
Journal of Software Engineering Research and Development, 2019, 6:1, doi: 10.5753/jserd.2019.xxx
 This work is licensed under a Creative Commons Attribution 4.0 International License..

Exploring Transfer Learning for Multilingual Software Quality:
Code Smells, Bugs, and Harmful Code
Rodrigo Lima [ Universidade Federal de Pernambuco | rsl@cin.ufpe.br ]
Jairo Souza [ Universidade Federal de Pernambuco | jrmcs@cin.ufpe.br ]
Baldoino Fonseca [ Universidade Federal de Alagoas | baldoino@ic.ufal.br ]
Leopoldo Teixeira [ Universidade Federal de Pernambuco | lmt@cin.ufpe.br ]
Durval Pereira [ Universidade Federal de Alagoas | durval@ic.ufal.br ]
Caio Barbosa [ Pontifícia Universidade Católica do Rio de Janeiro | csilva@inf.puc-rio.br ]
Leonardo Leite [ Universidade Federal de Alagoas | leo.leite@ic.ufal.br ]
Davy Baia [ Universidade Federal de Alagoas | davy.baia@penedo.ufal.br ]

Abstract Code smells are indicators of poor design implementation and decision-making that can potentially harm
the quality of software. Therefore, detecting these smells is crucial to prevent such issues. Some studies aim to
comprehend the impact of Code smells on software quality, while others propose rules or machine learning-based
approaches to identify code smells. Previous research has focused on labeling and analyzing code snippets that
significantly impair software quality using machine learning techniques. These snippets are classified as Clean,
Smelly, Buggy, and Harmful Code. Harmful Code refers to Smelly code segments that have one or more reported
bugs, whether fixed or not. Consequently, the presence of a Harmful Code increases the risk of introducing new
defects and/or design issues during the remediation process. We perform our study as an extension of the previous
study, with the scope of 5 smell types, The total number of commits across all four tables (Java, C++, C#, and
Python projects) is 641,736. versions of 91 open-source projects, 17,022 bugs and 24,737 code smells. The findings
revealed promising transferability of knowledge between Java and C# in the presence of various code smell types,
while C++ and Python exhibited more challenging transferability. Also, our study discovered that a sample size
of 32 demonstrated favorable outcomes for most harmful codes, underscoring the efficiency of transfer learning
even with limited data. Moreover, the exploration of transfer learning between bugs and code smells represents a
not-very-ineffective avenue within the realm of software engineering.
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1 Introduction

Modern software systems are increasingly developed us-
ing multiple programming languages, which introduces chal-
lenges in maintaining software quality. While code smells
and bugs have been studied within individual languages,
there is limited research on transferring knowledge about
these issues across languages. This study aims to address
this gap by exploring transfer learning as a solution, enabling
models trained in one language to detect harmful code in an-
other, thereby improving code quality in multilingual envi-
ronments (Barbosa et al., 2020, 2023).
Code smells, indicators of poor design choices (Fowler,

1999; Roberta Arcoverde et al., 2012), and bugs introduced
through changes (Śliwerski et al., 2005) can degrade soft-
ware quality, making systems harder to maintain (Sharma
and Spinellis, 2018). Identifying and mitigating these issues
early can reduce the impact on software projects. Transfer
learning, a machine learning technique that reuses knowl-
edge from one domain to another (Amorim et al., 2016), of-
fers the potential to automate this process, especially inmulti-
lingual software systems, by transferring learned knowledge
between languages and contexts (Fontana Arcelli et al.).
Recent studies (Sharma et al., 2019; Kovacevic et al.,

2022) have explored transfer learning in software engineer-
ing, particularly for code smell detection, but few have
focused on detecting harmful code (Rodrigo Lima et al.,

2020). This study aims to assess how transfer learning can
detect harmful code across languages, building on prior
work (Pereira Cesar et al., 2023; Rodrigo Lima et al., 2020).
Harmful code is defined as code that is both smelly and
buggy.

We collected source code from 91 open-source projects
and evaluated five types of code smells: Multifaceted
Abstraction, Insufficient Modularization, Wide Hierarchy,
Long Method, and Complex Method, representing design
and implementation issues. Our findings revealed promising
transferability between Java and C#, while C++ and Python
posed more challenges. Code smells were found to be less ef-
fective for bug detection in the context of transfer learning.

