass-customization

needs. A prime example is the Linux kernel, which employs the C preprocessor to specify a set of related but

distinct kernel variants. To study, analyze, and verify variational software, several formal languages have

been proposed. For example, the choice calculus has been successfully applied for type checking and symbolic

execution of configurable software, while other formalisms have been used for variational model checking,

change impact analysis, among other use cases. Yet, these languages have not been formally compared, hence,

little is known about their relationships. Crucially, it is unclear to what extent one language subsumes another,

how research results from one language can be applied to other languages, and which language is suitable for

which purpose or domain. In this paper, we propose a formal framework to compare the expressive power

of languages for static (i.e. compile-time) variability. By establishing a common semantic domain to capture

a widely used intuition of explicit variability, we can formulate the basic, yet to date neglected, properties

of soundness, completeness, and expressiveness for variability languages. We then prove the (un)soundness

and (in)completeness of a range of existing languages, and relate their ability to express the same variational

systems. We implement our framework as an extensible open source Agda library in which proofs act as

correct compilers between languages or differencing algorithms. We find different levels of expressiveness as

well as complete and incomplete languages w.r.t. our unified semantic domain, with the choice calculus being

among the most expressive languages.

CCS Concepts: • Software and its engineering→ Formal language definitions; Software configuration
management and version control systems; Software product lines.

Additional Key Words and Phrases: variation, software product lines, configuration, language semantics

ACM Reference Format:
Paul Maximilian Bittner, Alexander Schultheiß, Benjamin Moosherr, Jeffrey M. Young, Leopoldo Teixeira,

Eric Walkingshaw, Parisa Ataei, and Thomas Thüm. 2024. On the Expressive Power of Languages for Static

Variability. Proc. ACM Program. Lang. 8, OOPSLA2, Article 307 (October 2024), 33 pages. https://doi.org/10.
1145/3689747

Authors’ Contact Information: Paul Maximilian Bittner, paul.bittner@uni-ulm.de, Paderborn University and Ulm University,

Germany; Alexander Schultheiß, alexander.schultheiss@hu-berlin.de, Paderborn University, Paderborn, Germany and

University of Bern, Bern, Switzerland; BenjaminMoosherr, benjamin.moosherr@uni-ulm.de, Ulm University, Ulm, Germany;

Jeffrey M. Young, jeffrey.young@iohk.io, Input Output Global, Longmont, Colorado, USA; Leopoldo Teixeira, lmt@cin.

ufpe.br, Federal University of Pernambuco, Pernambuco, Brazil; Eric Walkingshaw, eric@walkingshaw.net, Unaffiliated,

Corvallis, Oregon, USA; Parisa Ataei, paris.ataei@gmail.com, Input Output Global, Buffalo, New York, USA; Thomas Thüm,

thomas.thuem@uni-paderborn.de, Paderborn University and TU Braunschweig, Paderborn, Germany.

© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/10-ART307

https://doi.org/10.1145/3689747

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 307. Publication date: October 2024.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

HTTPS://ORCID.ORG/1234-5678-9012
HTTPS://ORCID.ORG/0000-0002-1509-1449
HTTPS://ORCID.ORG/0009-0004-2670-8127
HTTPS://ORCID.ORG/0000-0002-2935-772X
HTTPS://ORCID.ORG/0000-0002-6154-1666
HTTPS://ORCID.ORG/0000-0003-1214-0791
HTTPS://ORCID.ORG/0000-0002-6703-2360
HTTPS://ORCID.ORG/0000-0001-8069-9584
https://doi.org/10.1145/3689747
https://doi.org/10.1145/3689747
https://orcid.org/1234-5678-9012
https://orcid.org/0000-0002-1509-1449
https://orcid.org/0009-0004-2670-8127
https://orcid.org/0000-0002-2935-772X
https://orcid.org/0000-0002-6154-1666
https://orcid.org/0000-0003-1214-0791
https://orcid.org/0000-0002-6703-2360
https://orcid.org/0000-0001-8069-9584
https://doi.org/10.1145/3689747
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by-sa/4.0/

307:2 P. M. Bittner, A. Schultheiß, B. Moosherr, J. M. Young, L. Teixeira, E. Walkingshaw, P. Ataei, T. Thüm

1 Introduction
Explicit variability in software is a reoccurring phenomenon across many areas in science and

business [63]. Operating systems such as the Linux kernel offer many configuration options to

adapt to hardware or user needs, among other concerns [108]. Extensive variability is also common

in other domains, such as file systems [100], cars [66], cloud systems [35, 145], robotics [67], mobile

apps [86], bioinformatics [32], and satisfiability solving [130, 144] to name a few.

Variability means that a system or piece of information may emerge in similar but different

variants from a common set of underlying atomic elements [7]. For example, the source code of the

Linux kernel is variational because it can and must be configured to a particular kernel variant

before a kernel can be used. While the Linux kernel consists of a single code base, its multiple

thousand configuration options [61, 72, 127] impose many different kernel variants, in fact so many,

that the number of variants cannot even be computed for newer versions [90, 127].

In research, variability is tackled by dividing its concerns into problem and solution space [7]. The
problem space is concerned with specifying the set of available configuration options, parameters,

or features, and documenting valid and invalid combinations. Specifying the set of valid feature

combinations, referred to as configurations, reduces to a satisfiability problem [18]. As an example,

in the Linux kernel, the problem space is implemented in terms of build and configuration files that

govern which files to include and how conditional C preprocessor flags are allowed to be set to

adhere to dependencies and conflicts [87, 110]. The solution space is concerned with implementing

the functionality of each feature, and providing a mechanism to derive a variant’s source code

from its configuration. In the Linux kernel, the solution space is realized in terms of a code base

annotated with C preprocessor statements, which are resolved by the C preprocessor, which derives

a particular variant by preprocessing all annotations [87, 110].

To model and analyze solution space variability, numerous formal variability languages have

been used [15, 27, 33, 47, 53, 64, 75, 77, 97]. These languages model variability following either the

annotative or compositional paradigm [75]. Annotative languages embed variability annotations

into a superimposed state of the variants, and derive variants by discarding all parts that belong to

an excluded feature. For instance, many annotative languages depict variability in terms of a choice

F ⟨𝑒𝑡ℎ𝑒𝑛, 𝑒𝑒𝑙𝑠𝑒⟩ between alternative expressions 𝑒𝑡ℎ𝑒𝑛 and 𝑒𝑒𝑙𝑠𝑒 , where the annotation 𝐹 denotes a

feature whose inclusion or exclusion determines which alternative to pick [33, 53, 64, 136]. Choices

are an abstract representation of if-then-else expressions and were, for example, successfully

employed to type check all variants of the Linux kernel [76]. Compositional languages model

variability in terms of distinct modules, each representing a unique feature. Modules can be

composed in different ways, such as superimposing trees [11], weaving aspects [6], or loading

plug-ins. For instance, feature structure trees [9, 11] model features as trees that can be composed

by merging them in terms with a depth-first traversal. Within a Java graph library, a feature

Color : graph.Edge.color named Color would add a color field to the Edge Java class, when

imposed to the base feature Base : graph.Edge.nodes, yielding a syntax tree in which the Edge
class has both the color and nodes fields.

With two paradigms for variability, a zoo of languages, and different syntactical constructs

available, several questions remain unanswered. Which language should be picked for new research

efforts or tools? Do research results based on one language also apply to other languages? Can

all languages express the same sets of variational systems? To the best of our knowledge, a

formal characterization and comparison of variability languages has not yet been attempted,

and discussions remain scarce, mostly informal, or brief [75, 136, 137].

In this paper, we begin the journey to answer these questions by introducing a formal framework

for comparing variability languages to guide researchers, practitioners, and language designers.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 307. Publication date: October 2024.

On the Expressive Power of Languages for Static Variability 307:3

We distill a common semantic domain for variability languages as a basis for comparisons and

to capture a widely used intuition for static and explicit variability: a finite, non-empty set of

system variants identified by configurations (i.e., feature (de-)selections). We then explore the three

basic yet unexplored and neglected properties of completeness, soundness, and expressiveness. We

consider a language complete iff it may describe any non-empty, finite set of variants, and hence

serves as a general-purpose variability mechanism. For instance, if Linux’s variability mechanism

were incomplete, there would be kernel sets that could not be specified statically. Conversely, we

consider a language sound iff every term describes a non-empty, finite set of variants, and hence

all terms are valid. If Linux’s variability mechanism were unsound, then a valid configuration

could produce something else than a kernel implementation, such as a plain number or a sandwich

recipe. Finally, expressiveness relates languages, where we say that a language 𝐿 is at least as

expressive as another language 𝑀 iff 𝐿 can describe any set of variants described by 𝑀 . From

a researcher’s perspective, such comparisons bridge the gaps between parallel research efforts,

increasing the impact of research results formulated in one particular language to now be useful to

a more expressive language and its community, potentially even rendering the results independent

from the languages they were formulated in. From a practitioners perspective, proofs of the above

properties may come as correct compilers between languages or differencing algorithms, turning

theory into practice.

As a case study, we begin charting the space of variability languages by formally comparing

common variability languages and dialects within our framework. By instantiating these languages

within our framework, we show that our formulation of a semantic domain fits these languages.

We prove that there are complete and sound languages with respect to our semantic domain. By

constructing respective compilers and proving them correct, we also show that the other languages

can be translated to those complete languages; rendering existing research efforts and results

compatible with each other. Interestingly, we found that there are incomplete languages in our

semantic domain, where incompleteness stems from particular but reasonable design decisions.

To also cover the widely adopted [4, 26, 27, 70, 75, 77, 97] but rarely formalized and understudied

concept of optional variability in our case study, we introduce the option calculus as a minimal

language for this purpose. We formalize our framework and our case study as an extensible open-

source Agda library called Vatras [1]. Hence, our case study acts as a web of proven-to-be-correct

compilers and differencing algorithms, which can be used out of the box, for example to apply

techniques based on one language to another. In summary, we contribute:

Unified semantics by introducing a common semantic domain for variability languages, and

by explicitly formalizing the semantics of some languages for the first time,

a formal framework for comparing the expressiveness, completeness, and soundness of vari-

ability languages to bridge the gap between parallel research efforts,

the option calculus as a formal variability language that is the first to rigorously formalize the

widely adopted concept of optional variability,

a map of languages that formally clarifies the properties and relationship between existing,

representative variability languages, and

an open-source Agda library that formalizes the framework and above contributions in a

reusable library of compilers and differencing algorithms [1].

2 Preliminaries and Running Example
Suppose that you are the cook at a new sandwich diner that will open soon. From a market analysis,

your supervisor distilled the most popular and affordable sandwiches into a menu shown in the top

left of Figure 1. According to the specification, a sandwich must have bread and cheese, must have

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 307. Publication date: October 2024.

307:4 P. M. Bittner, A. Schultheiß, B. Moosherr, J. M. Young, L. Teixeira, E. Walkingshaw, P. Ataei, T. Thüm

Problem Space Solution Space

Customer order
(Configuration)

Menu
(Feature model)

Sandwich
(Variant)

Cookbook
(Feature implementation)

Our Sandwiches
Core ingredients: Optional:

Sauces (any):Choose your pay:
orMeat Tofu

Bread Cheese Salad

Mayo KetchupEither

Our Sandwiches
Core ingredients: Optional:

Sauces (any):Choose your pay:
orMeat Tofu

Bread Cheese Salad

Mayo KetchupEither

Fig. 1. Typical workflow for engineering variational systems at the example of a sandwich restaurant.

either tofu or meat as a patty, and can optionally have salad, while sauces can be freely combined.

Each customer is handed a menu to freely configure a sandwich to their liking, for example with

salad, all sauces and tofu as depicted at the bottom left of Figure 1.

Your task as the cook is to produce sandwiches according to the specification because sandwiches

that do not satisfy the supervisor’s requirements might sell badly or require unavailable ingredients.

Therefore, you write a custom sandwich cookbook, shown in the top right of Figure 1, in which you

specify how the ingredients can be combined to create sandwiches according to the requirements.

When you are handed a customer’s order, you can use the knowledge from your recipe book to

produce the respective sandwich, shown at the bottom right of Figure 1.

Apart from sandwiches, variability of this kind may occur in various software or systems [63]

and has mostly been addressed in the context of software product line engineering [7, 39, 113].

Explicitly designing variability has the goal of increasing reuse when developing a set of distinct

but related products, usually referred to as variants, such as all the sandwiches that can be built

according to the specification in Figure 1. Commonalities and differences between variants are

typically expressed in terms of atomic configuration options, referred to as features [7, 39, 113],
such as the sandwich ingredients. As emphasized by the left and right half in Figure 1, software

product-line engineering distinguishes two spaces of variability:

The problem space specifies the names of features and the constraints among them in terms

of a variability or feature model [7, 18, 73]. Essentially, a feature model denotes a satisfiability

problem to decide whether a certain set of selections for features is valid [18, 40, 103]. In our

example, the menu at the top left of Figure 1 denotes a feature model, which, for example,

declares that exactly one patty must be chosen, and not zero or both. An assignment of features

to selection values (e.g., Booleans or integers) is referred to as a configuration [7]. In our example,

a configuration is given by a customer filling out the menu (bottom left in Figure 1).

The solution space refers to the implementation of features to derive variants from configu-

rations. The main concern in the solution space is mapping features or their combinations

to implementation artifacts. This mapping determines which artifacts should be included or

excluded to generate a variant with a specific configuration. The cookbook in Figure 1 depicts a

variational system that specifies how ingredient names (i.e., features) map to the ingredients

, , , and so on, and how ingredients have to be prepared to obtain a sandwich variant.

A prominent example of annotative solution space variability for software is the C preprocessor,

one of the most widely used tools to implement explicit and static variability [93], such as in

the Linux kernel [87]. A C code base with C preprocessor directives denotes a set of C programs.

Only by running the preprocessor with a certain configuration, a particular program is obtained.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 307. Publication date: October 2024.

On the Expressive Power of Languages for Static Variability 307:5

In this work, we focus on languages for solution space variability (i.e., cookbooks for sandwiches

or any other domain of interest, such as programming languages). Both problem and solution space

have a rich landscape of languages to encode their respective variational artifacts. Problem space

languages have been formally and informally compared on different levels of abstraction, as we

discuss in Section 6. In contrast, formal solution space languages have not yet been compared, in

particular not in a formal way. For brevity, we just write variability language to refer to languages

for solution space variability for the remainder of this paper.

Notation. We use syntax highlighting: constants are violet, grammar symbols are green (i.e.,

inductive constructors), names of sets are blue, and relations and functions are magenta. We

represent lists of values 𝑎 ∈ 𝐴 of some set 𝐴, as tuples (𝑎1, . . . , 𝑎𝑛) ∈ 𝐴𝑛
as common in set theory.

For some recursive functions on lists though, we rely on an inductive notation from type theory and

functional programming (e.g., Haskell, Agda), where [] represents the empty list and 𝑎 :: 𝑙 prepends

a value 𝑎 ∈ 𝐴 to a list 𝑙 ∈ 𝐴𝑚
. For example, (1, 2, 3, 4) denotes the same list as 1 :: 2 :: 3 :: 4 :: []. We

abbreviate singleton lists 𝑎 :: [] as [𝑎]. We assume 0 ∉ N and use ◦ to denote function composition.

3 An Overview on Formal Variability Languages
To model, analyze, and study variability, a range of formal languages were proposed, coming in

the forms of calculi [53, 64, 136], algebras [11], graphs [16, 27, 33, 49], or generic trees [74, 97].

These languages model variability as a general, reoccurring phenomenon not fixed to a particular

technology, such as the C preprocessor. In this section, we give an overview about common formal

languages for variability and briefly introduce and unify their syntax and semantics.

3.1 Semantics
To understand, model, and compare variability languages, it is essential to agree on a common

semantic domain, that answers the question: What is static variability? A short answer is that most

languages have the common goal to describe a set of related but different variants of a system for a

certain range of artifacts such as source code or build files [7, 39].

Before we can model variability within systems, we first need a generic model for systemswithout
variability. Most variability languages use some kind of generic tree [11, 16, 27, 33, 53, 64, 74, 75, 97].

Trees cover concrete and abstract syntax of formal languages, and hence basically any computer-

readable language, including programming languages and any sequential data (e.g., lines of text).

Hence, we model a variant as a tree, where each node contains a single piece of atomic data 𝑎 ∈ 𝐴

of any granularity. Crucially, a variant represents no variability.

Definition 3.1 (Variant). A variant 𝑣 ∈ V(𝐴) is a tree of atoms 𝑎 ∈ 𝐴, where V(𝐴) denotes the set
of all variants over a set of atoms 𝐴. We denote variants as expressions 𝑒 with the following syntax:

𝑒 F 𝑎�𝑒, . . . , 𝑒�

where 𝑒, . . . , 𝑒 denotes a finite and potentially empty list of sub-expressions. While 𝑎 is an atom,

we refer to a production 𝑎� . . . � as an artifact to distinguish the contained data 𝑎 from the node

� . . . � holding that data. For convenience, we write 𝑎 instead of 𝑎�� for leaf artifacts.

Example 3.2 (Atoms and Variants). In our running example in Section 2, we used sandwiches,

where ingredients, such as , , and are atoms and the composition of ingredients denotes

a variant of a sandwich, such as a sandwich with cheese and salad � , �. Common target

systems for static variability are source code, documentation, or build files as implemented by

the C preprocessor [87, 93], KConfig [52], autoconf [131], or GNU M4 [132]. When representing

source code as lines of text, as done by many tools, the set of atoms 𝐴 is the set of all lines of

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 307. Publication date: October 2024.

307:6 P. M. Bittner, A. Schultheiß, B. Moosherr, J. M. Young, L. Teixeira, E. Walkingshaw, P. Ataei, T. Thüm

Table 1. Profiles of prominent formal variability languages.