The paper is structured as follows: Section 3 reviews re-
lated work, Section 4 outlines the study design, Section 5
presents the results, Section 6 discusses threats to validity,
and Section 7 concludes with future directions.

2 Background

In this section, we will briefly summarize concepts about im-
portant topics of our research.
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2.1 Transfer Learning

Machine learning involves various techniques for sharing
and adapting knowledge from one specific task in a domain
to a broader task in the same domain. For instance, a health-
care provider employs predictive modeling to anticipate pa-
tient re-admissions, enabling early intervention and improv-
ing patient care outcomes. On the other hand, human beings
demonstrate a unique capability, the ability to transfer knowl-
edge across related domains to efficiently address novel chal-
lenges. This human-like approach becomes particularly ad-
vantageous when the new task shares fundamental similar-
ities with the existing knowledge, enabling us to expedite
problem-solving by leveraging our prior insights.
Transfer learning, at its core, involves transferring knowl-

edge acquired in one source task to enhance learning in a re-
lated target task (Torrey and Shavlik, 2010). One of the major
advantages of transfer learning is that it is valuable in scenar-
ios characterized by a scarcity of training data. When collect-
ing ample training data for a target task proves challenging
and resource-intensive, we can identify a source task with
similar underlying characteristics and access to a vast train-
ing dataset. Subsequently, we train a machine learning model
on this source task, utilizing the abundant dataset, and then
fine-tune the model on the target task, leveraging the avail-
able yet limited training data. This strategic process empow-
ers us to harness prior knowledge effectively, significantly
improving performance on the target task. For example, if we
initially trained a model to classify animals and later wished
to classify specific breeds of dogs, we could apply transfer
learning by building upon the animal classification knowl-
edge.

2.2 Code Smells

Code smells are indicators of quality issues that can affect
software maintainability and scalability (Oizumi et al., 2015,
2014). They are categorized into implementation smells, de-
sign smells, and architecture smells, based on scope and
impact (Oizumi et al., 2016, 2018; Sharma and Spinellis,
2018). Implementation smells, such as longmethod, complex
method, andmagic numbers, typically affect individualmeth-
ods (Fowler, 1999), while design smells, like God class and
multifaceted abstraction, involve larger abstractions, such as
classes or class groups.
These smells manifest across languages like Java, C#,

C++, and Python. In Java, common smells include Multi-
faceted Abstraction and Long Method, which degrade main-
tainability by combining unrelated functionalities or creat-
ing overly complex methods (Sousa et al., 2017). Similar is-
sues arise in C#, where poor namespace organization leads
to Insufficient Modularization, and in C++, where mixing
low-level memory management with high-level operations
is a frequent design smell. Python, although dynamically
typed, suffers from code smells like large monolithic scripts
and complex functions, which impact readability and main-
tenance.

3 Related Work
Transfer Learning of Code Smells. Previous studies have
explored the potential of transfer learning for detecting code
smells. Sharma et al.(Sharma et al., 2019) applied deep learn-
ing to detect code smells and demonstrated the feasibility of
transfer learning for identifying smells in languages where
specialized detection tools are unavailable. Kovacevic et
al.(Kovacevic et al., 2022) extended this work by transfer-
ring knowledge between languages using manually labeled
datasets, focusing on the smells LongMethod andGod Class.
While both works explored transfer learning for code smell
detection, our study goes further by assessing harmfulness—
using metrics to identify if a code snippet is both smelly and
buggy.
Code Smells and Bugs. Several studies have examined

the relationship between code smells and bugs. Takahashi et
al.(Takahasi et al., 2018) improved bug localization by in-
tegrating code smells into the bug detection process, while
Palomba et al.(Palomba et al., 2019) developed a smell-
aware bug prediction model. Lima et al. (Rodrigo Lima et al.,
2020) introduced the concept of harmful code, identifying
code that is both smelly and buggy. Their work found that
Random Forests were effective for classifying harmful code
in Java projects, but transfer learning for detecting harmful
code remains largely unexplored.
Our study combines these approaches, using transfer learn-

ing not only for detecting code smells but also for assessing
code harmfulness across multiple programming languages.
Unlike previous work, which focused on individual smells
or bugs, we evaluate transfer learning’s ability to generalize
across languages and provide insights at the commit level,
considering the historical aspects of software development.
This version is more succinct, addressing the key points

from contemporary studies while framing the unique contri-
butions of your research.

4 Study Design
Recent studies (Sharma et al., 2019; Kovacevic et al., 2022;
Krishna and Menzies, 2019; Ardimento and et al; De Ste-
fano et al.) have demonstrated the potential of transfer learn-
ing in software engineering, particularly for code smell detec-
tion and prediction. However, none have focused on apply-
ing knowledge from other systems to detect harmful code.
To address this gap, our study explores transfer learning for
detecting harmful code across five code smells and three pro-
gramming languages. Our research aims to provide insights
into the effectiveness of transfer learning in improving code
analysis and software quality assurance, as outlined in the
following research questions:
RQ1: How effective is transfer learning in detecting

harmful code?This question evaluates transfer learning’s ef-
fectiveness (measured by the F-measure) in detecting harm-
ful code across three programming languages. The goal is
to assess whether transfer learning can generalize harmful
code detection in a language-agnostic way, providing valu-
able guidance for improving software security and reliabil-
ity.
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Figure 1. Study design steps for creating dataset and evaluating transfer
learning

RQ2: How efficient is transfer learning in detecting
code smells?We explore the impact of varying sample sizes
on transfer learning performance, evaluating its effectiveness
in detecting code smells across languages. This analysis cov-
ers dataset sizes from small (2) to large (630), addressing the
trade-offs between model generalization and computational
efficiency.
RQ3: How effective is transfer learning in detecting

bugs from code smells? This question investigates howwell
transfer learning can identify software bugs originating from
code smells, using an oracle to identify code smells across
projects. Precision, Recall, and F-measure metrics are used
to quantify how effectively transfer learning detects bugs
caused by existing code smells.
RQ4: How effective is transfer learning in detecting

code smells from bugs?We reverse the relationship, explor-
ing how well transfer learning detects code smells using bug-
related data from three languages. By analyzing this inverse
relationship, we aim to enhance bug detection processes and
contribute to more comprehensive software quality improve-
ment strategies.

4.1 Programming Languages

We selected Java, C#, C++, and Python for this study due
to their widespread use and significance in various domains.
Java is prominent in enterprise applications, C# in the Mi-
crosoft ecosystem and game development, C++ in-system
programming and performance-critical tasks, and Python in
web development, data science, and AI. These languages rep-
resent a diverse set of programming paradigms, each with
unique features and conventions that can influence the ef-
fectiveness of transfer learning for code analysis. By includ-
ing them, we aim to evaluate how transfer learning performs
across different contexts, offering insights that can guide the
development of more adaptable code analysis tools and im-
prove software quality acrossmultiple programming environ-
ments.

4.2 Project Selection

In order to avoid well-known mining perils (Kalliamvakou
et al., 2016), we applied the following methodology to select
the projects for this study: (i) systems that have at least 500
commits; (ii) systems that are at least 3 years old, and are cur-
rently active; and (iii) Java, C++, C# and Python based sys-
tems, as previously mentioned in 4.1. We can see the project

Table 1. Java Software projects analyzed in this work
System Domain # Commits # Smells # Bugs
exoplayer Library 12393 134 71
baritone Library 2796 2025 2863
junit5 Framework 7076 0 2
lombok Library 3325 1530 1346
mindustry Game 12854 20 39
mockito Framework 5695 14 73
okhttp Http Client 4958 128 62
termux-app App 1179 28 10
bisq App 15809 661 781
l2jorg Library 2228 238 260
IPED Forensic 4883 127 83
PhotoView Library 462 11 6
hudi Big Data 2272 192 148
AgentWeb Web 1022 47 32
Signal-Server Communication 2147 312 197
archiva Build Management 8701 389 254
tomcat Server 23824 493 308
TelegramBots Library 941 18 12
gson Library 1611 13 9
copybara Tool 2503 108 74
poi Library 11576 314 194
skywalking Monitoring 6872 263 178
caffeine Cache 1367 23 16
airbyte Data Integration 4303 153 104
netty Networking 10673 396 247
moshi Library 968 12 7
Java-WebSocket Library 1093 31 21
h2database Database 13710 507 342
druid Database 11461 423 291
zxing Library 3623 52 37

list in Tables 1, 2 3. Each table represents the projects se-
lected to be analyzed in our study for the programming lan-
guages Java, C++, C#, and Python respectively. The tables
not only lists the projects names but also describes the do-
main of it - if it is a library, a framework, an app - as well as
the number of: i) commits; ii) smells and iii) bugs for each
one of the projects.