Language Syntax 𝑒
Configuration

Language 𝐶
Semantics J.K : 𝑒 → 𝐶 → 𝑒

Core Choice

Calculus (CCC)
[53, 136]

𝑒 F 𝑎�𝑒, . . . , 𝑒�
| D⟨𝑒, . . . , 𝑒⟩

F → N J𝑎�𝑒1, . . . , 𝑒𝑛�K (𝑐) ≔ 𝑎�J𝑒1K (𝑐), . . . , J𝑒𝑛K (𝑐)�
JD⟨𝑒1, . . . , 𝑒𝑛⟩K (𝑐) ≔ J𝑒min(𝑐 (𝐷),𝑛)K (𝑐)

Binary Choice

Calculus (2CC)
[many]

𝑒 F 𝑎�𝑒, . . . , 𝑒�
| D⟨𝑒, 𝑒⟩

F → B
J𝑎�𝑒1, . . . , 𝑒𝑛�K (𝑐) ≔ 𝑎�J𝑒1K (𝑐), . . . , J𝑒𝑛K (𝑐)�

JD⟨𝑙, 𝑟 ⟩K (𝑐) ≔

{
J𝑙K (𝑐), 𝑐 (𝐷) = true,
J𝑟K (𝑐), else

Algebraic De-

cision Trees (ADT)
[16, 33]

𝑒 F leaf 𝑒

| D⟨𝑒, 𝑒⟩
F → B

Jleaf 𝑣K (𝑐) ≔ 𝑣

JD⟨𝑙, 𝑟 ⟩K (𝑐) ≔

{
J𝑙K (𝑐), 𝑐 (𝐷) = true,
J𝑟K (𝑐), else

Gruler’s

Language (GL)
[64]

𝑒 F ntrl

| asset𝑎

| 𝑒 ∥ 𝑒
| 𝑒 ⊕𝑛∈N 𝑒

N → B

JntrlK (𝑐) ≔ 𝜀

Jasset𝑎K (𝑐) ≔ 𝑎

J𝑙 ∥ 𝑟K (𝑐) ≔ J𝑙K (𝑐) ∥ J𝑟K (𝑐)

J𝑙 ⊕𝑛 𝑟K (𝑐) ≔

{
J𝑙K (𝑐), 𝑐 (𝑛) = true,
J𝑟K (𝑐), else

Option

Calculus (OC)
new

𝑒 F 𝑎�𝑡, . . . , 𝑡�
𝑡 F 𝑒

| O 𝑡

F → B
J𝑎�𝑒1, . . . , 𝑒𝑛�K (𝑐) := 𝑎�𝜅 (J𝑒1K (𝑐), . . . , J𝑒𝑛K (𝑐))�

JO 𝑒 K (𝑐) :=

{
J𝑒K (𝑐), 𝑐 (𝑂) = true,
𝜀, else

Feature Structure

Trees (FST)
[9, 11]

𝑒 F 𝑎 ◀ 𝑓 , . . . , 𝑓 ▶
𝑓 F 𝐹 : 𝑒, . . . , 𝑒

F → B
J𝑎 ◀ (𝐹1 : fs1), . . . , (𝐹𝑛 : fs𝑛) ▶K (𝑐) ≔ 𝑎�

⊕
𝑖∈{1,...,𝑛},
𝑐 (𝐹𝑖)=true

fs𝑖�

text, and a text file could be represented as a variant 𝑙𝑖𝑛𝑒1�𝑙𝑖𝑛𝑒2� . . . �𝑙𝑖𝑛𝑒𝑛���. Alternatively,
variants can represent concrete or abstract syntax trees of formal languages in which case atoms 𝐴

corresponds to the names of production rules and tokens of a grammar (i.e., labels of nodes in the

syntax tree) [74]. For instance, an arithmetic expression 1+ 5 · 7 can be represented as +�1, ·�5, 7��.

3.2 Overview
Table 1 presents a selection of variability languages from the literature. For each language, we cite

its origin work(s) and show its syntax, configuration language 𝐶 , and semantics J.K : 𝑒 → 𝐶 → 𝑒 ,

which is a function that configures an expression 𝑒 with a configuration 𝑐 ∈ 𝐶 of the respective

configuration language to a variant 𝑒 . There exist more variability languages than we can cover

in a single paper, so we distilled our overview based on three criteria. First, we favor maturity

of formalization (i.e., whether syntax or semantics are formalized). Second, we favor genericity

(i.e., whether the language models variability as a general-purpose phenomenon and not tied to a

particular use case or technology). Third, we favor languages that are representative for similar

dialects or languages that might target more specific use cases.

We streamlined and simplified the definition of syntax or semantics for some of the languages

in Table 1. Most languages were developed independently from each other and thus use different

notation or theories to express similar concepts. For syntax, we decided for a representation that

is as simple as possible while retaining the spirit of the original language. For example, algebraic

decision diagrams are defined as graphs, which alternatively can be formalized via the given

grammar. Moreover, the languages often rely on slightly different but equivalent semantic domains

(basically generic trees). For some languages, the semantics were not even formalized at all, given

only in natural language, examples, or implementations. We hence unify semantics here to have

the same signature 𝑒 → 𝐶 → 𝑒 for comparability, and to adhere to adjusted syntax.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 307. Publication date: October 2024.

On the Expressive Power of Languages for Static Variability 307:7

3.3 Choice Calculus (CCC and 2CC)
The choice calculus was created to serve a role analogous to the lambda calculus for programming

languages but for modeling and analyzing static variability [53, 136]. The idea is to annotate a

variant 𝑒 by embedding choices D⟨𝑒1, . . . , 𝑒𝑛⟩, 𝑛 ≥ 1 where 𝐷 is referred to as a dimension and the

sub-expressions 𝑒𝑖 are referred to as alternatives. A choice denotes the necessity to choose exactly

one alternative 𝑒𝑖 . The dimension 𝐷 ∈ F is a name to identify the choice and to convey the choice’s

meaning to potential users, where F is a set of names (e.g., N, text, or feature names according to a

feature model, cf. Section 2). Based on our running example from Section 2, the expression

�Salad⟨ , 𝜀⟩, , Patty⟨ , ⟩, Sauce⟨𝜀, , , ⟩� (1)

encodes sandwiches by embedding choices into a variant expression (cf. Definition 3.1). The outer

artifact � . . . � denotes that a sandwich always has bread at the root of the expression. The

choices for salad, patties, and sauces are named by the Salad, Patty, and Sauce dimensions,

respectively. Within bread, a sandwich (1) maybe has salad, denoted by the choice Salad⟨ , 𝜀⟩
between salad and an "empty" ingredient 𝜀, (2) always has cheese because is not nested in a

choice, (3) can have either meat or tofu because of the choice Patty⟨ , ⟩, and (4) can have

mayonnaise and/or ketchup or none: Sauce⟨𝜀, , , ⟩.
To obtain a variant for a given configuration, the semantics J.K eliminate all choices from an

expression, leaving only artifacts 𝑎� . . . � and thus a variant 𝑒 . Therefore, a configuration 𝑐 : F → N
determines which alternative to pick for each choice by mapping each unique dimension to a

natural number. While the denotational semantics of the choice calculus have been formalized in

different ways [53, 136, 137], we follow the functional style of creating a variant generator function
for an expression [137] for brevity in presentation and proofs. Hence, the semantics J𝑒K of an

expression 𝑒 ∈ CCC is a function J𝑒K : (F → N) → 𝑒 , which maps each configuration 𝑐 : F → N
to a variant 𝑒 . In particular, an artifact 𝑎�𝑒1, . . . , 𝑒𝑛� does not denote variability and hence must

not be configured. We thus keep the atom 𝑎 but configure all sub-expressions 𝑒1, . . . , 𝑒𝑛 , which

potentially contain choices. A choice D⟨𝑒1, . . . , 𝑒𝑛⟩ denotes variability that must be resolved. We

do a lookup in the configuration 𝑐 for the dimension 𝐷 and pick the chosen alternative 𝑒𝑖 , where

𝑖 = min(𝑐 (𝐷), 𝑛) can at most be the number of available alternatives 𝑛.1 Since choices might have

any arity (i.e., number of alternatives) configurations cannot be easily restricted to yield indices in

bounds. We will explore restricting the arity to be in bounds by design later in Section 5.

As an example, we can configure our sandwich from Expression 1. Let’s say we want salad, tofu,

and ketchup and define a configuration 𝑐 accordingly as 𝑐 (Salad) = 𝑐 (Patty) = 1, 𝑐 (Sauce) = 3. We

then obtain our desired sandwich via the semantics: JExpression 1K (𝑐) = � , , , �.
The result contains no choices and therefore is a variant.

To simplify reasoning, choices are frequently restricted to be binary, such as for variability-aware

syntax- [78] and type-checking [36, 79, 94] variants of C preprocessor-based software, including

the Linux kernel, and many other use-cases [14, 31, 37, 126, 137, 143, 144]. Following established

naming conventions [136], we refer to the choice calculus with choices of any arity as the core
choice calculus (CCC), and refer to the normal form with binary choice as the binary choice calculus

(2CC) throughout this paper. Syntactically, the binary choice calculus is a normal form of the core

choice calculus in which all choices have exactly two alternatives. Consequently, the semantics

can be simplified: Instead of picking an index 𝑐 (𝐷) ∈ N, configurations 𝑐 now only have to decide

1
Resolving dimensions via natural numbers is a simplification of the original works on choice calculus [53, 136, 137]. There,

a dimension 𝐷 identifies each of its alternatives with a tag 𝐷.𝑡 , and a configuration maps each dimension to one of its

tags. For brevity in presentation and proofs, we chose to replace tags by an equivalent representation via natural numbers,

analogous to how de Bruijn indices simplify formal reasoning on the lambda calculus [45].

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 307. Publication date: October 2024.

307:8 P. M. Bittner, A. Schultheiß, B. Moosherr, J. M. Young, L. Teixeira, E. Walkingshaw, P. Ataei, T. Thüm

whether to pick the left (𝑐 (𝐷) = true) or right (𝑐 (𝐷) = false) alternative of a choice by mapping

dimensions 𝐷 to booleans B = {true, false}. As an example,

�Salad⟨ , 𝜀⟩, , Patty⟨ , ⟩, Ketchup⟨Mayo⟨ , ⟩, Mayo⟨ , 𝜀⟩⟩� (2)

encodes the core choice calculus sandwiches from Expression 1 ∈ CCC. The only difference is that

the 4-ary choice of Sauce is replaced by nested binary choices. We first decide whether we want

Ketchup on our sandwich and in either case subsequently decide whether we want to have Mayo.

3.4 Algebraic Decision Diagrams and Trees (ADT)
Algebraic decision diagrams are graphs that were introduced by Bahar et al. [16] to generalize

binary decision diagrams (BDDs) [29, 30] and have been used for algorithmic problems [16, 50]

and game theory [2] but also for formalizing variational analyses [33]. Similar to binary decision

diagrams [16, 29, 30], algebraic decision diagrams are usually used to solve large instances of

computational problems which are usually infeasible and wasteful to represent as trees due to

an exponential blowup in size [28, 62, 138]. Most effort in decision diagram research thus is put

into identifying shared, equal sub-trees and merging them to obtain a directed, rooted, acyclic

graph instead of a tree, hence the name diagram and not tree. Similar efforts have been made for

choice calculus in terms of additional syntax (let, share, macro [136]) to enable sub-tree sharing via

references. However, such extensions are (useful) syntactic sugar because the semantics remain

unchanged. In this paper, we do semantic comparisons and hence focus on simple trees for reasoning.

Essentially, algebraic decision trees represent series of binary decisions that eventually yield

a result. We observe that these binary decisions have the same semantics as choices in choice

calculus: For each named decision node, choose the left alternative or the right. Hence, we represent

algebraic decision trees with choice-syntax in its grammar given in Table 1. All inner nodes are

choices D⟨𝑙, 𝑟 ⟩ and since data can only be stored in leaves, a leaf 𝑒 has to reference an entire variant

𝑒 ∈ V(𝐴). Hence, an algebraic decision tree has to enumerate all encoded variants explicitly which

causes an exponential blowup because each feature doubles the number of variants. We therefore

omit an encoding of our running example from Expression 1 with its 16 = 2 · 2 · 4 variants here.

3.5 Gruler’s Language (GL)
Gruler [64] introduces a formal framework to describe product families and instantiates it for

model checking of variational programs [65]. Variability is foremost described in terms of the

variant operator 𝑒 ⊕𝑛 𝑒 which denotes a binary choice, identified by a number 𝑛 ∈ N, analogous
to dimensions in the choice calculi.

2
Atoms 𝑎 may occur only in leaves asset𝑎, two expressions

𝑙, 𝑟 ∈ GL can be composed via 𝑙 ∥ 𝑟 , and ntrl is explicit syntax for an empty variant 𝜀. The semantics

J𝑒K (𝑐) of an expression 𝑒 ∈ GL resolves all choices as for binary choice calculus.

As an example, we encode the sandwich from Expression 1 and abbreviate asset𝑎 as 𝑎:

(∥) ∥((∥ ntrl) ∥ ((⊕1) ∥ ((⊕3) ⊕2 (⊕4 ntrl)))) (3)

Since atoms may occur only in leaves, we cannot encode ingredients being within . Crucially,

variants described by an expression 𝑒 ∈ GL do not describe variants 𝑒 as defined earlier but rather

binary trees where only leaves hold atoms, or an empty tree. This means, a variant encodes a list

and not a tree of atoms. Hence, we can only encode which ingredients we need for preparing a

sandwich and in which order, but not how to compose them (e.g., put ingredients between slices of

). Formally, there exists in general no bijection between lists and trees and hence associating

variants 𝑒 to variants in Gruler’s language is ambiguous. Just picking any conversion does not work

2
Gruler’s framework also includes a generalization of the variant operator to choices of any arity as in core choice calculus.

For simplicity, we stick with to the binary form here.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 307. Publication date: October 2024.

On the Expressive Power of Languages for Static Variability 307:9

because there would always be variants that cannot be described. We hence exclude this language

from formal comparisons but study it nevertheless because of relevant observations by Gruler [64].

Despite being developed independently of each other, Walkingshaw [136] and Gruler [64]

observe the same consequences and laws for choices, including, for example, choice idempotence

and distributivity over atoms. Idempotence states that it does not matter which alternative is picked

when all alternatives are equal, formulated as JD⟨𝑒, 𝑒⟩K � J𝑒K and J𝑒⊕𝑛𝑒K � J𝑒K, respectively, where
� denotes semantic equivalence, as we will define later in Section 4. Distributivity gives rise to

powerful transformations to rule out duplicate sub-expressions, formulated as JD⟨𝑎�𝑒1�, 𝑎�𝑒2�⟩K �
J𝑎�D⟨𝑒1, 𝑒2⟩�K and J((asset 𝑎) ∥ 𝑒1) ⊕𝑛 ((asset 𝑎) ∥ 𝑒2)K � J(asset 𝑎) ∥(𝑒1 ⊕𝑛 𝑒2)K, respectively.

3.6 Option Calculus (OC)
The languages covered so far, all featured alternative variability in terms of choices. Yet, there

is a broad range of works that depict variability in terms of options [4, 26, 27, 70, 75, 77, 97]. An
option annotates a sub-expression to indicate that it must be either included or excluded from a

variant. Options have been used, for example, to decompose legacy applications [75], to extract

lost knowledge on variability [97], or for model checking [13, 38, 46–49, 105]. In fact, options are

frequently modeled in research and tools that encode variability purely with choices [14, 64, 94,

126, 144]. An option is encoded as a choice with a neutral value 𝜀, just as we did for optional salad

in Expression 1. The frequency of this pattern suggests a shared and missed need for options.

Crucially, to the best of our knowledge, there is no rigorous formalization of optional variability.

While a definition of syntax is given sometimes [77, 105] (often on examples only), semantics are

rarely formalized [105] or even discussed, and most formalisms are tailored to specific use-cases [77]

or embedded in specific host languages [47, 105].

Hence, we introduce the option calculus as a formal model to depict the nature of options, serving

as a common denominator for models based on optional variability. To compare the expressiveness

of option-based languages to other languages, option calculus must model variability solely based

on options, such that all expressive power stems from options alone. As shown in Table 1, an option

calculus expression is built from artifacts 𝑎�𝑡, . . . , 𝑡� and options O 𝑡 . An option O 𝑡 is identified

by a name 𝑂 ∈ F (analogous to dimensions in choice choices) and denotes that the sub-expression

𝑡 is optional. Each expression is forced to have an artifact at the root in terms of the starting rule

𝑒 . This is necessary because an option at the top would allow to remove the entire expression,

yielding an empty value.

An empty expression is not considered in most models for optional variability, and its meaning is

ambiguous (e.g., empty variant vs. non-existence of a variant) and depends on the object language

(i.e., the language being configured). If the variability language allows empty expressions in arbitrary

places, we might end up with ill-formed variants, such as syntactically incorrect programs. If

emptiness is part of the object language instead (i.e., the set of atoms), the empty expression is

given meaning by the object language and may only occur in syntactically reasonable places; and

the object language determines whether an empty variant exists or has any meaning. To remain

general, we must not assume the existence of an empty atom, even though it might exist. When

considered explicitly, empty expressions are a source of edge-cases and overhead such as ntrl in

Gruler’s language [64].

As an example, we encode the sandwich from Section 2 in option calculus:

�Salad , , Meat , Tofu , Ketchup , Mayo � (4)

Compared to the previous sandwich expressions, all choices have been replaced by options O 𝑒 ,

indicated by different braces . For Salad and for encoding all combinations of Ketchup and Mayo,
we do not rely on the existence of an "empty" ingredient 𝜀 anymore because options natively encode

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 307. Publication date: October 2024.

307:10 P. M. Bittner, A. Schultheiß, B. Moosherr, J. M. Young, L. Teixeira, E. Walkingshaw, P. Ataei, T. Thüm

the potential absence of ingredients. Expression 4 is not equivalent to the previous choice calculus

expressions 1 and 2 because it denotes more variants (2
5 = 32 > 16). Now, sandwiches can have both

Tofu and Meat at the same time or none of them (for configurations 𝑐 with 𝑐 (Tofu) = 𝑐 (Meat) = true
or 𝑐 (Tofu) = 𝑐 (Meat) = false) but having two or no patties should be forbidden according to the

specification in our running example in Figure 1. The point is that options cannot encode constraints

among the corresponding features which alternatives natively do. We will study this property later

in Section 5, including a proof of the incompleteness of option calculus.

The semantics of option calculus are formalized in Table 1 and configure an expression 𝑒 with a

configuration 𝑐 : F → B by resolving all options with names𝑂 ∈ F to a variant 𝑒 . An option O 𝑒 is

resolved by either replacing it with the contained expression 𝑒 upon selection (i.e., 𝑐 (𝑂) = true),
or with a temporary placeholder 𝜀 upon deselection (i.e., 𝑐 (𝑂) = false). Configuring an artifact

J𝑎�𝑒1, . . . , 𝑒𝑛�K (𝑐), recursively configures all child expressions and then removes all placeholders

𝜀 via an auxiliary function 𝜅 with 𝜅 ([]) ≔ [], 𝜅 (𝜀 :: 𝑡) ≔ 𝜅 (𝑡), and 𝜅 (ℎ :: 𝑡) ≔ ℎ :: 𝜅 (𝑡), ℎ ≠ 𝜀.3

Given that there is always an artifact at the top of an option calculus expression, no placeholders 𝜀

remain after configuration such that indeed a variant is produced.

3.7 Feature Structure Trees (FST)
All previous languages model variability by annotating a tree, which simultaneously contains all

variants. An orthogonal paradigm is compositional variability in which features are divided into

distinct modules and composed to a variant, as done in aspect-oriented [83, 84], delta-oriented [98,

117], or feature-oriented programming [9], or plug-in-frameworks [71] and mixins [124].

Apel et al. [11] present an algebra that abstracts compositional static variability, and which

covers different implementations of feature-oriented [9, 10, 12, 19], aspect-oriented [8, 82, 125], or

other compositional languages [22, 101]. This algebra basically assumes the existence of a set of so

called introductions 𝐼 (e.g., features or modules) which can be composed or modified via various

binary operators while obeying algebraic laws. For example, the introduction sum ⊕ : 𝐼 × 𝐼 → 𝐼 ,

which composes two introductions, must obey distant idempotence 𝑎 ⊕ 𝑏 ⊕ 𝑎 = 𝑎 ⊕ 𝑏 which means

that adding an introduction, which has already been added has no effect.
4

In this paper, we focus on one compositional language that is an instance of the algebra: feature

structure trees [9, 11]. In Table 1, we show simplified syntax and semantics of feature structure

trees. Originally, the syntax is defined in natural language [9] or as sets of paths to represent

trees [11], which we simplify to a small grammar. Basically, an expression is a list of features

𝑎 ◀ 𝑓 , . . . , 𝑓 ▶ which can be inserted as sub-expressions of a common atom 𝑎 (e.g., the root

directory of a software project). Each feature 𝐹 : 𝑒, . . . , 𝑒 has a name 𝐹 ∈ F and a range of trees,

represented as plain variants, which are introduced when the feature is selected. For example,

the feature Weight : package graph�class Edge�int weight�, class Node�int weight��
adds a field int weight to two Java classes in a graph library. To derive a variant, the semantics

compose the trees of all selected features, via a binary operator ⊕:

⊕ : 𝑒𝑛 → 𝑒𝑚 → 𝑒𝑜

𝑙 ⊕ [] ≔ 𝑙

𝑙 ⊕ (ℎ :: 𝑡) ≔ (𝑙 ⊙ ℎ) ⊕ 𝑡

⊙ : 𝑒𝑛 → 𝑒 → 𝑒𝑚

[] ⊙ 𝑏�𝑐𝑏� ≔ [𝑏�𝑐𝑏�](
𝑎�𝑐𝑎� :: 𝑡

)
⊙ 𝑏�𝑐𝑏� ≔

{
𝑎�𝑐𝑎 ⊕ 𝑐𝑏� :: 𝑡, 𝑎 = 𝑏,

𝑎�𝑐𝑎� ::

(
𝑡 ⊙ 𝑏�𝑐𝑏�

)
, 𝑎 ≠ 𝑏

3
The function 𝜅 is also known as catMaybes in the standard libraries of Haskell and Agda.

4
Any non-commutative introduction sum ⊕ has to choose whether left introductions dominate right introductions or vice

versa, giving rise to two symmetric distant idempotence laws. We choose the left-dominant version here (see above) because

it seems more intuitive to us, whereas Apel et al. [11] present the right-dominant formulation 𝑎 ⊕ 𝑏 ⊕ 𝑎 = 𝑏 ⊕ 𝑎.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 307. Publication date: October 2024.

https://hackage.haskell.org/package/base-4.18.0.0/docs/Data-Maybe.html#v:catMaybes
https://github.com/agda/agda-stdlib/blob/d6edda0d9c401eac94d986ec6e701f98498352e5/src/Data/List/Base.agda#L57-L58

On the Expressive Power of Languages for Static Variability 307:11

Composition 𝑙 ⊕ 𝑟 composes all trees in a list 𝑟 ∈ 𝑒𝑚 onto the trees in a list 𝑙 ∈ 𝑒𝑛 sequentially from

left to right via the operator ⊙.5 The operator ⊙ composes a single tree 𝑏�𝑐𝑏�, where 𝑐𝑏 is a list of

children, into a list of trees by sequentially inspecting each tree in the list: When a tree 𝑎�𝑐𝑎� is

found with the same atom 𝑎 = 𝑏, then both trees are composed recursively. When no matching tree

is found, the tree to compose 𝑏�𝑐𝑏� is appended to the list as a new implementation. This case

distinction allows to modify (case 𝑎 = 𝑏) or add to (case 𝑎 ≠ 𝑏) an existing implementation.

As an example, we can compose a sandwich, where each feature’s list holds one ingredient.

◀ Salad : [], Cheese : [], Meat : [], Tofu : [], Mayo : [], Ketchup : [],▶
(5)

Given that ingredients are flat trees and that no ingredient occurs more than once here, composition

⊙ will always append but never merge ingredients (case 𝑎 ≠ 𝑏). For example, JExpression 5K (𝑐) =
�[] ⊕ []� = � , � if 𝑐 (Salad) = 𝑐 (Cheese) = true but false otherwise.

3.8 Other Languages & Conclusion
There are many other models for variability, but most of them are tied to specific use cases or

(programming) languages, including models with binary [15, 102, 107] or n-ary choices [140–142],

or more complex choice semantics [121]. In fact, the choice calculus itself has more dialects [69, 136].

Some languages mix options and alternatives [24, 27, 80, 139], which we will discuss later.

The variability languages we covered so far are generic in the sense that they do not make

assumptions on the semantics nor syntax of the language being configured (i.e., the object language)

except that it’s syntax should be tree-like. Other languages, such as languages used for variability-

aware syntax- [78] and type-checking [79, 94], or control flow analyses [15, 102, 107, 140–142] are

aware of the object language but at the cost of being tied to a specific set of object languages such

as transition systems [49, 133] or programming languages [47, 76, 121, 140]. While specializing

for specific object languages enables for optimizations and more effective reasoning in that object

language, our goal is to study how to express variability by itself. We hence must study only

generic languages. In some sense, the generic languages presented here are also representative

for non-generic languages because non-generic languages extend an object language’s grammar

with additional rules for variability, which are the same constructs used in generic languages (e.g.,

flavors of choices).

In the next section, we develop a formal framework to describe and compare static variability

languages. In Section 5, we then compare the languages presented here, but our framework will be

general enough to also cover other languages and dialects as well.

4 A Formal Framework for Language Comparisons
With a zoo of informal and formal variability languages employed in various research efforts, we

now turn to developing a formal framework to compare and study languages.

4.1 Semantic Domain of Variability Languages
To compare the semantic expressiveness of formal variability languages, such as those illustrated in

Section 3, we must compare their ability to describe elements of their semantic domain. Research

on variational systems and software product lines is typically based on the shared intuition that a

variational expression (i.e., a product line) specifies a set of variants in a target language, such as

programming languages or sandwiches. Each variant is commonly identified by a configuration (cf.

Section 2 and 3.1), which means that a variant can be automatically generated or otherwise retrieved
from the product line by means of evaluating the product line against a configuration. Besides

5
Functional programmers might recognize ⊕ as a (left) fold on lists.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 307. Publication date: October 2024.

307:12 P. M. Bittner, A. Schultheiß, B. Moosherr, J. M. Young, L. Teixeira, E. Walkingshaw, P. Ataei, T. Thüm

work specifically focused on the choice calculus (cf. Section 3.3), examples for this intuition are

variability-aware analysis [25, 46, 47, 65, 141, 144], other formal frameworks [33, 49] or surveys [134]

for product line analyses, variation control systems [95, 96, 120, 126], managed clone-and-own

development [81, 99, 112, 116, 118], as well as a popular software product lines text book [7]. In

Section 3.1, we observed that variants are modeled by variability languages as trees of atomic

values, and provided definitions for atoms and variants in Definition 3.1, respectively.

However, sets of variants are exponential in the number of configuration options. Computing all

configurations and their respective variants does not scale in practice and requires to generate all

possible configurations combinatorically. We can avoid explicitly computing sets of configurations

and the complexity introduced by the respective combinatorics though. The key idea is to encode a

set of variants as a function 𝑓 : 𝐶 → V(𝐴) that selects a set of variants 𝐼𝑚(𝑓) ⊂ V(𝐴) from the set

of all variants V(𝐴) over atoms 𝐴 in terms of an index set𝐶 (e.g., configurations). This formulation

separates the concerns of (1) describing how to generate a variant, and (2) quantifying all variants.

In fact, we can compare semantics solely in terms of (1) variant generation functions 𝑓 , without (2)

ever having to compute the actual set of variants which is nevertheless possible as we will cover

later. In our experience, this formulation allows for more elegant and concise argument and proof,

and explains our functional style for semantics in Section 3.

Definition 4.1 (Indexed Set). An indexed set is a function 𝐴 : 𝐼 → 𝑆 , which associates each index

𝑖 ∈ 𝐼 with an element 𝐴(𝑖) ∈ 𝑆 .

The key idea in Definition 4.1 is that we can model a subset of a set 𝑆 by pointing at those

elements we want to have in the subset. This pointing is done in terms of a function that maps

indices or keys 𝑖 ∈ 𝐼 to the elements in 𝑆 . We are not the first to have this idea: identifying sets

of objects by pointing is also known in the context of elements, points, or subobjects in category

theory [17] or object classifiers in homotopy type theory [135].

Example 4.2. A function 𝑓 : B → N is an indexed set of at most two natural numbers. When

𝑓 (false) = 1 and 𝑓 (true) = 2 then 𝑓 denotes {1, 2}. As another example, the function even : N → N
with even(𝑛) = 2 · 𝑛 is an indexed set that denotes the subset of all even natural numbers.

When an indexed set is not injective, then it denotes a multiset because there exists at least one

element that is pointed at twice. This aligns with the semantics of variability languages because

the same variant might be associated with different configurations. For example, in the expression

D⟨𝑒, 𝑒⟩ ∈ 2CC a configuration which picks the left alternative for 𝐷 remains equivalent if it instead

would pick the right alternative because JD⟨𝑒, 𝑒⟩K (𝑐) = J𝑒K (𝑐) for all configurations 𝑐 (cf. Section 3.5).
When an indexed set is not surjective it denotes a proper subset of 𝑆 because there are elements in

𝑆 that are not being pointed at, such as in even.
Indexed sets can be compared based on the usual operator for set inclusion:

Definition 4.3 (Indexed Set Inclusion , Subset ⊑, and Equivalence �). An element 𝑠 ∈ 𝑆 is an

element of an indexed set 𝐴 : 𝐼 → 𝑆 if there exists an index 𝑖 ∈ 𝐼 that points to 𝑠 . Formally, we

write 𝑠 𝐴 iff ∃𝑖 ∈ 𝐼 : 𝐴(𝑖) =𝑆 𝑠 for an equivalence relation =𝑆 over 𝑆 . An indexed set 𝐴 : 𝐼 → 𝑆 is a

subset of an indexed set 𝐵 : 𝐼 → 𝑆 if 𝐵 points to all elements 𝐴 points to. Formally, we write 𝐴 ⊑ 𝐵

iff ∀𝑖 ∈ 𝐼 : 𝐴(𝑖) 𝐵. We consider two indexed sets equivalent and write 𝐴 � 𝐵 iff 𝐴 ⊑ 𝐵 and 𝐵 ⊑ 𝐴.

Example 4.4. Let 𝐴 : B → N and 𝐵 : {♦,♥, ♠, ♣} → N be two indexed sets with 𝐴(false) =
𝐴(true) = 3 and 𝐵(♦) = 1, 𝐵(♥) = 2, 𝐵(♠) = 3, and 𝐵(♣) = 4. Then, 𝐴 ⊑ 𝐵 because 𝐴(false) 𝐵 and

𝐴(true) 𝐵 because 𝐴(false) = 𝐵(♠) and 𝐴(true) = 𝐵(♠).

Corollary 4.5. ⊑ is a partial order and � is an equivalence relation.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 307. Publication date: October 2024.

On the Expressive Power of Languages for Static Variability 307:13

In this paper, we cover variability languages that describe finite sets of variants because that is
what formal variability languages typically describe (cf. Section 3). Infinite variant sets occur in

practice when configuration options F can have unbounded domains such as numbers or strings.

However, such variability is typically implemented within a programming language and cannot

be expressed with annotations, which would require infinitely many trees below annotations, or

compositions, which would require an infinite amount of components or modules. While supported

by our theory in principle, infinite variant spaces are out of scope here.

Definition 4.6 (Finite Indexed Set). An indexed set 𝐴 : 𝐼 → 𝑆 is finite iff the set 𝐼 is finite.

When the set of indices 𝐼 is finite, the indexed set 𝐴 can only pick a finite amount of elements

from 𝑆 and hence the indexed set 𝐴 is finite. For upcoming definitions and proofs we use N𝑛 :=

{1, . . . , 𝑛}, 𝑛 ∈ N as a canonical finite set that always contains exactly 𝑛 elements.
6
To prove that a

set of indices 𝐼 is finite, we enumerate it with a surjective function enum : N𝑛 → 𝐼 .

Example 4.7. The sets 𝐴 and 𝐵 from Example 4.4 are finite because their index sets are finite. The

indexed set even from Example 4.2 is infinite because it ranges over all natural numbers.

Moreover, expressions in variability languages should denote non-empty subsets of variants. The

reason is that denoting an empty set of variants would require the existence of at least one empty
expression, which does not exist in common formal variability languages, has unclear meaning and

soundness issues (cf. Section 3.6). An indexed set 𝐴 : 𝐼 → 𝑆 is non-empty if it points to at least one

element 𝑠 ∈ 𝑆 , which in turn means that there must be at least one index 𝑖 ∈ 𝐼 .

Definition 4.8 (Non-empty Indexed Set). An indexed set 𝐴 : 𝐼 → 𝑆 is non-empty iff 𝐼 ≠ ∅.
Finally, we define the semantic domain of variability languages in terms of finite and non-empty

indexed sets of variants which we call variant generators.

Definition 4.9 (Variant Generator). A variant generator is a finite and non-empty indexed set

𝐼 → V(𝐴) of variants over atoms 𝐴 with an otherwise arbitrary index set 𝐼 .

Definition 4.10 (Semantic Domain). The semantic domain S(𝐴) of variability languages is the set

of all variant generators over atoms 𝐴.

Having defined the non-variational elements of our framework — atoms and variants — and the

semantic domain in terms of variant generators, we can now turn to implementing variability.

4.2 Variability Languages
An expression in a variability language associates variants with configurations (cf. Section 2).

Configurations encode the necessary information to configure a variational expression to a variant.

Different variability languages may require configurations of different forms though.

Definition 4.11 (Configuration Language). A configuration language is a set 𝐶 .

We have seen examples for different configuration languages in Section 3. Our framework

does not impose any assumptions on how a configuration is structured and thus, we can depict a

configuration language as a mere set. We can now define an abstract notion of variability languages.

Definition 4.12 (Variability Language). A variability language 𝐿 is a set of expressions 𝐿(𝐴) that
is parameterized in an atom set 𝐴.

We define the denotational semantics J𝑒K of an expression 𝑒 ∈ 𝐿(𝐴) of a variability language as

an indexed set where indices are configurations:

6N𝑛 is also known as Fin n in proof assistants.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 307. Publication date: October 2024.

307:14 P. M. Bittner, A. Schultheiß, B. Moosherr, J. M. Young, L. Teixeira, E. Walkingshaw, P. Ataei, T. Thüm

Definition 4.13 (Denotational Semantics of Variability Languages). The denotational semantics of

a variability language 𝐿 with a configuration language 𝐶 is a function J.K : 𝐿(𝐴) → 𝐶 → V(𝐴),
which configures an expression 𝑒 ∈ 𝐿(𝐴) with a configuration 𝑐 ∈ 𝐶 to a variant J𝑒K (𝑐) ∈ V(𝐴),
for any atom set 𝐴.

Example 4.14. All languages illustrated in Section 3 have denotational semantics according to

this definition. For instance, the semantics of binary choice calculus is a function J.K : 2CC(𝐴) →
𝐶 → V(𝐴), where configurations𝐶 : F → B map dimensions to Boolean values. The semantics J𝑒K
of an expression 𝑒 then is a function𝐶 → V(𝐴) and hence an indexed set. For example, JD⟨1, 2⟩K is
an indexed set of two variants 1 and 2 because JD⟨1, 2⟩K (𝜆𝑥. true) = 1 and JD⟨1, 2⟩K (𝜆𝑥. false) = 2.

While we defined the semantic domain of variability languages in terms of variant generators (i.e.,

non-empty, finite indexed sets of variants) earlier, we do not constrain the denotational semantics

of a variability language to variant generators. This allows to represent unsound languages within

the framework as well to analyze whether a language is indeed sound or not, and to nevertheless

relate it to other languages. We now introduce completeness and soundness to check if a variability

language denotes variant generators.

4.3 Completeness, Soundness, and Expressiveness
A key property of a language’s denotational semantics is completeness. A language is complete if it is

capable of expressing each element in its semantic domain. In this paper, we consider the semantic

domain of variability languages to be variant generators (Definition 4.10). We thus consider a

variability language to be complete iff it can express any variant generator 𝑉 : N𝑛 → V(𝐴) for any
atom set 𝐴 , where we use N𝑛 as a canonical non-empty and finite indexed set, independent from

any particular configuration knowledge. In a complete language, for example, we can describe any

set of products demanded by customers, or in terms of our running example, a recipe book for any

set of sandwiches.

Definition 4.15 (Completeness). A variability language is complete iff it can express any variant

generator. Formally, we write Complete(𝐿) iff ∀𝐴,𝑛 ∈ N, (𝑉 : N𝑛 → V(𝐴)) ∃𝑒 ∈ 𝐿(𝐴) : J𝑒K � 𝑉 .

The converse property is soundness. Soundness ensures that each expression indeed denotes a

variant generator, and hence has meaning in the semantic domain. If a variability language is not

sound, some of its expressions describe things other than variant generators, and hence systems

that are ill-formed or meaningless to the variational domain for a given atom set. In terms of our

running example, a language for cookbooks for sandwiches would be unsound if it for example

allows to describe also things that are not cookbooks at all, or that are cookbooks that also include

recipes for making spaghetti or a space rocket.

Definition 4.16 (Soundness). A variability language is sound iff it denotes only variant generators.

Formally, we write Sound(𝐿) iff ∀𝐴, 𝑒 ∈ 𝐿(𝐴) ∃𝑛 ∈ N, (𝑉 : N𝑛 → V(𝐴)) : J𝑒K � 𝑉 .

The major goal of this paper is to determine whether and how research based on one variability

language can be transferred to other variability languages. Therefore, we need a way to relate

languages based on their semantics, commonly referred to as expressiveness [41, 43, 56]: Can

a language describe the semantics of another language? With completeness, we already have a

measure for expressiveness in absolute terms (i.e., whether a language can describe all variant
generators). For comparing languages, we are interested in a relative measure that tells us whether

a language is less or more expressive than another language.

Definition 4.17 (Expressiveness Relations ⪰, ≡, ≻). Let 𝐿,𝑀 be two variability languages with

semantics J.K𝐿, J.K𝑀 , respectively. 𝐿 is at least as expressive as𝑀 if any indexed set J𝑚K𝑀 that can

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 307. Publication date: October 2024.

On the Expressive Power of Languages for Static Variability 307:15

be described by an expression𝑚 ∈ 𝑀 , can also be described by an expression 𝑙 ∈ 𝐿. Formally, we

write 𝐿 ⪰ 𝑀 iff ∀𝐴,𝑚 ∈ 𝑀 (𝐴) ∃𝑙 ∈ 𝐿(𝐴) : J𝑙K𝐿 � J𝑚K𝑀 . Two variability languages are equally

expressive 𝐿 ≡ 𝑀 iff they are at least as expressive as each other, 𝐿 ⪰ 𝑀 and𝑀 ⪰ 𝐿. A variability

language is more expressive than another variability language 𝐿 ≻ 𝑀 iff 𝐿 is at least as expressive

as𝑀 but not vice versa, 𝐿 ⪰ 𝑀 and𝑀 ̸⪰ 𝐿.

The intuition behind this notion of expressiveness is that a language 𝐿 can express "everything"

another language 𝑀 can express if 𝐿 ⪰ 𝑀 . Following the naming convention for comparing

expressions within choice calculus [53], we refer to two expressions 𝑙 ∈ 𝐿,𝑚 ∈ 𝑀 that describe the

same variants but with potentially different configurations, J𝑙K𝐿 � J𝑚K𝑀 , as variant-equivalent.

Corollary 4.18. ⪰ is a partial order and ≡ is an equivalence relation.

4.4 How to Prove Completeness, Soundness, and Expressiveness?
Having introduced the core definitions of our framework, including completeness, soundness, and

expressiveness, we must demonstrate how to prove these properties for a given language. We now

explain how to construct direct proofs, and enrich our framework with theorems that leverage the

relationship between completeness, soundness, and expressiveness to conclude proofs for free.

Completeness by Differencing. We can prove completeness by implementing an encoding

algorithm and showing its correctness. Given a variant generator 𝑉 : N𝑛 → V(𝐴), this algorithm
must construct an expression 𝑒 that encodes exactly the variants in that variant generator (i.e.,

J𝑒K � 𝑉). Encoding a set of trees 𝑉 into a single variational expression 𝑒 that describes their

similarities and differences is also known as tree differencing [54, 60] and part of migrating cloned

variants or forks into a software product line [57–59, 81, 92, 115, 146].