4.3 Metrics and Code Smells
We utilized detection rules from the DesigniteJava 1 tool
(Sharma and Spinellis, 2018) to identify code smells in our
projects, along with their corresponding thresholds. How-
ever, since we are collecting data from projects written in
C++, C#, and Python languages, we cannot directly use the
tool, as it only detects smells in Java code. In this case, we
used the Understand 2 tool to collect the metrics in all sys-
tems. Moreover, we needed to make a pair relation between
the DesigniteJava metrics names and the Understand metrics,
as they do not have the same name. Finally, the code smell
list and their respective thresholds can be seen in Table 6, and
the metrics name pair relation can be seen in Table 5.

4.4 Finding Bugs
We rely on previous work (Rodrigo Lima et al., 2020)
methodology to collect the bugs used in our dataset. This
methodology utilizes a GitHub macro present in commit
messages that fix bugs. These macros typically include key-
words such as ”Fixes”, ”Fixed”, ”Fix”, ”Closes”, ”Closed”
or ”Close”, followed by a # and the issue/pull request num-
ber, e.g., ”Fixes #12345”. This macro automatically clos-

1https://www.designite-tools.com/designitejava/
2https://scitools.com/
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Table 2. C++ Software projects analyzed in this work
System Domain # Commits # Smells # Bugs
gdal Library 46604 3446 312
keepassxc Software 4192 113 83
osquery Framework 6019 17 12
tdesktop Software 11296 181 59
px4-autopilot Framework 39499 187 26
qtox Software 7945 115 64
bitcoin Cryptocurrency 32033 432 273
faiss Library 585 7 5
ImHex Software 1037 14 9
imgui Library 6719 52 35
libzmq Networking 8318 126 82
terminal Software 2704 39 22
folly Library 10283 145 98
server Server 2374 31 19
ethminer Cryptocurrency 14334 89 54
gitahead Tool 380 5 3
Hazel Software 243 4 2
flameshot Software 1598 21 14
xmrig Cryptocurrency 3120 43 29
monero Cryptocurrency 10701 148 97

Table 3. C# Software projects analyzed in this work
System Domain # Commits # Smells # Bugs
efcore Library 12451 1923 1484
humanizer Library 2236 12 10
jellyfin Software 22217 518 292
omnisharp-roslyn Http Server 5738 0 2
quicklook Software 806 12 15
neo Blockchain 1330 159 277
ryujinx Software 1915 45 38
OrchardCore CMS 5729 150 75
eShopOnContainers Microservices 3937 200 125
Files App 3076 180 90
ModAssistant Library 669 20 10
SharpZipLib Library 980 30 18
pinvoke Library 1629 40 22
EnhancePoEApp App 409 15 8
TwitchLeecher App 322 12 7
privatezilla Security 307 10 6
StockSharp Trading 7726 280 150
msgpack-cli Library 3304 110 65
reverse-proxy Networking 665 20 12
runner Tool 454 25 14

es/merges the issue/pull request, and by examining their label
list, we can check if that issue/pull request contains the label
’bug’ or ’defect’, showing that the commit was a bug-fixing
commit. Finally, to collect the commit that contains the bug,
we got the parent commit of the bug-fixing commit.