Soundness by Enumeration. To prove soundness of a language, we must show that every

expression denotes a variant generator. Therefore, we can compute the variant generator 𝑉 :

N𝑛 → V(𝐴) of a given expression 𝑒 and prove correctness of this computation (i.e., J𝑒K � 𝑉). The

semantics J𝑒K of an expression 𝑒 is an indexed set𝐶 → V(𝐴) from configurations to variants.We can

convert J𝑒K to𝑉 by enumerating all configurations in terms of a surjective function enum : N𝑛 → 𝐶

as discussed for Definition 4.6, such that 𝑉 = J𝑒K ◦ enum. Proving enum surjective, proves that

𝐶 is finite and non-empty. For some languages there might be infinitely many configurations

though, as for example with choice calculus configurations F → N (cf. Table 1). Yet, configurations

still describe only a finite amount of variants because each expression is finite. For example, all

configurations 𝑐𝑖 (𝑥) = 𝑖 with 1 < 𝑖 ∈ N produce the same variant = JD⟨ , ⟩K (𝑐𝑖). Hence, for
an expression 𝑒 , we can consider two configurations 𝑐1, 𝑐2 equivalent iff they produce the same

variant J𝑒K (𝑐1) = J𝑒K (𝑐2), as also observed by Gruler [64, p. 66]. We then must prove surjectivity of

enum with respect to configuration equivalence.

Expressiveness by Compilation. To prove 𝐿 ⪰ 𝑀 , we can compile𝑀 to 𝐿 to show that every

expression in 𝑀 has a corresponding expression in 𝐿; and hence 𝐿 can express “everything” 𝑀

can express. Compilation entails translating expressions and proving correctness: A translated

expression must denote the same variant generator (i.e., be variant-equivalent). Given a translation

t : 𝑀 → 𝐿 this means proving ∀𝑚 ∈ 𝑀 : J𝑚K𝑀 � Jt(𝑚)K𝐿 which reduces to J𝑚K𝑀 ⊑ Jt(𝑚)K𝐿
and Jt(𝑚)K𝐿 ⊑ J𝑚K𝑀 . These further reduce to ∀𝑐𝑀 ∈ 𝐶𝑀 ∃𝑐𝐿 ∈ 𝐶𝐿 : J𝑚K𝑀 (𝑐𝑀) = Jt(𝑚)K𝐿 (𝑐𝐿),
and ∀𝑐𝐿 ∈ 𝐶𝐿 ∃𝑐𝑀 ∈ 𝐶𝑀 : Jt(𝑚)K𝐿(𝑐𝐿) = J𝑚K𝑀 (𝑐𝑀). Hence, we must also translate the respective

configuration languages𝐶𝐿,𝐶𝑀 . When a translation t alters annotations in𝑚 (e.g., splitting a choice

as in Expression 2, thereby introducing new dimensions), translating configurations correctly also

depends on the input expression.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 307. Publication date: October 2024.

307:16 P. M. Bittner, A. Schultheiß, B. Moosherr, J. M. Young, L. Teixeira, E. Walkingshaw, P. Ataei, T. Thüm

Complete(𝑀) 𝐿 ⪰ 𝑀

Complete(𝐿)
Th. 4.22

Sound(𝐿) 𝐿 ⪰ 𝑀

Sound(𝑀)
Th. 4.23

Complete(𝐿) Sound(𝑀)
𝐿 ⪰ 𝑀

Th. 4.24

Fig. 2. Theorems relating completeness, soundness, and expressiveness.

Definition 4.19 (Compiler). Let𝑀 , 𝐿 be variability languages. Let𝐶𝑀 and𝐶𝐿 be the corresponding

configuration languages. A compiler is a 3-tuple (t, conf, fnoc) ∈ 𝑀 𝐿, where 𝑀 𝐿 = (𝑀 →
𝐿) × (𝑀 → 𝐶𝑀 → 𝐶𝐿) × (𝑀 → 𝐶𝐿 → 𝐶𝑀) is the set of all compilers from𝑀 to 𝐿, t is a translation

for expressions and conf and fnoc are translations of configurations.

Definition 4.20 (Compiler Correctness). Let 𝑀 , 𝐿 be variability languages with configuration

languages𝐶𝑀 ,𝐶𝐿 and semantics J.K𝑀 , J.K𝐿 . A compiler (t, conf, fnoc) ∈ 𝑀 𝐿 is correct if∀𝑚 ∈ 𝑀 ,

𝑐𝑀 ∈ 𝐶𝑀 , 𝑐𝐿 ∈ 𝐶𝐿 : J𝑚K𝑀 (𝑐𝑀) = Jt(𝑚)K𝐿 (conf (𝑚,𝑐𝑀)) and Jt(𝑚)K𝐿 (𝑐𝐿) = J𝑚K𝑀 (fnoc(𝑚,𝑐𝐿)).

Theorem 4.21 (Expressiveness by Compilation). Let 𝐿,𝑀 be two variability languages. 𝐿 ⪰ 𝑀

if there exists a correct compiler𝑀 𝐿.

Proof. Let𝐴 be an atom set. To prove 𝐿 ⪰ 𝑀 , we must show∀𝑚 ∈ 𝑀 (𝐴) ∃𝑙 ∈ 𝐿(𝐴) : J𝑙K𝐿�J𝑚K𝑀 ,

which reduces to ∀𝑐𝐿 ∈ 𝐶𝐿 : ∃𝑐𝑀 ∈ 𝐶𝑀 : J𝑙K𝐿 (𝑐𝐿) = J𝑚K𝑀 (𝑐𝑀), and ∀𝑐𝑀 ∈ 𝐶𝑀 : ∃𝑐𝐿 ∈ 𝐶𝐿 :

J𝑚K𝑀 (𝑐𝑀) = J𝑙K𝐿(𝑐𝐿). Both propositions hold by definition of compiler correctness, where 𝑙 is given

by t(𝑚) and the configurations exist by conf (𝑚,𝑐𝑀) and fnoc(𝑚,𝑐𝐿). □

Proofs for Free. Figure 2 depicts how completeness, soundness, and expressiveness interact,

giving rise to theorems to conclude proofs for free. As usual, completeness and soundness are

converse to each other causing them to have dual relationships to expressiveness. When a language

𝐿 is at least as expressive as a complete language𝑀 , then 𝐿 is also complete because 𝐿 is able to

describe any set of variants which the complete language𝑀 can encode (Theorem 4.22).

Proof. Let 𝐴 be an atom set. Let 𝑉 be a variant generator. We have to show that 𝑉 can be

described by an expression 𝑙 ∈ 𝐿(𝐴) such that J𝑙K𝐿 � 𝑉 . By completeness of 𝑀 , there exists an

expression 𝑚 ∈ 𝑀 (𝐴) with J𝑚K𝑀 � 𝑉 . By expressiveness 𝐿 ⪰ 𝑀 , there exists an expression

𝑙 ∈ 𝐿(𝐴) with J𝑙K𝐿 � J𝑚K𝑀 . By transitivity of �, we conclude J𝑙K𝐿 � 𝑉 . □

Conversely, when a sound language 𝐿 is least as expressive as another language 𝑀 , then also

that other language𝑀 is sound because it describes at most the sets of variants described by the

sound language 𝐿, which in turn are variant generators (Theorem 4.23).

Proof. Let 𝐴 be an atom set. Let𝑚 ∈ 𝑀 (𝐴) be an expression in𝑀 . We have to show that there

exists a variant generator 𝑉 of variants such that J𝑚K𝑀 � 𝑉 . By expressiveness 𝐿 ⪰ 𝑀 , there is

an expression 𝑙 ∈ 𝐿(𝐴) with J𝑙K𝐿 � J𝑚K𝑀 . By soundness of 𝐿, the expression 𝑙 denotes a variant

generator𝑉 with J𝑙K𝐿 � 𝑉 . By transitivity and symmetry of �, we can conclude that J𝑚K𝑀 � 𝑉 . □

A key observation is that a complete language is at least as expressive as any sound language, de-

noted by Theorem 4.24. Intuitively, a language 𝐿 that can encode any variant generator, can express

any expression of another language𝑀 if these expressions indeed describe variant generators.

Proof. Let 𝐴 be an atom set. To prove that 𝐿 ⪰ 𝑀 , we have to show that for all expressions

𝑚 ∈ 𝑀 (𝐴), there exists an expression 𝑙 ∈ 𝐿(𝐴) with J𝑙K𝐿 � J𝑚K𝑀 . Let𝑚 ∈ 𝑀 (𝐴). Since𝑀 is sound,

there exists a variant generator𝑉 with J𝑚K𝑀 � 𝑉 . By completeness of 𝐿, there exists an expression

𝑙 ∈ 𝐿(𝐴) with J𝑙K𝐿 � 𝑉 . By transitivity and symmetry of �, we conclude J𝑙K𝐿 � J𝑚K𝑀 . □

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 307. Publication date: October 2024.

On the Expressive Power of Languages for Static Variability 307:17

This interplay between completeness, soundness, and expressiveness, is in fact not specific to

variability languages but may emerge in any system with these three properties. There are even

more interesting theorems, for example to conclude incompleteness or unsoundness, or to conclude

that no sound language can be more expressive than a complete language. We omit these theorems

for brevity here but formalize and prove them in our Agda implementation [1].

4.5 Formalization, Tool Support, and Conclusion
We formalize our framework and all its proofs as an open source Agda library [1]. Thereby our frame-

work addresses both theoretical and practical concerns. For language designers, our framework

enables basic sanity checks, which despite being basic, have never been studied nor implemented

for variability languages before. For practitioners, our framework provides proven-to-be correct

compilers and differencing algorithms, originating from constructive proofs for the above prop-

erties, implemented in Agda. For researchers, our framework provides proof strategies to derive

insightful theorems on the expressiveness, completeness, and soundness of variability languages.

5 Charting the Language Space
We now begin the journey to chart the landscape of formal variability languages to bridge the

gaps between existing research efforts. We contribute (1) a semantic comparison of common

variability languages, which also serves as (2) a case study to show the feasibility and usability of

our framework, and (3) a web of compilers and correctness proofs, formalized in Agda [1].

Figure 3 gives an overview of the landscape we discovered and organized in a systematic way.

In this graph, a node represents a variability language and an edge (𝐿,𝑀) denotes the existence
of a correct compiler 𝐿 𝑀 (cf. Definition 4.19 and 4.20). An edge is crossed out 𝐿 𝑀 if there

cannot exist a correct compiler. Loops denote intra-language compilers 𝐿 𝐿. An edge has a filled

tip 𝐿 𝑀 if there exists a compiler 𝐿 𝑀 and 𝐿 ⊆ 𝑀 by definition, which renders constructing

a compiler trivial.
7
In the following, we omit explicitly stating corollaries corresponding to such

edges 𝐿 𝑀 . We formalize all compilers, theorems, corollaries, and their proofs in our Agda library

Vatras [1]. The library’s documentation contains a detailed mapping of the theorems and proofs in

this paper to their respective Agda representation.

Finding compilers and proving their correctness is a means to prove completeness, soundness,

or expressiveness (cf. Section 4.4). For each edge 𝐿 𝑀 in Figure 3, we conclude 𝑀 ⪰ 𝐿 by

Theorem 4.21. Transitively, we can conclude completeness by Theorem 4.22, if a language we

compiled is complete. This means that completeness “flows” along edges in Figure 3 and, thus,

proving a language complete, proves all reachable languages complete. Similarly, any language

from which we can reach a sound language is also sound by Theorem 4.23.

To relate each language to each other language, we try to construct circles of compilers instead

of doing pairwise comparisons. Finding a circle proves all contained languages equally expressive:

Any language 𝐿𝑖 within a circle 𝐿1 𝐿2 . . . 𝐿𝑛 𝐿1 can be translated to any other language

𝐿 𝑗 because compilation is transitive. Hence, circles enable pairwise comparisons with only 𝑛 instead

of 𝑛(𝑛 − 1) compilers. Key here is to find circles that are the easiest to implement and prove correct.

7
When described in type theory, as we do in our Agda library, a language is a type and an expression is an instance of

that type, and hence every expression belongs to exactly one language. Hence, relating languages always requires explicit

translation functions, even if conceptually, the terms of one language are a subset of the other language. In our library,

we provide such conversions and correctness proofs, but we leave them out in this chapter for clarity and brevity. When

necessary, we point out such a conversion with the identity function id (e.g., in Figure 3).

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 307. Publication date: October 2024.

307:18 P. M. Bittner, A. Schultheiß, B. Moosherr, J. M. Young, L. Teixeira, E. Walkingshaw, P. Ataei, T. Thüm

Clone-and-

Own (CaO)

N-ary Choice

Calculus (𝑛-CC)

Core Choice

Calculus (CCC)

Binary Choice

Calculus (2CC)

Algebraic Decision

Trees (ADT)

Option

Calculus (OC)

Feature Structure

Trees (FST)

clamp ∀𝑛 ∈ N

id ◦ shrink2

𝑛 = 2

grow
shrink

2

dead

branch

elimination

complete incomplete

all languages are sound

Fig. 3. Compilation map of common variability languages.

5.1 Choice-Based Languages
We start constructing a circle of compilers with the choice-based languages core choice calculus

(CCC), binary choice calculus (2CC), and algebraic decision trees (ADT). To relate the choice calculi,

we introduce the language family of 𝑛-ary choice calculus (𝑛-CC): a language similar to CCC but
every choice has exactly 𝑛 ≥ 2 alternatives. The semantics for 𝑛-CC is the same function as for core

choice calculus shown in Table 1. In Figure 3, 𝑛-CC is represented by the cloud to symbolize that

𝑛-CC is an infinite family of languages parameterized in a natural number. Edges going into the

cloud translate to a single dialect with a specific 𝑛, and edges going out of the cloud translate from

all dialects to the respective language.

Theorem 5.1. ∀𝑛 ∈ N, 𝑛 ≥ 2 : 𝑛-CC ⪰ CCC.

Proof Sketch by Compilation. Let 𝑒 ∈ CCC, 𝑛 ∈ N, 𝑛 ≥ 2. We must show that there exists

𝑒′ ∈ 𝑛-CC with J𝑒KCCC � J𝑒′K𝑛-CC. We construct and compose three reusable compilers.

(1) clamp ∈
(
(𝑒 ∈ CCC) ⌈𝑒⌉-CC

)
. Because choices in 𝑒 ∈ CCC may have arbitrary and different

numbers of alternatives, we first have to unify choices to a fixed arity𝑚 = ⌈𝑒⌉, where ⌈𝑒⌉ computes

the maximum number of alternatives of choices in 𝑒 . We turn each choice D⟨𝑥1, . . . , 𝑥𝑘⟩, 𝑘 < ⌈𝑒⌉
with fewer alternatives into a choice with exactly ⌈𝑒⌉ alternatives by replicating the last alternative

𝑥𝑘 , ⌈𝑒⌉ − 𝑜 times, in terms of a function fill, giving us 𝑒′′ = fill(𝑒, ⌈𝑒⌉) ∈ ⌈𝑒⌉-CC. To prove the

translation correct, we must show J𝑒K � J𝑒′′K (cf. Definition 4.19). Fortunately, configurations

remain constant and do not have to be translated here. The idea of the proof is to check whether a

given configuration 𝑐 : F → N, for a given choice D⟨𝑥1, . . . , 𝑥𝑘⟩ in 𝑒 ∈ CCC, chooses an alternative

in bounds 𝑐 (𝐷) ≤ 𝑘 or above 𝑘 < 𝑐 (𝐷) ≤ ⌈𝑒⌉. For 𝑐 (𝐷) ≤ 𝑘 , both expressions yield the same

alternatives by definition. For 𝑘 < 𝑐 (𝐷) ≤ ⌈𝑒⌉, 𝑐 (𝐷) always picks 𝑥𝑘 in both expressions because

JD⟨𝑥1, . . . , 𝑥𝑘⟩K (𝑐) = J𝑥min(𝑐 (𝐷),𝑘)K (𝑐) clamps the value of 𝑐 (𝐷) to 𝑘 by definition, and within 𝑒′ the
choice contains only duplicates of 𝑥𝑘 at the respective spots. The actual formal proof of correctness

in our Agda library is more complex as it involves a custom type system for CCC expressions to
prove them having at most ⌈𝑒⌉ alternatives, proofs that configurations for ⌈𝑒⌉-CC remain in bounds,

and various lemmas for fill. This leaves us with a compiler clamp ∈
(
(𝑒 ∈ CCC) ⌈𝑒⌉-CC

)
, where

the output language is selected based on the input expression 𝑒 . To avoid this dependency, we show

that we may freely change the arity 𝑛 of any 𝑛-CC expression.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 307. Publication date: October 2024.

On the Expressive Power of Languages for Static Variability 307:19

(2) shrink2 ∈ 𝑚-CC 2-CC. To remove the dependency of the output language on the input

expression, we show that we can reduce any arity𝑚 to any smaller value 𝑘 < 𝑚. For brevity, and

to prepare for translating CCC to 2CC, we simply specialize 𝑘 = 2. The idea of the translation is to

nest surplus alternatives in new choices, similar how a long if-elif*-else chain can be converted to

a nested if-else statement in imperative programming, or how lists may be represented as recursive

pairs ℎ :: 𝑡 of head element ℎ and tail list 𝑡 . This nesting requires to introduce new choices and

hence new dimensions, which we do by associating each dimension in the input expression with an

additional index 𝑖 ∈ N. For instance, we can translate D⟨ , , ⟩ to D1⟨ ,D2 ⟨ , ⟩⟩. To prove
this translation correct, we have to translate configurations F → N𝑛 to configurations F → B and

back, which requires mapping selections of dimensions to boolean decisions on indexed dimensions,

and vice versa. For instance, in the above example, a configuration 𝑐 : F → N𝑛 with 𝑐 (𝐷) = 2 must

translate to a configuration 𝑐′ with 𝑐′ (𝐷1) = false and 𝑐′ (𝐷2) = true.
(3) grow ∈ 𝑘-CC 𝑚-CC,∀𝑚 > 𝑘 . By a similar argument as for clamp, we can increase the arity

of every choice in an 𝑛-CC term by duplicating the last alternative𝑚 − 𝑘 times.

Conclusion. By composing the above compilers and their correctness proofs, we obtain a compiler

CCC 𝑛-CC for our freely chosen 𝑛 ∈ N, 𝑛 ≥ 2 (remember, that � is transitive by Corollary 4.5). □

Example 5.2. As an example, we translate a variational sandwich recipe 𝑒1 = �P⟨ , ⟩,
S⟨ , , ⟩� ∈ CCC to ⌈𝑒1⌉-CC and then 2CC. We find ⌈𝑒1⌉ = 3 because P⟨. . .⟩ has 2 alternatives
but S⟨. . .⟩ has 3. Via clamp we fill all choices to have 3 alternatives, we get 𝑒2 = fill(𝑒1, 3) =

�P⟨ , , ⟩, S⟨ , , ⟩� ∈ 3-CC. Via shrink2, we then nest choices recursively

to become binary, giving us 𝑒3 = �P0⟨ , P1⟨ , ⟩⟩, S0⟨ , S1⟨ , ⟩⟩� ∈ 2CC. The
inner choice P1⟨. . .⟩ with all the same alternatives could be simplified by choice idempotence (cf.,

Section 3.5), for example by constructing another intra-language compiler to eliminate redundancy.

Next up, are ADT, which were developed independently from the other languages and without

focus on variability analyses. We observe that in fact, ADT is a normal form of 2CC, where all artifacts
are leaves (i.e., they have no sub-expressions).

Theorem 5.3. ADT ⪰ 2CC.

Proof Sketch by Compilation. To translate 2CC to ADT, we must ensure that there are no

choices below artifacts. Choices must be factored upwards, which is possible by duplicating atoms

and known as choice distribution [64] or factoring [136] (cf. Section 3.5): 𝑎�D⟨𝑙, 𝑟 ⟩, 𝑒2, . . . , 𝑒𝑛� can

be factored to D⟨𝑎�𝑙, 𝑒2, . . . , 𝑒𝑛�, 𝑎�𝑟, 𝑒2, . . . , 𝑒𝑛�⟩. The translation recursively factors all choices

upwards, and then replaces the largest subtrees that solely consist of artifacts by leaf nodes that

reference the subtree as a variant 𝑒 . The correctness proof works by induction. □

Factoring introduces an exponential blow-up, because all neighboring sub-expressions are

duplicated until eventually all variants of 𝑒 are enumerated in leaves and no atoms are shared. In

fact, it is this blow-up that motivates artifact nodes within expressions in choice calculi to share

similar subtrees [136], and motivates software product-line analyses because analyzing or even

enumerating each variant individually is infeasible in practice because of this blow-up [33, 134].

Example 5.4. We continue our previous example 𝑒3 ∈ 2CC but simplify the inner idempo-

tent choice of P1 and start with 𝑒4 = �P0⟨ , ⟩, S0⟨ , S1⟨ , ⟩⟩� ∈ 2CC. Only

is an atom above choices. When factoring with the first choice for the patty P0,
we get a choice at the top which contains two expressions in which the patty is fixed: 𝑒5 =

P0⟨ � , S0⟨ , S1⟨ , ⟩⟩�, � , S0⟨ , S1⟨ , ⟩⟩�⟩ ∈ 2CC. This single factor-

ing duplicated all ingredients except and , which where in the factored choice. We now

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 307. Publication date: October 2024.

307:20 P. M. Bittner, A. Schultheiß, B. Moosherr, J. M. Young, L. Teixeira, E. Walkingshaw, P. Ataei, T. Thüm

have to factor with the next choice S0 and then again at S1 duplicating the ingredients each

time. At the end, all ingredients will be at the bottom of the expression forming variants such as

� , �. Since leaves in algebraic decision trees store only exactly one atom, each leaf

node has to reference an entire variant sub-tree as its atom:

𝑒6 = P0⟨S0⟨leaf , S1⟨leaf , leaf ⟩⟩, S0⟨leaf , S1⟨leaf , leaf ⟩⟩⟩ ∈ ADT.

We now have constructed a circle of choice-based languages CCC 𝑛-CC 2CC ADT and

back again, where the backwards direction is given by definition. We thus conclude that all these

languages are equally expressive.

Corollary 5.5. CCC ≡ 𝑛-CC ≡ 2CC ≡ ADT, ∀𝑛 ∈ N, 𝑛 ≥ 2.

5.2 Soundness and Completeness by Clone-and-Own
To prove completeness and soundness of the languages within our circle, we have to do so for

at least one language directly. As a vehicle to simplify these direct proofs, we use non-empty

lists of variants (𝑣1, . . . , 𝑣𝑛) ∈ 𝑒𝑛, 𝑛 ∈ N. In software development, treating variants individually

like this is common practice (e.g., using branching or forking) and known as clone-and-own

(CaO) [81, 88, 89, 91, 146]. CaO constitutes a most basic variability language, unable to encode any

decision process or similarities, where configurations are indices 𝑖 ∈ N and the semantics is a

lookup J(𝑣1, . . . , 𝑣𝑛)K (𝑖) = 𝑣min(𝑖,𝑛) . Removing these degrees of freedom make CaO an easy target

for direct proofs of completeness and soundness. By integrating CaO into our circle, we conclude

completeness and soundness for the other languages inside the circle for free (cf. Section 4.4).

Theorem 5.6. Complete(CaO).

Proof Sketch. Given a variant generator 𝑉 : N𝑛 → V(𝐴), 𝑛 ∈ N over an atom set 𝐴, we

construct 𝑙 = (𝑉 (1), . . . ,𝑉 (𝑛)) ∈ CaO. To prove J𝑙K � 𝑉 we translate configurations as follows:

conf : N → N𝑛 with conf (𝑖) ≔ min(𝑖, 𝑛) and fnoc : N𝑛 → N with fnoc(𝑖) ≔ 𝑖 . Then ∀𝑖 ∈ N :

J𝑙K (𝑖) = 𝑉 (conf (𝑖)) = 𝑉 (min(𝑖, 𝑛)) and ∀𝑖 ∈ N𝑛 : J𝑙K (fnoc(𝑖)) = J𝑙K (𝑖) = 𝑉 (𝑖) by definition. □

Theorem 5.7. Sound(CaO).

Proof Sketch. By definition, all lists 𝑒 ∈ CaO are non-empty and finite, hence denoting a variant

generator, hence being sound. A formal proof involves computing the variant generator explicitly

by showing that any list is bounded in its length, and that a list enumerates its infinitely many

configurations N w.r.t. configuration equivalence (cf. Section 4.4). □

Theorem 5.8. CaO ⪰ ADT.

Proof Sketch by Compilation. Let 𝑒 ∈ ADT. We create t(𝑒) ∈ CaO by collecting the leaf vari-

ants from left to right: t(leaf 𝑣) = [𝑣] and t(D⟨𝑙, 𝑟 ⟩) = t(𝑙) :: t(𝑟). Since tmay include dead variants

(e.g., in D⟨D⟨,,/⟩,,⟩, / is dead because reaching it would require to set 𝐷 to true and false
simultaneously), we construct an intra-language compiler for dead-branch elimination (step 1). We

then must bimap configurations N for CaO to F → B for ADT, which we do in two steps. First, we

bimap F → B to paths from the root to leaves and define alternative ADT semantics J.K𝑝 based on

paths (step 2). Second, we bimap paths to N by interpreting a path as a binary search (step 3). We

prove 1-3 by induction and conclude J𝑒KADT � Jt(𝑒)KCaO transitively. □

Example 5.9. Translating our previous example 𝑒6 we get the list 𝑒7 = t(𝑒6) = (, , ,

, ,), which contains all variants from left to right. Since 𝑒6 does not contain any dead

branches, the dead branch elimination has no effect here. Indexing 𝑒7 corresponds to walking a

path on 𝑒6. For example, J𝑒7K (2) = = J𝑒6K𝑝 ((P0, true) :: (S0, false) :: (S1, true) :: []).

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 307. Publication date: October 2024.

On the Expressive Power of Languages for Static Variability 307:21

Theorem 5.10. CCC ⪰ CaO.

Proof Sketch by Compilation. Let (𝑣1, . . . , 𝑣𝑛) ∈ CaO, 𝑛 ∈ N. We create D⟨𝑣1, . . . , 𝑣𝑛⟩ ∈ CCC.
Proving correctness is straightforward because indices in both expressions remain the same. □

Translating CaO to CCC in fact embodies an 𝑛-way tree differencing algorithm (cf. Section 4.4).

The output expression may display differences across variants as choices and similarities via shared

atoms. Proving the existence of a correct compiler requires only any correct differencer, not a good

one. Hence, we simply declare all trees to be different via a single big choice.

We now exploit the circle of expressiveness for choice-based languages to obtain completeness

and soundness for free for all respective languages via Theorem 4.22 and Theorem 4.23.

Corollary 5.11. CCC, 2CC, ADT, and 𝑛-CC are complete and sound, ∀𝑛 ∈ N, 𝑛 ≥ 2.

5.3 Option Calculus
Having covered choice-based languages, our interest shifts towards option-based variability and

option calculus (OC). The key question here is whether options and choices are equally expressive.

First, we show that choices can indeed model options. Typically, choice-based formalisms encode

options via neutral atoms [14, 94, 126, 144] (cf. Section 3.6). However, neutral atoms might not exist

and depend on context (i.e., the monoid of the enclosing expression if there is a monoid at all). For

example, in variational propositional logic [144], the neutral value is true for conjunctions∧ but false
for disjunctions ∨. As observed by Gruler [64, p. 45], neutral values in a choice can be eliminated by

factoring: J𝑃 ⊕𝑖 (𝑃 ∥ 𝑅)K � J𝑃 ∥(ntrl ⊕𝑖𝑅)K means that a choice between 𝑃 and 𝑃 ∥ 𝑅 is equivalent

to composing 𝑃 with an option over 𝑅, encoded as a choice ntrl ⊕𝑖𝑅 with a neutral value ntrl. As

an example, the OC expression �Salad , �, which denotes a sandwich with Cheese

and optionally Salad, can be expressed in 2CC as �Salad⟨ , 𝜀⟩, �, where 𝜀 denotes an
empty but pointless sandwich ingredient, which distributes to Salad⟨ � , �, � �⟩.
Hence, an option can be turned into choice without the need of neutral atoms.

Theorem 5.12. 2CC ⪰ OC.

Proof Sketch by Compilation. Let 𝑒 ∈ OC. By definition 𝑒 = 𝑎�𝑥1, . . . , 𝑥𝑛�. We translate the

children 𝑥𝑖 ∈ OC sequentially from left to right. When we encounter an artifact 𝑥𝑖 = 𝑏� . . . �, we
recursively translate 𝑥𝑖 and then proceed with 𝑥𝑖+1. When we encounter an option 𝑥𝑖 = O 𝑦 , we

fork the translation in two branches. The first branch includes the expression 𝑦 by replacing 𝑥𝑖 with

𝑦 and then continues from there, eventually yielding a translated expression 𝑒𝑦 ∈ 2CC. The second
branch discards the expression𝑦 and continues translation with 𝑥𝑖+1, eventually yielding a translated
expression 𝑒¬𝑦 ∈ 2CC. We then introduce a choice O⟨𝑒𝑦, 𝑒¬𝑦⟩ ∈ 2CC as result. Configurations remain

constant and correctness can be proven by induction. The formal proof requires an intermediate

language to keep track of translated sub-expressions 𝑥 𝑗 , 𝑗 < 𝑖 . □

Corollary 5.13. Sound(OC).

To investigate whether options may also express choices, we first have a look at completeness.

We already observed in Section 3.6 that we could not encode our sandwich example in OC because

we could not specify and to be alternative.

Theorem 5.14. ¬Complete(OC).

Proof by Contradiction. Assume Complete(OC). Let 𝑉 : N2 → V({ , }) be a variant
generator with 𝑉 (1) = , 𝑉 (2) = . By completeness, there exists 𝑒 ∈ OC with J𝑒K � 𝑉 .

Thus, there exist configurations 𝑐1, 𝑐2 with = J𝑒K (𝑐1) and = J𝑒K (𝑐2). By definition 𝑒 =

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 307. Publication date: October 2024.

307:22 P. M. Bittner, A. Schultheiß, B. Moosherr, J. M. Young, L. Teixeira, E. Walkingshaw, P. Ataei, T. Thüm

𝑎� . . . �, 𝑎 ∈ { , }. If 𝑎 = , 𝑐2 cannot exist because configuring 𝑒 will always yield � . . . �.
Analogously, if 𝑎 = , 𝑐1 cannot exist. Hence, our assumption J𝑒K � 𝑉 is violated. □

Given that 2CC is complete but OC is not, there cannot exist a compiler from 2CC to OC, and we can
cross-out the respective edge in Figure 3. Hence, 2CC, and by transitivity also all other choice-based

languages on the left in Figure 3, are more expressive than OC.

Theorem 5.15. 2CC ≻ OC.

Proof. By Theorem 5.12, we know 2CC ⪰ OC. It is left to show that the opposite OC ⪰ 2CC
does not hold (i.e., OC ̸⪰ 2CC). Assume OC ⪰ 2CC. We conclude Complete(OC) from Complete(2CC)
(Corollary 5.11) via Theorem 4.22, which violates ¬Complete(OC) (Theorem 5.14). □

5.4 Feature Structure Trees
Having covered annotative languages, we now turn to feature structure trees (FST) as compositional

variability language (cf. Section 3.7). We observe that FST is incomplete for at least two reasons.

Theorem 5.16. ¬Complete(FST).

Proof Sketch. Every expression 𝑎 ◀ 𝑓1, . . . , 𝑓𝑛 ▶∈ FST has an atom 𝑎 at the top. Hence, FST is
incomplete for the same reason OC is incomplete for (cf. Theorem 5.14). Furthermore, neighboring

nodes 𝑏1� . . . �, . . . , 𝑏𝑛� . . . � in a feature must not have duplicate atoms (𝑏𝑖 ≠ 𝑏 𝑗 ,∀𝑖 ≠ 𝑗) [11].

Hence, FST cannot represent a variant violating this restriction such as 𝑎�𝑏, 𝑏�. □

Despite both FST and OC being incomplete, they have different expressiveness.

Theorem 5.17. OC ̸⪰ FST.

Proof Sketch. Let𝐴 be an atom set. There cannot exist a compiler FST OC by counterexample

𝑒 = 𝑎 ◀ 𝑋 : 𝑏�𝑐�, 𝑌 : 𝑏�𝑑� ▶∈ FST; 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝐴; 𝑐 ≠ 𝑑 ;𝑋,𝑌 ∈ F. We find J𝑒K is a variant generator
of the following variants: (1) 𝑎 for 𝑋 = 𝑌 = false, (2) 𝑎�𝑏�𝑐�� for 𝑋 = true, 𝑌 = false, (3) 𝑎�𝑏�𝑑��
for𝑋 = false, 𝑌 = true, (4) 𝑎�𝑏�𝑐, 𝑑�� for𝑋 = 𝑌 = true. Assuming there exists a compiler FST OC,
we can translate 𝑒 into an option calculus expression 𝑒′ = 𝑎�𝑡1, . . . , 𝑡𝑛� describing exactly the above

set of variants. Variant (2) implies that there exists 𝑖 and 𝑐1 such that J𝑡𝑖K (𝑐1) = 𝑏�𝑐�. Variant (3)
implies that there exists 𝑗 and 𝑐2 such that J𝑡 𝑗 K (𝑐2) = 𝑏�𝑑�. If 𝑖 ≠ 𝑗 , then the artifact J𝑒′K (𝜆𝑥 . true)
contains at least two top level children 𝑡𝑖 and 𝑡 𝑗 . However, 𝑒 does not encode any such variant,

hence 𝑖 = 𝑗 . Let 𝑐∧ (𝑂) = 𝑐1 (𝑂) ∧ 𝑐2 (𝑂),∀𝑂 ∈ F. Then J𝑡𝑖K (𝑐∧) = 𝑏 because 𝑏 must be at the top of

𝑡𝑖 and the sub-terms 𝑐 and 𝑑 are excluded in one of the variants each, and hence are excluded by 𝑐∧.
Hence J𝑒′K (𝑐∧) = 𝑎�𝑏�, but 𝑒 and hence 𝑒′ do not encode this variant, so 𝑖 = 𝑗 is impossible. We

obtain a contradiction 𝑖 = 𝑗 and 𝑖 ≠ 𝑗 . □

Theorem 5.18. FST ̸⪰ OC.

Proof Sketch. Let𝐴 be an atom set. There cannot exist a compiler OC FST by counterexample

𝑒 = 𝑎�𝑏, 𝑏� ∈ OC, 𝑎, 𝑏 ∈ 𝐴. FST features must not have neighboring artifacts with the same atom

and hence cannot encode 𝑒 (cf. proof of Theorem 5.16). □

As we did for OC, we can conclude from incompleteness that FST is less expressive than any

complete language and hence no respective translation can exist.

Corollary 5.19. FST ̸⪰ CaO.

Theorem 5.20. CaO ⪰ FST.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 307. Publication date: October 2024.

On the Expressive Power of Languages for Static Variability 307:23

Proof Sketch by Compilation. Let 𝑒 = 𝑎 ◀ 𝑓1, . . . , 𝑓𝑛 ▶∈ FST with 𝑓𝑖 = 𝐹𝑖 : 𝑡𝑖 . A list of all

variants is now given by (J𝑒K (𝑐1), . . . , J𝑒K (𝑐2𝑛)) where 𝑐 𝑗 (𝐹𝑖) := true iff the 𝑖-th bit of 𝑗 , interpreted as

a binary number, is set, and 𝑐 𝑗 (𝐹𝑖) := false otherwise (i.e., we enumerate all possible configurations).

In case of duplicate features 𝐹𝑖 = 𝐹𝑖′ , 𝑐 𝑗 only considers the smallest index and ignores the bits

corresponding to higher indexes. CaO configurations N, and FST configurations F → B are mapped

to each other in terms of the index 𝑗 ∈ N of 𝑐 𝑗 : F → B. Correctness follows from the fact that the

semantics of FST never evaluate a configuration for non-existing features, so the CaO expression
cannot miss any variants. □

We can now conclude Sound(FST) by Theorem 4.22 and Theorem 5.6.

Corollary 5.21. Sound(FST).

5.5 Discussion and Conclusion
We have now charted a region on the map of variability languages. We found a class of languages

that are complete, sound, and equally expressive with respect to our semantic domain, namely

CCC, 2CC, 𝑛-CC, ADT, and CaO. In particular, we are the first to formally prove the choice calculi

to be equally expressive, which has been implicitly assumed in many works [14, 31, 37, 78, 79,

94, 126, 137, 143, 144]. This also means that languages that mix choices with other variational

constructs [27, 80, 139], such as options, are also complete and equally expressive (as long as these

languages have denotational semantics according to Definition 4.13). The same applies to languages

and mechanisms specialized to certain domains or use cases, such as for the Linux kernel.

Surprisingly, we also discovered that there are languages that are incomplete regarding variant

generators, namely OC and FST. Crucially, these languages hence cannot be used to statically specify
all variational systems imaginable. For instance, there are sandwich menus and sets of Linux kernels

which cannot be statically specified in these languages. We find that incompleteness stems from

three syntactic restrictions.

First, OC and FSTmust have a constant atom at the root of all variants. In fact, this restriction was

a deliberate design decision we made for option calculus. Dropping this restriction would make

option calculus and feature structure trees unsound, because it might produce questionable empty

variants, as discussed in Section 3.6, suggesting the existence of a trade-off between completeness

and soundness. We argue that soundness is more important because it ensures that a language is

meaningful and can be compared to other languages. In practice, a fixed root is probably reasonable

because variational systems typically have a common base implementation, root directory, or

similar anchor such as , and such an atom could be artificially introduced. After all, variants

are supposed to have at least some degree of shared atoms for variational treatment to make sense.

Second, OC and FST cannot encode mutual exclusion which causes incompleteness. Adding

mutual exclusion to OC and FST requires to encode constraints externally or to enrich the language.

External constraints are common practice in software product line engineering and covered by

problem space variability in terms of a satisfiability challenge for configurations (cf. Section 2). To

enable a language for mutual exclusion, it must be able to react to selection as well as deselection of a

feature. We could add choices or else branches [27], or instead replace mere names F as annotations

by a more sophisticated annotation language, for example propositional formulas [27, 69], but being

able to negate names is enough. For example, an option calculus dialect without forced atom root

and with negations in its annotation language could express a choice D⟨𝑙, 𝑟 ⟩ as D 𝑙 (¬D) 𝑟 . This
dialect however must be constrained to have either an atom or such a pair of options at the top

to be sound. Given that alternatives are common in practice, we thus recommend choices or to

document configuration constraints in the first place, which brings additional benefits [7, 23, 129].

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 307. Publication date: October 2024.