4.5 Model Selection and Configuration Ratio-
nale

In this study, we opted to experiment with the perceptron,
a simple neural network architecture, for its simplicity, in-
terpretability, and computational efficiency. This design al-
lowed us to focus on the core mechanics of transfer learning,
avoiding complexities of deeper models, and enabled faster
training and evaluation across languages and code smells.
The perceptron served as a baseline, demonstrating transfer
learning potential, with future work planned to explore ad-
vanced models. We used well-known configurations to en-
sure reproducibility and comparability with existing studies.
A Github repository 3 is provided for further experimenta-

3https://github.com/harmful-code/jserd_harmful_transfer

Table 4. Python Software projects analyzed in this work
System Domain # Commits # Smells # Bugs
Tensorflow Library 14104 1923 1484
FastAPI Library 2319 12 10
Flask Software 4495 518 292
Tornado Library 6113 0 2
Pyramid Library 838 12 15
Dash Library 1404 159 277
Vibora Software 2840 45 38
django Framework 30320 1120 630
backtrader Trading 2385 80 55
ansible Automation 52191 1350 890
antlr4 Parsing 8269 210 140
cltk NLP 3592 90 60
pygame Game Development 7230 320 210
SerpentAI AI 250 5 3
electrum Cryptocurrency 14049 450 300
EasyOCR OCR 474 15 10
PyBoy Emulator 435 10 6
renpy Game Engine 11537 380 240
openage Game Engine 4047 160 110
pgadmin4 Database Tool 5225 190 130
faceswap Machine Learning 1410 50 35

Table 5. Understand Software Metrics
Name Abbrev. SciTools Understand Granularity

Lack of Cohesion in Methods LCOM PercentLackOfCohesion Class
Number of Fields NOF CountDecClassVariable + Class

CountDeclInstanceVariable
Number of Methods NOM CountDeclMethod Class
Number of Public Methods NOPM CountDeclMethodPublic Class
Weighted Methods per Class WMPC SumCyclomaticModified Class
Number of Children NC CountClassDerived Class
Lines of Code LOC CountLine Class/Method
Cyclomatic Complexity CC Cyclomatic Method
Strict Cyclomatic Complexity SC SumCyclomaticStrict Method
Modified Cyclomatic Complexity MCC SumCyclomaticModified Method
Derived Classes DC CountClassDerived Class
Lines of Code (Code Only) LOC-Code CountLineCode Class/Method
Class Coupling (Modified) CCM CountClassCoupledModified Class
Executable Statements ES CountStmtExe Method

Table 6. Detection Rules for the Code Smells
Name Granularity Type Metric Logical Op.

LCOM >= 0.8
Multifaceted Abstraction Class Design NOF >= 7 AND

NOM >= 7

NOPM >= 20
Insufficient Modularization Class Design NOM >= 30 OR

WMC >= 100

Wide Hierarchy Class Design NC >= 10 N/A

Long Method Method Implementation LOC >= 100 N/A

Complex Method Method Implementation CC >= 8 N/A

tion.

4.6 Discovering Harmful Code
Harmful code is a term introduced by Lima et al. (Ro-
drigo Lima et al., 2020) to determine a code snippet has
two characteristics: (i) smelly, when the code contains a code
smell; and (ii) buggy, when the code contains a bug. When
containing both characteristics, we say that a code snippet is
harmful.

4.6.1 Application of Transfer Learning

We trained our transfer learningmodels using the dataset gen-
erated in previous steps, following the pseudo-code in Fig. 1.
The model, based on a perceptron architecture (Kanal, 2003),
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was designed for simplicity and efficiency, employing key
parameters as follows:
Embedding layer. Configured to process input sequences

of integers (tokens) with a vocabulary of 20,000 words. Each
token is embedded into an 8-dimensional vector, and the in-
put_length specifies the sequence length.
Flatten layer.Converts the 2D output from the embedding

layer into a 1D array.
Dense layer. A fully connected layer with a single neuron

using a ’sigmoid’ activation function for binary classifica-
tion.
Compilation parameters. The model uses the

’adam’ optimizer with a learning rate of 0.001 and ’bi-
nary_crossentropy’ as the loss function, tailored for binary
classification tasks.
Training Configuration. The perceptron model was

trained for 100 epochs with accuracy as the evaluation met-
ric. No regularization techniques were applied, providing a
balance between speed and stability.
CNN Configuration.We also trained a CNN model with

the same configuration, using ’rmsprop’ as the optimizer
with a learning rate of 0.001. Both models were designed
for efficiency and scalability across multiple languages and
code smells.

f o r l a nguage in l a n gu ag e s :
f o r sme l l in sme l l s :

f o r sample in n_sample :
model = l o ad ( l anguage , sme l l , sample )
model = S e q u e n t i a l ( )
model . add ( Embedding (20000 , 8 ,

i n p u t _ l e n g t h =padd ing ) )
model . add ( F l a t t e n ( ) )
model . add ( Dense ( 1 , a c t i v a t i o n = ’ s igmoid ’ ) )
model . compi le ( o p t im i z e r = ’ adam ’ ,

l o s s = ’ b i n a r y _ c r o s s e n t r o p y ’ )
e v a l _ l a n g u a g e s = l a nguag e s − l anguage
eva l ( l anguage , model , sme l l , e v a l _ l a n g u a g e s )

4.6.2 Evaluation

To evaluate the models, we first need to compute the results
of TP, TN, FP, and FN, that are described as follows:

• TP: True Positive, when the model correctly predicts
the ”YES” target class.

• TN: True Negative, when the model correctly predicts
the ”NO” target class.

• FP: False Positive, when the model incorrectly predicts
the target class as ”YES” when it should be ”NO”.

• FN: False Negative, when the model incorrectly pre-
dicts the target class as ”NO” when it should be ”YES”.

Then, we are able to calculate the metrics that are the out-
put of our model:

• Accuracy: The rate of correct classification by the
model (as either a smell or not).

A = (TP + TN)/(TP + TN + FP + FN)

• Precision: Of the samples classified by the model as
smells, how many were actually smells.

P = TP/(TP + FP )

• Recall: The proportion of correctly classified smells out
of the total number of samples that were actually smells.

R = TP/(TP + FN)

• F1-score: The harmonic mean of precision and Recall.

F = 2 ∗ [(P ∗ R)/(P + R)]

5 Results and Discussion
In this section, we present the key findings and main results
derived from our study.

5.1 Effective Transfer Learning to Detect
Harmful Code

Table 7. Transfer learning of harmful code trained in C++, C#, and
Java and tested in C++, C#, Python, and Java.

Java C# C++ Python

Java 89% 82% 92% 80%
Complex Method C# 84% 82% 75% 75%

C++ 97% 75% 97% 91%
Python 76% 75% 91% 81%

Java 79% 75% 92% 80%
Long Method C# 75% 82% 87% 80%

C++ 74% 82% 92% 80%
Python 75% 80% 80% 80%

Java 10% 82% 10% 10%
Wide Hierarchy C# 5% 82% 5% 5%

C++ 0% 82% 100% 5%
Python 5% 5% 5% 5%

Java 84% 82% 92% 80%
Insufficient Modularization C# 84% 82% 87% 80%

C++ 99% 82% 99% 92%
Python 80% 80% 92% 80%

Java 83% 82% 92% 80%
Multifaceted Abstraction C# 79% 82% 87% 80%

C++ 98% 82% 98% 92%
Python 80% 80% 92% 80%

This research question evaluates the effectiveness of trans-
fer learning using the Perceptron (Kanal, 2003) model for
detecting harmful code. Our approach involves training indi-
vidual models for each programming language with buggy
commits and distinct code smell types using dedicated train-
ing datasets that consist of relevant code snippets and corre-
sponding smells in buggy commits. Subsequently, we check
the performance of each trained model is meticulously evalu-
ated on testing datasets containing code snippets from all pro-
gramming languages studied to understand if harmful code
from one language can be detected in the others.
The study enables us to identify the model’s strengths and

limitations in different contexts, offering a nuanced under-
standing of its performance in detecting harmful code be-
yond the initial training dataset. The resulting insights are
presented in Table 7, where the first and second columns
highlight the smell types involved in the buggy snippet and
programming languages used for training, while the horizon-
tal arrangement corresponds to the programming languages
in the testing datasets.
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Figure 2. Harmful Code results for the transfer learning combined for all code smells and divided by each language.

Figure 2 presents the results of our transfer learning model
for harmful code detection. The confusion matrices provide
a detailed breakdown of the model’s performance across dif-
ferent programming languages and all code smells analyzed
combined. Moreover, we also have a confusion matrix for
each smell type for each language type, those can be seen in
our replication package 4.
By analyzing the confusion matrices, we gained valuable

insights into the model’s strengths and limitations, identify-
ing areas where the model excelled and areas that could ben-
efit from further refinement. These results contribute to a
better understanding of the transfer learning model’s effec-
tiveness in detecting code smells and lay the groundwork for
future research and improvements in code analysis and soft-
ware quality assurance.