307:24 P. M. Bittner, A. Schultheiß, B. Moosherr, J. M. Young, L. Teixeira, E. Walkingshaw, P. Ataei, T. Thüm

Third, FST are restricted to never have duplication at the same granularity [11] causing in-

completeness. Technically, this restriction is necessary to avoid self-composition: For example,

composing a feature 𝑒 = 1�2� :: 1�3� :: [] causes both sub-trees 1�2�, 1�3� to be imposed on

each other: [] ⊕ 𝑒 = ([] ⊙ 1�2�) ⊙ 1�3� = [1�2, 3�] ≠ 𝑒 . This means that a sandwich cannot have

directly below twice, or that a Java class cannot have two methods with the same name

and signature. In practice, this restriction is reasonable for a range of target languages [5, 9, 11, 19],

including popular programming languages, but not for example XML [11].

The existence of such restrictions suggests the existence of different classes of expressiveness

— evidenced by option calculus and feature structure trees not being as expressive as each other

despite being incomplete. In fact, we found at least three classes of expressiveness: Annotative

choice-based languages are complete and hence maximally expressive, while pure options and

tree-based composition are not. However, options avoid duplication and ambiguity as discussed in

Section 5.3; an important concern for some applications, including variational analyses [14, 144].

Finding different classes of expressiveness because of syntactic restrictions, begs the question as

to what the impact of other restrictions may be and what classes of expressiveness might emerge.

We might find more classes by relaxing or imposing other restrictions, perhaps by extending the

framework with other properties, such as other notions of completeness. A useful property for

example, could be core-completeness to check whether a language is complete apart from having a

top-level atom or other fixed atoms, also known as core features [7, 39]. We hence strive to further

explore syntactic constraints and their impact on expressiveness in the future.

The map of languages we discover, also comes with practical results for researchers and language

designers. First, researchers may now apply research results or tools formulated in a language 𝐿

to all languages 𝑀 with less or equal expressive power (𝐿 ⪰ 𝑀) by first translating 𝑀 to 𝐿. For

instance, with the choice calculus having served as a lingua franca in many research efforts (cf.

Section 3.3), we may now apply research results such as variational type-checking [79], variational

type inference [37], or variational SAT solving [144] to all other languages in our map as well.

While not being an end-to-end tooling, our Agda framework, which formalizes our map in terms

of proven-to-be correct compilers, can be used, for example, to translate datasets for such purposes.

Second, language designers and researchers may leverage our framework for basic sanity checks

such as soundness or completeness; and they can relate new languages to existing ones with

only one or two translations with respective proofs without having to compare to each language

individually (similarly as we did by building compiler circles). Third, in this regard, our map of the

language space also provides guidance to future researchers on which language to pick. For example,

formalizing and verifying a variational analysis might be easier with algebraic decision trees but

a tool for empirical studies might favor choice calculus because it more accurately reflects real

implementations (e.g., C preprocessor). With our framework, this is proven possible and correct.

6 Related Work
While we discussed related work on variability languages in Section 3, we cover work on expres-

siveness in other domains here.

Comparing the Expressive Power of Other Formal Systems. Similar to our framework

for variability, expressive power has also been studied for other formal systems, including but

not limited to programming languages [41, 44, 56, 106, 109, 122], string constraints [43], type

systems [111], or deep neural networks [114]. Some define expressiveness similarly as we do, as a

language’s ability to denote elements in its semantic domain [41, 43, 56].

In principle, expressiveness can be studied on a syntactic or semantic level. Syntactic comparisons

of the expressive power of programming languages [44, 56] emerged from the desire to compare

different combinations of language constructs at a finer level of granularity, and in a way perhaps

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 307. Publication date: October 2024.

On the Expressive Power of Languages for Static Variability 307:25

more relevant to human programmers, than semantic comparisons can capture. For example, many

programming languages are Turing-complete and so equivalently expressive from a semantic

perspective. Yet there are differences with respect to how concisely and with how much redundancy

two languages can express semantically equivalent programs. Notably, comparisons of expressive

power of concurrent programming languages [44] consider choices as language constructs to denote

different possible program states during concurrent execution [3, 34], emphasizing the fundamental

nature of choices as a notation for multiple states. Syntactic comparisons of variation constructs,

especially their ability to support sharing of equal sub-expressions, is in fact highly relevant. As

a step towards that goal, we focused on previously unexplored semantic expressiveness first to

answer what languages can say before tackling the question how concise they can do so.

Comparing the Expressive Power of Languages for Problem Space Variability. In this

paper, we compare languages for solution space variability (i.e., how to implement variability and

derive variants). There have been similar efforts for languages for problem space variability (i.e.,

constraining configurations, cf. Section 2). Informal comparisons cover specific formats supported

by widely-used tools in research and practice [20, 51, 55]. Formal comparisons of problem space

languages cover algebraic specifications for translating constraints [68, 85] and powerful compila-

tion formats to optimize solving time [29, 30, 42, 90, 104, 123, 128]. Similarly as we did for solution

space, Schobbens et al. [119] defined expressiveness and completeness for feature diagrams. While

the languages covered by the works above are related to our work in terms of addressing variational

concerns, they are inherently different in that they express constraints, not variants.

Comparing the Expressive Power of Languages for Solution Space Variability. Existing
efforts in this direction remain informal or domain-specific, for example focusing on behavioral

models [21, 133] or model checking [49]. Walkingshaw [136] briefly highlights that choices can

encode options with neutral atoms, and Gruler [64] model options via choices but do not discuss

expressiveness. Later, Walkingshaw and Ostermann [137] briefly and informally discuss the expres-

sive power of options versus choices. We proved that choices can express options even without

assuming neutral atoms, and develop a generic framework without assumptions on the semantics

of variants to study variability as a phenomenon by itself.

7 Conclusion
In this work, we began the journey to chart the space of languages for static variability by intro-

ducing a formal framework to study and compare variability languages. We identified a common

semantic domain, formalized the semantics of a range of existing languages, established the basic

properties of soundness, completeness, and expressiveness, and studied these properties for existing

formal languages. We formalize our framework, proofs, and study in Agda as a reusable library

including a web of proven-to-be correct compilers and differencing algorithms. By extending the

library with a compiler from or to an integrated language, language designers can compare the

expressiveness of their language to others, deriving proofs of soundness or completeness for free.

To our surprise, we find multiple levels of expressiveness as well as complete and incomplete

languages in the identified semantic domain, arising from different syntactical restrictions. In

particular, choice-based formal languages are complete, sound, and equally expressive, and hence

the same is true for choice-based languages used in practice, including the variability mechanisms

for the Linux kernel for example. We hence verified previously implicit assumptions and bridged

the gap between parallel research efforts.

Data-Availability Statement
Our Agda library, called Vatras, in which we implement the languages from our overview (cf.

Section 3), our framework and its proofs (cf. Section 4), and the compilers and proofs for our

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 307. Publication date: October 2024.

307:26 P. M. Bittner, A. Schultheiß, B. Moosherr, J. M. Young, L. Teixeira, E. Walkingshaw, P. Ataei, T. Thüm

exploration of variability languages (cf. Section 5), is open source and publicly available online on

Github and Zenodo [1].

Acknowledgments
We thank Sebastian Krieter, Clemens Dubslaff, Chico Sundermann, and Sascha Rechenberger for

helpful discussions, advice, and pointers to related work. We also thank Chico Sundermann and

Larissa Förster for proof-reading and Chico Sundermann, Elias Kuiter, and Sebastian Krieter for

testing our replication package. We also thank our reviewers as well as the reviewers for our artifact

submission for their detailed and constructive feedback. We thank the God-Emperor for protecting

us from the abominations of the warp. This work has been supported by the German Research

Foundation (project VariantSync, TH 2387/1-1, TH 2387/1-2, KE 2267/1-1) and the Swiss National

Science Foundation (project VariantSync, grant 222903) as well as CNPq (grants 315532/2021-1 and

423125/2021-4), CAPES (88881.512952/2020-01), Alexander von Humboldt Foundation, and INES
8

(CNPq grant 465614/2014-0, CAPES grant 88887.136410/2017-00, and FACEPE grants APQ-0399-

1.03/17 and PRONEX APQ/0388-1.03/14).

References
[1] 2024. Vatras – Our Supplementary Agda Library. Zenodo DOI: 10.5281/zenodo.13502454, Github: https://github.com/

VariantSync/Vatras.

[2] Karthik. V. Aadithya, Tomasz P. Michalak, and Nicholas R. Jennings. 2011. Representation of Coalitional Games

With Algebraic Decision Diagrams. In Proc. Int’l Conf. on Autonomous Agents and Multiagent Systems (AAMAS).
International Foundation for Autonomous Agents and Multiagent Systems, 1121–1122.

[3] Alejandro Aguirre and Lars Birkedal. 2023. Step-Indexed Logical Relations for Countable Nondeterminism and

Probabilistic Choice. Proceedings of the ACM on Programming Languages (PACMPL) 7, POPL, Article 2 (2023), 28 pages.
https://doi.org/10.1145/3571195

[4] Sofia Ananieva, Sandra Greiner, Timo Kehrer, Jacob Krüger, Thomas Kühn, Lukas Linsbauer, Sten Grüner, Anne

Koziolek, Henrik Lönn, S. Ramesh, and Ralf H. Reussner. 2022. A Conceptual Model for Unifying Variability in Space

and Time: Rationale, Validation, and Illustrative Applications. Empirical Software Engineering (EMSE) 27, 5 (2022),
101. https://doi.org/10.1007/s10664-021-10097-z

[5] Felipe I. Anfurrutia, Oscar Díaz, and Salvador Trujillo. 2007. On Refining XML Artifacts. In Proc. Int’l Conf. on Web
Engineering (ICWE), Vol. 4607. Springer, 473–478. https://doi.org/10.1007/978-3-540-73597-7_39

[6] Sven Apel. 2007. The Role of Features and Aspects in Software Development. Ph. D. Dissertation. University of

Magdeburg.

[7] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. 2013. Feature-Oriented Software Product Lines. Springer.
https://doi.org/10.1007/978-3-642-37521-7

[8] Sven Apel, Christian Kästner, and Don Batory. 2008. Program Refactoring Using Functional Aspects. In Proc. Int’l Conf.
on Generative Programming and Component Engineering (GPCE). ACM, 161–170. https://doi.org/10.1145/1449913.

1449938

[9] Sven Apel, Christian Kästner, and Christian Lengauer. 2013. Language-Independent and Automated Software

Composition: The FeatureHouse Experience. IEEE Trans. on Software Engineering (TSE) 39, 1 (2013), 63–79. https:

//doi.org/10.1109/TSE.2011.120

[10] Sven Apel, Thomas Leich, Marko Rosenmüller, and Gunter Saake. 2005. FeatureC++: On the Symbiosis of Feature-

Oriented and Aspect-Oriented Programming. In Proc. Int’l Conf. on Generative Programming and Component Engineer-
ing (GPCE). Springer, 125–140.

[11] Sven Apel, Christian Lengauer, Bernhard Möller, and Christian Kästner. 2010. An Algebraic Foundation for Automatic

Feature-Based Program Synthesis. Science of Computer Programming (SCP) 75, 11 (2010), 1022–1047.
[12] Ivica Aracic, Vaidas Gasiunas, Mira Mezini, and Klaus Ostermann. 2006. An Overview of CaesarJ. Trans. Aspect-

Oriented Software Development 1 (2006), 135–173.
[13] Patrizia Asirelli, Maurice H. ter Beek, Alessandro Fantechi, and Stefania Gnesi. 2012. A Compositional Framework to

Derive Product Line Behavioural Descriptions. In Proc. Int’l Symposium on Leveraging Applications of Formal Methods,
Verification and Validation (ISoLA). Springer, 146–161.

8
https://www.ines.org.br

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 307. Publication date: October 2024.

https://doi.org/10.5281/zenodo.13502454
https://github.com/VariantSync/Vatras
https://github.com/VariantSync/Vatras
https://doi.org/10.1145/3571195
https://doi.org/10.1007/s10664-021-10097-z
https://doi.org/10.1007/978-3-540-73597-7_39
https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.1145/1449913.1449938
https://doi.org/10.1145/1449913.1449938
https://doi.org/10.1109/TSE.2011.120
https://doi.org/10.1109/TSE.2011.120
https://www.ines.org.br

On the Expressive Power of Languages for Static Variability 307:27

[14] Parisa Ataei, Fariba Khan, and EricWalkingshaw. 2021. A Variational Database Management System. In Proc. Int’l Conf.
on Generative Programming and Component Engineering (GPCE). ACM, 29–42. https://doi.org/10.1145/3486609.3487197

[15] Thomas H. Austin and Cormac Flanagan. 2012. Multiple Facets for Dynamic Information Flow. In Proc. Symposium
on Principles of Programming Languages (POPL). ACM, 165–178. https://doi.org/10.1145/2103656.2103677

[16] R. Iris Bahar, Erica A. Frohm, Charles M. Gaona, Gary D. Hachtel, Enrico Macii, Abelardo Pardo, and Fabio Somenzi.

1993. Algebraic Decision Diagrams and Their Applications. In Proc. Int’l Conf. on Computer-Aided Design (ICCAD).
IEEE, 188–191.

[17] Michael Barr and Charles Wells. 1985. Toposes, Triples and Theories. Springer.
[18] Don Batory. 2005. Feature Models, Grammars, and Propositional Formulas. In Proc. Int’l Systems and Software Product

Line Conf. (SPLC). Springer, 7–20. https://doi.org/10.1007/11554844_3

[19] Don Batory, Jacob N. Sarvela, and Axel Rauschmayer. 2004. Scaling Step-Wise Refinement. IEEE Trans. on Software
Engineering (TSE) 30, 6 (2004), 355–371.

[20] Maurice H. ter Beek, Klaus Schmid, and Holger Eichelberger. 2019. Textual Variability Modeling Languages: An

Overview and Considerations. In Proc. Int’l Systems and Software Product Line Conf. (SPLC). ACM, 151–157.

[21] Harsh Beohar, Mahsa Varshosaz, and Mohammad Reza Mousavi. 2016. Basic Behavioral Models for Software

Product Lines: Expressiveness and Testing Pre-Orders. Science of Computer Programming (SCP) 123, C (2016), 42–60.

https://doi.org/10.1016/j.scico.2015.06.005

[22] Alexandre Bergel, Stéphane Ducasse, and Oscar Nierstrasz. 2005. Classbox/J: Controlling the Scope of Change in

Java. In Proc. Conf. on Object-Oriented Programming, Systems, Languages and Applications (OOPSLA). ACM, 177–189.

https://doi.org/10.1145/1094811.1094826

[23] Thorsten Berger, Steven She, Rafael Lotufo, Andrzej Wąsowski, and Krzysztof Czarnecki. 2010. Variability Modeling

in the Real: A Perspective From the Operating Systems Domain. In Proc. Int’l Conf. on Automated Software Engineering
(ASE). ACM, 73–82. https://doi.org/10.1145/1858996.1859010

[24] Paul Maximilian Bittner, Alexander Schultheiß, Sandra Greiner, Benjamin Moosherr, Sebastian Krieter, Christof

Tinnes, Timo Kehrer, and Thomas Thüm. 2023. Views on Edits to Variational Software. In Proc. Int’l Systems and
Software Product Line Conf. (SPLC). ACM, 141–152. https://doi.org/10.1145/3579027.3608985

[25] Paul Maximilian Bittner, Alexander Schultheiß, BenjaminMoosherr, Timo Kehrer, and Thomas Thüm. 2024. Variability-

Aware Differencing with DiffDetective. In Companion Proc. Int’l Conference on the Foundations of Software Engineering
(FSE Companion). ACM, 632–636. https://doi.org/10.1145/3663529.3663813

[26] Paul Maximilian Bittner, Alexander Schultheiß, Thomas Thüm, Timo Kehrer, Jeffrey M. Young, and Lukas Linsbauer.

2021. Feature Trace Recording. In Proc. Europ. Software Engineering Conf./Foundations of Software Engineering
(ESEC/FSE). ACM, 1007–1020. https://doi.org/10.1145/3468264.3468531

[27] Paul Maximilian Bittner, Christof Tinnes, Alexander Schultheiß, Sören Viegener, Timo Kehrer, and Thomas Thüm.

2022. Classifying Edits to Variability in Source Code. In Proc. Europ. Software Engineering Conf./Foundations of Software
Engineering (ESEC/FSE). ACM, 196–208. https://doi.org/10.1145/3540250.3549108

[28] Yuri Breitbart, H Hunt III, and Daniel Rosenkrantz. 1995. On the Size of Binary Decision Diagrams Representing

Boolean Functions. Theoretical Computer Science 145, 1-2 (1995), 45–69.
[29] Randal E. Bryant. 1986. Graph-Based Algorithms for Boolean Function Manipulation. IEEE Trans. on Computers C-35,

8 (1986), 677–691. https://doi.org/10.1109/tc.1986.1676819

[30] Randal E. Bryant. 2018. Binary Decision Diagrams. In Handbook of Model Checking. Springer, 191–217. https:

//doi.org/10.1007/978-3-319-10575-8_7

[31] John Peter Campora, Sheng Chen, Martin Erwig, and Eric Walkingshaw. 2022. Migrating Gradual Types. Journal of
Functional Programming (JFP) 32 (2022). https://doi.org/10.1017/S0956796822000089

[32] Mikaela Cashman, Myra B. Cohen, Priya Ranjan, and Robert W. Cottingham. 2018. Navigating the Maze: The Impact

of Configurability in Bioinformatics Software. In Proc. Int’l Conf. on Automated Software Engineering (ASE). ACM,

757–767. https://doi.org/10.1145/3238147.3240466

[33] Thiago Castro, Leopoldo Teixeira, Vander Alves, Sven Apel, Maxime Cordy, and Rohit Gheyi. 2021. A Formal

Framework of Software Product Line Analyses. Trans. on Software Engineering and Methodology (TOSEM) 30, 3,
Article 34 (2021), 37 pages. https://doi.org/10.1145/3442389

[34] Nicolas Chappe, Paul He, Ludovic Henrio, Yannick Zakowski, and Steve Zdancewic. 2023. Choice Trees: Representing

Nondeterministic, Recursive, and Impure Programs in Coq. Proceedings of the ACM on Programming Languages
(PACMPL) 7, POPL, Article 61 (2023), 31 pages. https://doi.org/10.1145/3571254

[35] Qingrong Chen, Teng Wang, Owolabi Legunsen, Shanshan Li, and Tianyin Xu. 2020. Understanding and Discover-

ing Software Configuration Dependencies in Cloud and Datacenter Systems. In Proc. Europ. Software Engineering
Conf./Foundations of Software Engineering (ESEC/FSE). ACM, 362–374. https://doi.org/10.1145/3368089.3409727

[36] Sheng Chen. 2015. Variational Typing and Its Applications. Ph. D. Dissertation. Oregon State University.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 307. Publication date: October 2024.

https://doi.org/10.1145/3486609.3487197
https://doi.org/10.1145/2103656.2103677
https://doi.org/10.1007/11554844_3
https://doi.org/10.1016/j.scico.2015.06.005
https://doi.org/10.1145/1094811.1094826
https://doi.org/10.1145/1858996.1859010
https://doi.org/10.1145/3579027.3608985
https://doi.org/10.1145/3663529.3663813
https://doi.org/10.1145/3468264.3468531
https://doi.org/10.1145/3540250.3549108
https://doi.org/10.1109/tc.1986.1676819
https://doi.org/10.1007/978-3-319-10575-8_7
https://doi.org/10.1007/978-3-319-10575-8_7
https://doi.org/10.1017/S0956796822000089
https://doi.org/10.1145/3238147.3240466
https://doi.org/10.1145/3442389
https://doi.org/10.1145/3571254
https://doi.org/10.1145/3368089.3409727

307:28 P. M. Bittner, A. Schultheiß, B. Moosherr, J. M. Young, L. Teixeira, E. Walkingshaw, P. Ataei, T. Thüm

[37] Sheng Chen, Martin Erwig, and Eric Walkingshaw. 2014. Extending Type Inference to Variational Programs. ACM
Trans. on Programming Languages and Systems (TOPLAS) 36, 1, Article 1 (2014), 1:1–1:54 pages. https://doi.org/10.

1145/2518190

[38] Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens, Axel Legay, and Jean-François Raskin. 2010. Model

Checking Lots of Systems: Efficient Verification of Temporal Properties in Software Product Lines. In Proc. Int’l Conf.
on Software Engineering (ICSE). ACM, 335–344.

[39] Krzysztof Czarnecki and Ulrich Eisenecker. 2000. Generative Programming: Methods, Tools, and Applications.
ACM/Addison-Wesley.

[40] Krzysztof Czarnecki and Andrzej Wąsowski. 2007. Feature Diagrams and Logics: There and Back Again. In Proc. Int’l
Systems and Software Product Line Conf. (SPLC). IEEE, 23–34.

[41] Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov. 2001. Complexity and Expressive Power of

Logic Programming. ACM Computing Surveys (CSUR) 33, 3 (2001), 374–425. https://doi.org/10.1145/502807.502810

[42] Adnan Darwiche and Pierre Marquis. 2002. A Knowledge Compilation Map. J. Artificial Intelligence Research (JAIR)
17, 1 (2002), 229–264.

[43] Joel D. Day, Vijay Ganesh, Nathan Grewal, and Florin Manea. 2023. On the Expressive Power of String Constraints.

Proceedings of the ACM on Programming Languages (PACMPL) 7, POPL, Article 10 (2023), 31 pages. https://doi.org/10.

1145/3571203

[44] Frank S. de Boer and Catuscia Palamidessi. 1991. Embedding as a Tool for Language Comparison: On the CSP

Hierarchy. In Proc. Int’l Conf. on Concurrency Theory (CONCUR), Vol. 527. Springer, 127–141.
[45] Nicolaas Govert De Bruijn. 1972. Lambda Calculus Notation with Nameless Dummies, a Tool for Automatic Formula

Manipulation, With Application to the Church-Rosser Theorem. Indagationes Mathematicae 75, 5 (1972), 381–392.
[46] Aleksandar S. Dimovski, Ahmad Salim Al-Sibahi, Claus Brabrand, and Andrzej Wąsowski. 2017. Efficient Family-

Based Model Checking via Variability Abstractions. Int’l J. Software Tools for Technology Transfer (STTT) 19, 5 (2017).
https://doi.org/10.1007/s10009-016-0425-2

[47] Aleksandar S. Dimovski, Claus Brabrand, and Andrzej Wąsowski. 2018. Variability Abstractions for Lifted Analyses.

Science of Computer Programming (SCP) 159 (2018), 1–27. https://doi.org/10.1016/j.scico.2017.12.012

[48] Clemens Dubslaff. 2019. Compositional Feature-Oriented Systems. In Proc. Int’l Conf. on Software Engineering and
Formal Methods (SEFM), Peter Csaba Ölveczky and Gwen Salaün (Eds.). Springer, 162–180. https://doi.org/10.1007/978-

3-030-30446-1_9

[49] Clemens Dubslaff. 2022. Quantitative Analysis of Configurable and Reconfigurable Systems. Ph. D. Dissertation. Dresden
University of Technology.

[50] Jeffrey Dudek, Vu Phan, and Moshe Vardi. 2020. ADDMC: Weighted Model Counting With Algebraic Decision

Diagrams. In Proc. Conf. on Artificial Intelligence (AAAI), Vol. 34. AAAI Press, 1468–1476. https://doi.org/10.1609/

AAAI.V34I02.5505

[51] Holger Eichelberger and Klaus Schmid. 2015. Mapping the Design Space of Textual Variability Modeling Languages:

A Refined Analysis. Int’l J. Software Tools for Technology Transfer (STTT) 17, 5 (2015), 559–584. https://doi.org/10.

1007/s10009-014-0362-x

[52] Sascha El-Sharkawy, Adam Krafczyk, and Klaus Schmid. 2015. Analysing the KConfig Semantics and its Analysis

Tools. In Proc. Int’l Conf. on Generative Programming: Concepts & Experiences (GPCE). ACM, 45–54. https://doi.org/10.

1145/2814204.2814222

[53] Martin Erwig and Eric Walkingshaw. 2011. The Choice Calculus: A Representation for Software Variation. Trans. on
Software Engineering and Methodology (TOSEM) 21, 1, Article 6 (2011), 27 pages. https://doi.org/10.1145/2063239.

2063245

[54] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Martin Monperrus. 2014. Fine-Grained

and Accurate Source Code Differencing. In Proc. Int’l Conf. on Automated Software Engineering (ASE). 313–324.
https://doi.org/10.1145/2642937.2642982

[55] Kevin Feichtinger, Chico Sundermann, Thomas Thüm, and Rick Rabiser. 2022. It’s Your Loss: Classifying Information

Loss During Variability Model Roundtrip Transformations. In Proc. Int’l Systems and Software Product Line Conf.
(SPLC). ACM, 67–78. https://doi.org/10.1145/3546932.3546990

[56] Matthias Felleisen. 1991. On the Expressive Power of Programming Languages. Science of Computer Programming
(SCP) 17, 1-3 (1991), 35–75. https://doi.org/10.1016/0167-6423(91)90036-W

[57] Wolfram Fenske, Jens Meinicke, Sandro Schulze, Steffen Schulze, and Gunter Saake. 2017. Variant-Preserving

Refactorings for Migrating Cloned Products to a Product Line. In Proc. Int’l Conf. on Software Analysis, Evolution and
Reengineering (SANER). IEEE, 316–326. https://doi.org/10.1109/SANER.2017.7884632

[58] Wolfram Fenske, Thomas Thüm, and Gunter Saake. 2014. A Taxonomy of Software Product Line Reengineering. In

Proc. Int’l Workshop on Variability Modelling of Software-Intensive Systems (VaMoS). ACM, 4:1–4:8. https://doi.org/10.

1145/2556624.2556643

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 307. Publication date: October 2024.

https://doi.org/10.1145/2518190
https://doi.org/10.1145/2518190
https://doi.org/10.1145/502807.502810
https://doi.org/10.1145/3571203
https://doi.org/10.1145/3571203
https://doi.org/10.1007/s10009-016-0425-2
https://doi.org/10.1016/j.scico.2017.12.012
https://doi.org/10.1007/978-3-030-30446-1_9
https://doi.org/10.1007/978-3-030-30446-1_9
https://doi.org/10.1609/AAAI.V34I02.5505
https://doi.org/10.1609/AAAI.V34I02.5505
https://doi.org/10.1007/s10009-014-0362-x
https://doi.org/10.1007/s10009-014-0362-x
https://doi.org/10.1145/2814204.2814222
https://doi.org/10.1145/2814204.2814222
https://doi.org/10.1145/2063239.2063245
https://doi.org/10.1145/2063239.2063245
https://doi.org/10.1145/2642937.2642982
https://doi.org/10.1145/3546932.3546990
https://doi.org/10.1016/0167-6423(91)90036-W
https://doi.org/10.1109/SANER.2017.7884632
https://doi.org/10.1145/2556624.2556643
https://doi.org/10.1145/2556624.2556643

On the Expressive Power of Languages for Static Variability 307:29

[59] Stefan Fischer, Lukas Linsbauer, Roberto E. Lopez-Herrejon, and Alexander Egyed. 2015. The ECCO Tool: Extraction

and Composition for Clone-and-Own. In Proc. Int’l Conf. on Software Engineering (ICSE). IEEE, 665–668. https:

//doi.org/10.1109/ICSE.2015.218

[60] Beat Fluri, Michael Wuersch, Martin Pinzger, and Harald Gall. 2007. Change Distilling: Tree Differencing for

Fine-Grained Source Code Change Extraction. IEEE Trans. on Software Engineering (TSE) 33, 11 (2007), 725–743.

https://doi.org/10.1109/TSE.2007.70731

[61] Patrick Franz, Thorsten Berger, Ibrahim Fayaz, Sarah Nadi, and Evgeny Groshev. 2021. ConfigFix: Interactive

Configuration Conflict Resolution for the Linux Kernel. In Proc. Int’l Conf. on Software Engineering: Software Engineering
in Practice (ICSE-SEIP). IEEE, 91–100. https://doi.org/10.1109/ICSE-SEIP52600.2021.00018

[62] Steven J Friedman and Kenneth J Supowit. 1990. Finding the Optimal Variable Ordering for Binary Decision Diagrams.

IEEE Trans. on Computers 39, 5 (1990), 710–713. https://doi.org/10.1109/12.53586

[63] Paul Gazzillo and Myra B. Cohen. 2022. Bringing Together Configuration Research: Towards a Common Ground.

In Proc. Int’l Symposium on New Ideas, New Paradigms, and Reflections on Programming (Onward!). ACM, 259–269.

https://doi.org/10.1145/3563835.3568737

[64] Alexander Gruler. 2010. A Formal Approach to Software Product Families. Ph. D. Dissertation. TU München.

[65] Alexander Gruler, Martin Leucker, and Kathrin Scheidemann. 2008. Modeling and Model Checking Software Product

Lines. In Proc. IFIP Int’l Conf. on Formal Methods for Open Object-Based Distributed Systems (FMOODS). Springer,
113–131. https://doi.org/10.1007/978-3-540-68863-1_8

[66] Alireza Haghighatkhah, Ahmad Banijamali, Olli-Pekka Pakanen, Markku Oivo, and Pasi Kuvaja. 2017. Automotive

Software Engineering: A Systematic Mapping Study. J. Systems and Software (JSS) 128 (2017), 25–55. https:

//doi.org/10.1016/j.jss.2017.03.005

[67] Ruidong Han, Chao Yang, Siqi Ma, JiangFeng Ma, Cong Sun, Juanru Li, and Elisa Bertino. 2022. Control Parameters

Considered Harmful: Detecting Range Specification Bugs in Drone Configuration Modules via Learning-Guided

Search. In Proc. Int’l Conf. on Software Engineering (ICSE). ACM, 462–473. https://doi.org/10.1145/3510003.3510084

[68] Peter Höfner, Ridha Khédri, and Bernhard Möller. 2011. An Algebra of Product Families. Software and Systems
Modeling (SoSyM) 10, 2 (2011), 161–182. https://doi.org/10.1007/s10270-009-0127-2

[69] Spencer Hubbard and Eric Walkingshaw. 2016. Formula Choice Calculus. In Proc. Int’l Workshop on Feature-Oriented
Software Development (FOSD). ACM, 49–57. https://doi.org/10.1145/3001867.3001873

[70] Wenbin Ji, Thorsten Berger, Michal Antkiewicz, and Krzysztof Czarnecki. 2015. Maintaining Feature Traceability

With Embedded Annotations. In Proc. Int’l Systems and Software Product Line Conf. (SPLC). ACM, 61–70. https:

//doi.org/10.1145/2791060.2791107

[71] Ralph E. Johnson and Brian Foote. 1988. Designing Reusable Classes. J. of Object-Oriented Programming (JOOP) 1, 2
(1988), 22–35.

[72] Seiede Reyhane Kamali, Shirin Kasaei, and Roberto E. Lopez-Herrejon. 2019. Answering the Call of the Wild?

Thoughts on the Elusive Quest for Ecological Validity in Variability Modeling. In Proc. Int’l Workshop on Languages
for Modelling Variability (MODEVAR). ACM, 143–150. https://doi.org/10.1145/3307630.3342400

[73] Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and A. Spencer Peterson. 1990. Feature-Oriented
Domain Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21. Software Engineering Institute.

[74] Christian Kästner. 2010. Virtual Separation of Concerns: Toward Preprocessors 2.0. Ph. D. Dissertation. University of

Magdeburg.

[75] Christian Kästner, Sven Apel, and Martin Kuhlemann. 2008. Granularity in Software Product Lines. In Proc. Int’l Conf.
on Software Engineering (ICSE). ACM, 311–320. https://doi.org/10.1145/1368088.1368131

[76] Christian Kästner, Sven Apel, Thomas Thüm, and Gunter Saake. 2012. Type Checking Annotation-Based Product

Lines. Trans. on Software Engineering and Methodology (TOSEM) 21, 3 (2012), 14:1–14:39. https://doi.org/10.1145/

2211616.2211617

[77] Christian Kästner, Sven Apel, Salvador Trujillo, Martin Kuhlemann, and Don Batory. 2009. Guaranteeing Syntactic

Correctness for All Product Line Variants: A Language-Independent Approach. In Proc. Int’l Conf. Objects, Models,
Components, Patterns (TOOLS EUROPE), Manuel Oriol and Bertrand Meyer (Eds.). Springer, 175–194. https://doi.org/

10.1007/978-3-642-02571-6_11

[78] Christian Kästner, Paolo G. Giarrusso, Tillmann Rendel, Sebastian Erdweg, Klaus Ostermann, and Thorsten Berger.

2011. Variability-Aware Parsing in the Presence of Lexical Macros and Conditional Compilation. In Proc. Conf. on
Object-Oriented Programming, Systems, Languages and Applications (OOPSLA). ACM, 805–824. https://doi.org/10.

1145/2048066.2048128

[79] Christian Kästner, Klaus Ostermann, and Sebastian Erdweg. 2012. A Variability-Aware Module System. In Proc.
Conf. on Object-Oriented Programming, Systems, Languages and Applications (OOPSLA). ACM, 773–792. https:

//doi.org/10.1145/2384616.2384673

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 307. Publication date: October 2024.

https://doi.org/10.1109/ICSE.2015.218
https://doi.org/10.1109/ICSE.2015.218
https://doi.org/10.1109/TSE.2007.70731
https://doi.org/10.1109/ICSE-SEIP52600.2021.00018
https://doi.org/10.1109/12.53586
https://doi.org/10.1145/3563835.3568737
https://doi.org/10.1007/978-3-540-68863-1_8
https://doi.org/10.1016/j.jss.2017.03.005
https://doi.org/10.1016/j.jss.2017.03.005
https://doi.org/10.1145/3510003.3510084
https://doi.org/10.1007/s10270-009-0127-2
https://doi.org/10.1145/3001867.3001873
https://doi.org/10.1145/2791060.2791107
https://doi.org/10.1145/2791060.2791107
https://doi.org/10.1145/3307630.3342400
https://doi.org/10.1145/1368088.1368131
https://doi.org/10.1145/2211616.2211617
https://doi.org/10.1145/2211616.2211617
https://doi.org/10.1007/978-3-642-02571-6_11
https://doi.org/10.1007/978-3-642-02571-6_11
https://doi.org/10.1145/2048066.2048128
https://doi.org/10.1145/2048066.2048128
https://doi.org/10.1145/2384616.2384673
https://doi.org/10.1145/2384616.2384673

307:30 P. M. Bittner, A. Schultheiß, B. Moosherr, J. M. Young, L. Teixeira, E. Walkingshaw, P. Ataei, T. Thüm

[80] Christian Kästner, Alexander von Rhein, Sebastian Erdweg, Jonas Pusch, Sven Apel, Tillmann Rendel, and Klaus

Ostermann. 2012. Toward Variability-Aware Testing. In Proc. Int’l Workshop on Feature-Oriented Software Development
(FOSD). ACM, 1–8. https://doi.org/10.1145/2377816.2377817

[81] Timo Kehrer, Thomas Thüm, Alexander Schultheiß, and Paul Maximilian Bittner. 2021. Bridging the Gap Between

Clone-and-Own and Software Product Lines. In Proc. Int’l Conf. on Software Engineering (ICSE). IEEE, 21–25. https:

//doi.org/10.1109/ICSE-NIER52604.2021.00013

[82] Gregor Kiczales, Erik Hilsdale, JimHugunin, Mik Kersten, Jeffrey Palm, andWilliamG. Griswold. 2001. An Overview of

AspectJ. In Proc. Europ. Conf. on Object-Oriented Programming (ECOOP). Springer, 327–354. https://doi.org/10.1007/3-

540-45337-7_18

[83] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes, Jean-Marc Loingtier, and John

Irwin. 1997. Aspect-Oriented Programming. In Proc. Europ. Conf. on Object-Oriented Programming (ECOOP). Springer,
220–242.

[84] Gregor Kiczales and Mira Mezini. 2005. Aspect-Oriented Programming and Modular Reasoning. In Proc. Int’l Conf. on
Software Engineering (ICSE). ACM, 49–58. https://doi.org/10.1145/1062455.1062482

[85] Alexander Knüppel, Thomas Thüm, Stephan Mennicke, Jens Meinicke, and Ina Schaefer. 2017. Is There a Mismatch Be-

tween Real-World Feature Models and Product-Line Research?. In Proc. Europ. Software Engineering Conf./Foundations
of Software Engineering (ESEC/FSE). ACM, 291–302. https://doi.org/10.1145/3106237.3106252

[86] Emily Kowalczyk, Myra B. Cohen, and Atif M. Memon. 2018. Configurations in Android Testing: They Matter. In Proc.
Int’l Workshop on Advances in Mobile App Analysis (A-Mobile). ACM, 1–6. https://doi.org/10.1145/3243218.3243219

[87] Christian Kröher, Lea Gerling, and Klaus Schmid. 2023. Comparing the Intensity of Variability Changes in Software

Product Line Evolution. J. Systems and Software (JSS) 203 (2023), 111737. https://doi.org/10.1016/j.jss.2023.111737

[88] Jacob Krüger and Thorsten Berger. 2020. Activities and Costs of Re-Engineering Cloned Variants Into an Integrated

Platform. In Proc. Int’l Working Conf. on Variability Modelling of Software-Intensive Systems (VaMoS). ACM, Article 21,

10 pages. https://doi.org/10.1145/3377024.3377044

[89] Jacob Krüger and Thorsten Berger. 2020. An Empirical Analysis of the Costs of Clone- and Platform-Oriented

Software Reuse. In Proc. Europ. Software Engineering Conf./Foundations of Software Engineering (ESEC/FSE). ACM,

432–444. https://doi.org/10.1145/3368089.3409684

[90] Elias Kuiter, Sebastian Krieter, Chico Sundermann, Thomas Thüm, and Gunter Saake. 2022. Tseitin or not Tseitin? The

Impact of CNF Transformations on Feature-Model Analyses. In Proc. Int’l Conf. on Automated Software Engineering
(ASE). ACM, 110:1–110:13. https://doi.org/10.1145/3551349.3556938

[91] Elias Kuiter, Jacob Krüger, Sebastian Krieter, Thomas Leich, and Gunter Saake. 2018. Getting Rid of Clone-and-Own:

Moving to a Software Product Line for Temperature Monitoring. In Proc. Int’l Systems and Software Product Line Conf.
(SPLC). ACM, 179–189. https://doi.org/10.1145/3233027.3233050

[92] Miguel A. Laguna and Yania Crespo. 2013. A Systematic Mapping Study on Software Product Line Evolution: From

Legacy System Reengineering to Product Line Refactoring. Science of Computer Programming (SCP) 78, 8 (2013),
1010–1034. https://doi.org/10.1016/j.scico.2012.05.003

[93] Jörg Liebig, Sven Apel, Christian Lengauer, Christian Kästner, andMichael Schulze. 2010. An Analysis of the Variability

in Forty Preprocessor-Based Software Product Lines. In Proc. Int’l Conf. on Software Engineering (ICSE). IEEE, 105–114.
https://doi.org/10.1145/1806799.1806819

[94] Jörg Liebig, Alexander von Rhein, Christian Kästner, Sven Apel, Jens Dörre, and Christian Lengauer. 2013. Scal-

able Analysis of Variable Software. In Proc. Europ. Software Engineering Conf./Foundations of Software Engineering
(ESEC/FSE). ACM, 81–91. https://doi.org/10.1145/2491411.2491437

[95] Lukas Linsbauer, Thorsten Berger, and Paul Grünbacher. 2017. A Classification of Variation Control Systems. In Proc.
Int’l Conf. on Generative Programming: Concepts & Experiences (GPCE). ACM, 49–62. https://doi.org/10.1145/3136040.