5.1.1 Harmful Code between Java and C#

In Table 7, the analysis highlights interesting observations
concerning transfer learning between Java and C# program-
ming languages. We notice a noteworthy variation in effec-
tiveness, ranging from 5% in the Wide Hierarchy smell to a
maximum of 84% in the Complex Method. This variability
indicates that different types of smells exhibit distinct levels
of transferability between these languages. Specifically, the
Complex Method demonstrates promising results, with a re-
spectable accuracy of 84% when evaluated within Java itself
and an equivalent 84% when applied to C#. This suggests
that the rule set for this smell translates effectively between
the two languages.
Furthermore, examining the LongMethod and Insufficient

Modularization, we observe a similar pattern, with minor dif-
ferences in effectiveness, ranging from 2% to 9%. These find-
ings imply that certain code smells have relatively consistent
transferability between Java and C#, while others may neces-
sitate more targeted adjustments for optimal cross-language
detection. These insights elucidate us on the intricate rela-
tionship between different smells and their transferability
across programming languages. Understanding such nuances
is crucial for devising more effective and versatile transfer

4https://github.com/harmful-code/jserd_harmful_transfer

learning approaches in code analysis, ultimately improving
software quality and maintainability across diverse language
ecosystems.
Finally, the outcomes for the Wide Hierarchy and Multi-

faceted Abstraction smells were less promising. We obtained
an accuracy of 5% for Wide Hierarchy detection between the
two languages and encountered a difference of 4% in trans-
ferring the knowledge of how to detect the Multifaceted Ab-
straction smell to the other language. These results lead us to
the conclusion that not all code smells are equally effective
in detecting harmful code between these two languages.

Finding 1: The smells Complex Method, Long
Method, and Insufficient Modularization demonstrate a
high level of effectiveness in transferring knowledge be-
tween C# and Java.

The varying degrees of transferability indicate that some
smells may not generalize well across different language con-
texts, underscoring the importance of carefully considering
the choice of code smells and their applicability when em-
ploying transfer learning techniques for code analysis in such
scenarios.

5.1.2 C++ and Python: Low Knowledge Transferability

In the context of the C++ and Python languages, the observed
poor transferability across all smell types suggests that the
application of transfer learning techniques for harmful code
detection faces significant challenges in these languages. The
relatively low scores highlight the difficulty in effectively
adapting harmful code detection rules between C++/Python
and other programming languages.
For the Complex Method, the model achieved excellent

results when training with C++ and applying to Java (97%),
but not as well when applied to C# (75%), compared with the
97% when applied to itself. Similarly, training with Python
and applying to Java yielded a moderate score of 76%, but
performance remained consistent when applied to C# (75%).
Moreover, in smell types Long Method, Multifaceted Ab-
straction, and Insufficient Modularization, both C++ and
Python showed scores around 80%, which emphasizes the
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Table 8. F-Measure of Transfer Learning trained with multiple sample sizes
Samples = 4 Samples = 8 Samples = 16 Samples = 32

Java C# C++ Python Java C# C++ Python Java C# C++ Python Java C# C++ Python

Complex Method Java 50% 68% 84% 50% 79% 76% 84% 79% 82% 84% 92% 74% 89% 84% 92% 81%
C# 54% 75% 93% 54% 79% 76% 84% 75% 93% 75% 92% 77% 75% 84% 92% 81%
C++ 55% 93% 75% 55% 93% 84% 84% 75% 93% 75% 92% 75% 93% 84% 92% 81%
Python 54% 75% 92% 54% 79% 75% 84% 79% 92% 75% 92% 75% 92% 84% 92% 81%

Long Method Java 50% 68% 84% 50% 79% 76% 84% 79% 82% 84% 92% 74% 89% 84% 92% 81%
C# 54% 75% 93% 54% 79% 76% 84% 75% 93% 75% 92% 77% 75% 84% 92% 81%
C++ 55% 93% 75% 55% 93% 84% 84% 75% 93% 75% 92% 75% 93% 84% 92% 81%
Python 54% 75% 92% 54% 79% 75% 84% 79% 92% 75% 92% 75% 92% 84% 92% 81%