3136054

[96] Lukas Linsbauer, Alexander Egyed, and Roberto Erick Lopez-Herrejon. 2016. A Variability Aware Configuration

Management and Revision Control Platform. In Proc. Int’l Conf. on Software Engineering (ICSE). ACM, 803–806.

https://doi.org/10.1145/2889160.2889262

[97] Lukas Linsbauer, Roberto Erick Lopez-Herrejon, and Alexander Egyed. 2017. Variability Extraction and Modeling for

Product Variants. Software and Systems Modeling (SoSyM) 16, 4 (2017), 1179–1199. https://doi.org/10.1007/s10270-

015-0512-y

[98] Jia Liu, Don Batory, and Christian Lengauer. 2006. Feature Oriented Refactoring of Legacy Applications. In Proc. Int’l
Conf. on Software Engineering (ICSE). ACM, 112–121. https://doi.org/10.1145/1134285.1134303

[99] Wardah Mahmood, Daniel Strueber, Thorsten Berger, Ralf Laemmel, and Mukelabai Mukelabai. 2021. Seamless

Variability Management With the Virtual Platform. In Proc. Int’l Conf. on Software Engineering (ICSE). IEEE, 1658–1670.
https://doi.org/10.1109/ICSE43902.2021.00147

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 307. Publication date: October 2024.

https://doi.org/10.1145/2377816.2377817
https://doi.org/10.1109/ICSE-NIER52604.2021.00013
https://doi.org/10.1109/ICSE-NIER52604.2021.00013
https://doi.org/10.1007/3-540-45337-7_18
https://doi.org/10.1007/3-540-45337-7_18
https://doi.org/10.1145/1062455.1062482
https://doi.org/10.1145/3106237.3106252
https://doi.org/10.1145/3243218.3243219
https://doi.org/10.1016/j.jss.2023.111737
https://doi.org/10.1145/3377024.3377044
https://doi.org/10.1145/3368089.3409684
https://doi.org/10.1145/3551349.3556938
https://doi.org/10.1145/3233027.3233050
https://doi.org/10.1016/j.scico.2012.05.003
https://doi.org/10.1145/1806799.1806819
https://doi.org/10.1145/2491411.2491437
https://doi.org/10.1145/3136040.3136054
https://doi.org/10.1145/3136040.3136054
https://doi.org/10.1145/2889160.2889262
https://doi.org/10.1007/s10270-015-0512-y
https://doi.org/10.1007/s10270-015-0512-y
https://doi.org/10.1145/1134285.1134303
https://doi.org/10.1109/ICSE43902.2021.00147

On the Expressive Power of Languages for Static Variability 307:31

[100] Tabassum Mahmud, Om Rameshwar Gatla, Duo Zhang, Carson Love, Ryan Bumann, and Mai Zheng. 2023. ConfD:

Analyzing Configuration Dependencies of File Systems for Fun and Profit. In USENIX Conf. on File and Storage
Technologies (FAST). USENIX Association, 199–214.

[101] Sean McDirmid, Matthew Flatt, and Wilson C. Hsieh. 2001. Jiazzi: New-Age Components for Old-Fashioned Java.

In Proc. Conf. on Object-Oriented Programming, Systems, Languages and Applications (OOPSLA). ACM, 211–222.

https://doi.org/10.1145/504282.504298

[102] Jens Meinicke, Chu-Pan Wong, Christian Kästner, Thomas Thüm, and Gunter Saake. 2016. On Essential Configuration

Complexity: Measuring Interactions in Highly-Configurable Systems. In Proc. Int’l Conf. on Automated Software
Engineering (ASE). ACM, 483–494. https://doi.org/10.1145/2970276.2970322

[103] Marcílio Mendonça, Andrzej Wąsowski, and Krzysztof Czarnecki. 2009. SAT-Based Analysis of Feature Models Is

Easy. In Proc. Int’l Systems and Software Product Line Conf. (SPLC). Software Engineering Institute, 231–240.
[104] Marcílio Mendonça, Andrzej Wąsowski, Krzysztof Czarnecki, and Donald Cowan. 2008. Efficient Compilation

Techniques for Large Scale Feature Models. In Proc. Int’l Conf. on Generative Programming and Component Engineering
(GPCE). ACM, 13–22.

[105] Jan Midtgaard, Aleksandar S. Dimovski, Claus Brabrand, and Andrzej Wąsowski. 2015. Systematic Derivation

of Correct Variability-Aware Program Analyses. Science of Computer Programming (SCP) 105 (2015), 145–170.

https://doi.org/10.1016/j.scico.2015.04.005

[106] John C. Mitchell. 1993. On Abstraction and the Expressive Power of Programming Languages. Science of Computer
Programming (SCP) 21, 2 (1993), 141–163. https://doi.org/10.1016/0167-6423(93)90004-9

[107] Hung Viet Nguyen, Christian Kästner, and Tien N. Nguyen. 2014. Exploring Variability-Aware Execution for

Testing Plugin-Based Web Applications. In Proc. Int’l Conf. on Software Engineering (ICSE). ACM, 907–918. https:

//doi.org/10.1145/2568225.2568300

[108] Jeho Oh, Necip Fazıl Yıldıran, Julian Braha, and Paul Gazzillo. 2021. Finding Broken Linux Configuration Specifications

by Statically Analyzing the Kconfig Language. In Proc. Europ. Software Engineering Conf./Foundations of Software
Engineering (ESEC/FSE). ACM, 893–905. https://doi.org/10.1145/3468264.3468578

[109] Joachim Parrow. 2008. Expressiveness of Process Algebras. Electronic Notes in Theoretical Computer Science (ENTCS)
209 (2008), 173–186.

[110] Leonardo Passos, Leopoldo Teixeira, Nicolas Dintzner, Sven Apel, Andrzej Wąsowski, Krzysztof Czarnecki, Paulo

Borba, and Jianmei Guo. 2016. Coevolution of Variability Models and Related Software Artifacts. Empirical Software
Engineering (EMSE) 21, 4 (2016). https://doi.org/10.1007/s10664-015-9364-x

[111] Marco Patrignani, Eric Mark Martin, and Dominique Devriese. 2021. On the Semantic Expressiveness of Recursive

Types. Proceedings of the ACM on Programming Languages (PACMPL) 5, POPL, Article 21 (2021), 29 pages. https:

//doi.org/10.1145/3434302

[112] Tristan Pfofe, Thomas Thüm, Sandro Schulze, Wolfram Fenske, and Ina Schaefer. 2016. Synchronizing Software

Variants With VariantSync. In Proc. Int’l Systems and Software Product Line Conf. (SPLC). ACM, 329–332. https:

//doi.org/10.1145/2934466.2962726

[113] Klaus Pohl, Günter Böckle, and Frank J. van der Linden. 2005. Software Product Line Engineering: Foundations, Principles
and Techniques. Springer. https://doi.org/10.1007/3-540-28901-1

[114] Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, and Jascha Sohl-Dickstein. 2017. On the Expressive Power

of Deep Neural Networks. In Proc. Int’l Conf. on Machine Learning (ICML), Vol. 70. PMLR, 2847–2854.

[115] Kamil Rosiak and Ina Schaefer. 2023. The e4CompareFramework: Annotation-based Software Product-Line Extraction.

In Proc. Int’l Systems and Software Product Line Conf. (SPLC). ACM, 34–38. https://doi.org/10.1145/3579028.3609012

[116] Julia Rubin, Krzysztof Czarnecki, andMarsha Chechik. 2013. Managing Cloned Variants: A Framework and Experience.

In Proc. Int’l Systems and Software Product Line Conf. (SPLC). ACM, 101–110. https://doi.org/10.1145/2491627.2491644

[117] Ina Schaefer, Lorenzo Bettini, Viviana Bono, Ferruccio Damiani, and Nico Tanzarella. 2010. Delta-Oriented Program-

ming of Software Product Lines. In Proc. Int’l Systems and Software Product Line Conf. (SPLC). Springer, 77–91.
[118] Thomas Schmorleiz and Ralf Lämmel. 2016. Similarity Management of ’Cloned and Owned’ Variants. In Proc. ACM

Symposium on Applied Computing (SAC). ACM, 1466–1471. https://doi.org/10.1145/2851613.2851785

[119] Pierre-Yves Schobbens, Patrick Heymans, Jean-Christophe Trigaux, and Yves Bontemps. 2007. Generic Semantics of

Feature Diagrams. Computer Networks 51, 2 (2007), 456–479.
[120] Felix Schwägerl and BernhardWestfechtel. 2019. Integrated Revision and Variation Control for EvolvingModel-Driven

Software Product Lines. Software and SystemsModeling (SoSyM) 18, 6 (2019), 3373–3420. https://doi.org/10.1007/s10270-
019-00722-3

[121] Ramy Shahin and Marsha Chechik. 2020. Automatic and Efficient Variability-Aware Lifting of Functional Programs.

Proceedings of the ACM on Programming Languages (PACMPL) 4, OOPSLA, Article 157 (2020), 27 pages. https:

//doi.org/10.1145/3428225

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 307. Publication date: October 2024.

https://doi.org/10.1145/504282.504298
https://doi.org/10.1145/2970276.2970322
https://doi.org/10.1016/j.scico.2015.04.005
https://doi.org/10.1016/0167-6423(93)90004-9
https://doi.org/10.1145/2568225.2568300
https://doi.org/10.1145/2568225.2568300
https://doi.org/10.1145/3468264.3468578
https://doi.org/10.1007/s10664-015-9364-x
https://doi.org/10.1145/3434302
https://doi.org/10.1145/3434302
https://doi.org/10.1145/2934466.2962726
https://doi.org/10.1145/2934466.2962726
https://doi.org/10.1007/3-540-28901-1
https://doi.org/10.1145/3579028.3609012
https://doi.org/10.1145/2491627.2491644
https://doi.org/10.1145/2851613.2851785
https://doi.org/10.1007/s10270-019-00722-3
https://doi.org/10.1007/s10270-019-00722-3
https://doi.org/10.1145/3428225
https://doi.org/10.1145/3428225

307:32 P. M. Bittner, A. Schultheiß, B. Moosherr, J. M. Young, L. Teixeira, E. Walkingshaw, P. Ataei, T. Thüm

[122] Ehud Shapiro. 1989. The Family of Concurrent Logic Programming Languages. ACM Computing Surveys (CSUR) 21, 3
(1989), 413–510. https://doi.org/10.1145/72551.72555

[123] Shubham Sharma, Rahul Gupta, Subhajit Roy, and Kuldeep S Meel. 2018. Knowledge Compilation Meets Uniform

Sampling. In Proc. Int’l Conf. on Logic for Programming, Artificial Intelligence, and Reasoning. EasyChair, 620–636.
[124] Yannis Smaragdakis and Don Batory. 2002. Mixin Layers: An Object-Oriented Implementation Technique for

Refinements and Collaboration-Based Designs. Trans. on Software Engineering and Methodology (TOSEM) 11, 2 (2002),
215–255. https://doi.org/10.1145/505145.505148

[125] Olaf Spinczyk, Andreas Gal, and Wolfgang Schröder-Preikschat. 2002. AspectC++: An Aspect-Oriented Extension to

the C++ Programming Language. In Proc. Int’l Conf. on Technology of Object-Oriented Languages and Systems (TOOLS).
Australian Computer Society, 53–60.

[126] Stefan Stănciulescu, Thorsten Berger, Eric Walkingshaw, and Andrzej Wąsowski. 2016. Concepts, Operations, and

Feasibility of a Projection-Based Variation Control System. In Proc. Int’l Conf. on Software Maintenance and Evolution
(ICSME). IEEE, 323–333. https://doi.org/10.1109/ICSME.2016.88

[127] Chico Sundermann, Tobias Heß, Michael Nieke, Paul Maximilian Bittner, Jeffrey M. Young, Thomas Thüm, and Ina

Schaefer. 2023. Evaluating State-of-the-Art #SAT Solvers on Industrial Configuration Spaces. Empirical Software
Engineering (EMSE) 28, 29 (2023), 38. https://doi.org/10.1007/s10664-022-10265-9

[128] Chico Sundermann, Elias Kuiter, Tobias Heß, Heiko Raab, Sebastian Krieter, and Thomas Thüm. 2023. On the Benefits

of Knowledge Compilation for Feature-Model Analyses. Annals of Mathematics and Artificial Intelligence (AMAI)
(2023). https://doi.org/10.1007/s10472-023-09906-6

[129] Chico Sundermann, Michael Nieke, Paul Maximilian Bittner, Tobias Heß, Thomas Thüm, and Ina Schaefer. 2021.

Applications of #SAT Solvers on Feature Models. In Proc. Int’l Working Conf. on Variability Modelling of Software-
Intensive Systems (VaMoS). ACM, Article 12, 10 pages. https://doi.org/10.1145/3442391.3442404

[130] Chico Sundermann, Heiko Raab, Tobias Heß, Thomas Thüm, and Ina Schaefer. 2024. Reusing d-DNNFs for Efficient

Feature-Model Counting. Trans. on Software Engineering and Methodology (TOSEM) (2024). To appear.

[131] GNU Operating System. 2024. Autoconf. Website. Available online at https://www.gnu.org/software/autoconf/;

visited on April 2nd, 2024..

[132] GNU Operating System. 2024. GNU M4. Website. Available online at https://www.gnu.org/software/m4/; visited on

April 2nd, 2024..

[133] MauriceH. ter Beek, Ferruccio Damiani, Stefania Gnesi, FrancoMazzanti, and Luca Paolini. 2019. On the Expressiveness

of Modal Transition Systems With Variability Constraints. Science of Computer Programming (SCP) 169 (2019), 1–17.
https://doi.org/10.1016/j.scico.2018.09.006

[134] Thomas Thüm, Sven Apel, Christian Kästner, Ina Schaefer, and Gunter Saake. 2014. A Classification and Survey

of Analysis Strategies for Software Product Lines. ACM Computing Surveys (CSUR) 47, 1 (2014), 6:1–6:45. https:

//doi.org/10.1145/2580950

[135] The Univalent Foundations Program. 2013. Homotopy Type Theory: Univalent Foundations of Mathematics. https:
//homotopytypetheory.org/book.

[136] Eric Walkingshaw. 2013. The Choice Calculus: A Formal Language of Variation. Ph. D. Dissertation. Oregon State

University.

[137] Eric Walkingshaw and Klaus Ostermann. 2014. Projectional Editing of Variational Software. In Proc. Int’l Conf. on
Generative Programming: Concepts & Experiences (GPCE). ACM, 29–38. https://doi.org/10.1145/2658761.2658766

[138] Ingo Wegener. 1987. The Complexity of Boolean Functions. Springer.
[139] David Wille, Sandro Schulze, Christoph Seidl, and Ina Schaefer. 2016. Custom-Tailored Variability Mining for Block-

Based Languages. In Proc. Int’l Conf. on Software Analysis, Evolution and Reengineering (SANER). IEEE, 271–282.
https://doi.org/10.1109/SANER.2016.13

[140] Chu-Pan Wong. 2021. Beyond Configurable Systems: Applying Variational Execution to Tackle Large Search Spaces.
Ph. D. Dissertation. Carnegie Mellon University.

[141] Chu-Pan Wong, Jens Meinicke, and Christian Kästner. 2018. Beyond Testing Configurable Systems: Applying

Variational Execution to Automatic Program Repair and Higher Order Mutation Testing. In Proc. Europ. Software
Engineering Conf./Foundations of Software Engineering (ESEC/FSE) (ESEC/FSE 2018). ACM, 749–753. https://doi.org/10.

1145/3236024.3264837

[142] Chu-Pan Wong, Jens Meinicke, Lukas Lazarek, and Christian Kästner. 2018. Faster Variational Execution With

Transparent Bytecode Transformation. Proceedings of the ACM on Programming Languages (PACMPL) 2, OOPSLA,
Article 117 (2018), 30 pages. https://doi.org/10.1145/3276487

[143] Jeffrey M. Young. 2021. Variational Satisfiability Solving. Ph. D. Dissertation. Oregon State University.

[144] Jeffrey M. Young, Paul Maximilian Bittner, Eric Walkingshaw, and Thomas Thüm. 2022. Variational Satisfiability

Solving: Efficiently Solving Lots of Related SAT Problems. Empirical Software Engineering (EMSE) 28 (2022), 53.

https://doi.org/10.1007/s10664-022-10217-3

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 307. Publication date: October 2024.

https://doi.org/10.1145/72551.72555
https://doi.org/10.1145/505145.505148
https://doi.org/10.1109/ICSME.2016.88
https://doi.org/10.1007/s10664-022-10265-9
https://doi.org/10.1007/s10472-023-09906-6
https://doi.org/10.1145/3442391.3442404
https://www.gnu.org/software/autoconf/
https://www.gnu.org/software/m4/
https://doi.org/10.1016/j.scico.2018.09.006
https://doi.org/10.1145/2580950
https://doi.org/10.1145/2580950
https://homotopytypetheory.org/book
https://homotopytypetheory.org/book
https://doi.org/10.1145/2658761.2658766
https://doi.org/10.1109/SANER.2016.13
https://doi.org/10.1145/3236024.3264837
https://doi.org/10.1145/3236024.3264837
https://doi.org/10.1145/3276487
https://doi.org/10.1007/s10664-022-10217-3

On the Expressive Power of Languages for Static Variability 307:33

[145] Yuanliang Zhang, Haochen He, Owolabi Legunsen, Shanshan Li, Wei Dong, and Tianyin Xu. 2021. An Evolutionary

Study of Configuration Design and Implementation in Cloud Systems. In Proc. Int’l Conf. on Software Engineering
(ICSE). IEEE, 188–200.

[146] Shurui Zhou, Ştefan Stănciulescu, Olaf Leßenich, Yingfei Xiong, Andrzej Wąsowski, and Christian Kästner. 2018.

Identifying Features in Forks. In Proc. Int’l Conf. on Software Engineering (ICSE). ACM, 105–116. https://doi.org/10.

1145/3180155.3180205

Received 2024-04-05; accepted 2024-08-18

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 307. Publication date: October 2024.

https://doi.org/10.1145/3180155.3180205
https://doi.org/10.1145/3180155.3180205

	Abstract
	1 Introduction
	2 Preliminaries and Running Example
	3 An Overview on Formal Variability Languages
	3.1 Semantics
	3.2 Overview
	3.3 Choice Calculus (and)
	3.4 Algebraic Decision Diagrams and Trees ()
	3.5 Gruler's Language ()
	3.6 Option Calculus ()
	3.7 Feature Structure Trees ()
	3.8 Other Languages & Conclusion

	4 A Formal Framework for Language Comparisons
	4.1 Semantic Domain of Variability Languages
	4.2 Variability Languages
	4.3 Completeness, Soundness, and Expressiveness
	4.4 How to Prove Completeness, Soundness, and Expressiveness?
	4.5 Formalization, Tool Support, and Conclusion

	5 Charting the Language Space
	5.1 Choice-Based Languages
	5.2 Soundness and Completeness by Clone-and-Own
	5.3 Option Calculus
	5.4 Feature Structure Trees
	5.5 Discussion and Conclusion

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