Wide Hierarchy Java 0% 1% 1% 1% 3% 1% 0% 3% 2% 1% 2% 0% 3% 2% 1% 2%
C# 0% 1% 1% 1% 1% 1% 1% 1% 0% 1% 1% 0% 1% 1% 1% 1%
C++ 0% 1% 1% 1% 1% 1% 0% 1% 1% 1% 0% 1% 1% 1% 1% 1%
Python 0% 1% 1% 1% 1% 1% 1% 1% 0% 1% 1% 0% 1% 1% 1% 1%

Insufficient Modularization Java 30% 54% 30% 54% 54% 93% 75% 54% 93% 75% 92% 75% 93% 93% 92% 93%
C# 50% 75% 93% 54% 79% 75% 84% 75% 93% 75% 92% 77% 75% 84% 92% 81%
C++ 55% 93% 75% 55% 93% 84% 84% 75% 93% 75% 92% 75% 93% 84% 92% 81%
Python 54% 75% 92% 54% 79% 75% 84% 79% 92% 75% 92% 75% 92% 84% 92% 81%

Multifaceted Abstraction Java 32% 2% - 56% 23% - 62% 37% 7% 61% 40% - 61% 40% - 40%
C# 19% 14% 20% 25% 26% 23% 42% 34% 29% 46% 40% 25% 46% 40% 25% 40%
C++ 19% 34% 7% 32% 23% 83% 31% 25% 77% 33% 22% 88% 33% 22% 88% 22%
Python 19% 34% 7% 32% 23% 83% 31% 25% 77% 33% 22% 88% 33% 22% 88% 22%

complexity of these smells in C++ and Python code. These
findings indicate that the underlying structures and coding
practices in C++ and Python present unique nuances that hin-
der the straightforward transfer of knowledge learned from
other languages.
The results underscore the importance of considering

language-specific characteristics when applying transfer
learning techniques in code analysis. As C++ is known for
its intricacies and versatility, and Python for its dynamic and
flexible nature, bothmay require tailored approaches and spe-
cialized models to achieve more accurate and effective harm-
ful code detection.

Finding 2: C++ and Python show varying knowledge
transferability across languages, with Complex Method
achieving up to 97% accuracy when trained and tested
within the same language.

Further research and exploration of domain-specific fea-
tures and transfer learning strategies can aid in improving the
transferability of knowledge across programming languages,
ultimately enhancing the overall performance of harmful
code transfer learning approaches in the context of C++ and
Python.

5.1.3 Important Features in Transfer Learning for
Harmful Code

Table 9. features in transfer learning of harmful code smells trained
in different languages and tested in others.

C# C++ Python Java
C# SC (100.00%) SC (100.00%) SC (100.00%)

C++ MCC (99%)
DC (1%) LOC-Code (100.00%) LOC-Code (100.00%)

Python MCC (100%) MCC (92.31%)
CCM (7.69%) ES (100.00%)

Java SC (100%) MCC (91.30%)
DC (8.70%) MCC (100.00%)

Table 9 highlights the most influential metrics for detect-
ing harmful code across different languages. The metrics re-
flect how transfer learning models trained in one language
perform when applied to detect harmful code in others.

A key finding is the importance of the SumCyclomatic-
Strict (SC) metric, which consistently plays a crucial role
across C#, C++, Python, and Java. This metric captures struc-
tural complexity, a central factor in identifying harmful code
across languages.
Notably, in C++ and Python, SumCyclomaticModified

(MCC) and CountClassCoupledModified (CCM) stand out.
MCC and CountClassDerived (DC) together account for
99% of importance in C++, highlighting the influence of
code complexity and inheritance. Similarly, MCC (92.31%)
and CCM (7.69%) underscore the relevance of cyclomatic
complexity and class coupling in Python, reflecting its object-
oriented nature.
The Lines of Code (LOC) metric is significant when mod-

els trained in C++ are applied to Java, and vice versa, as
larger codebases are more prone to bugs. Python’s Exe-
cutable Statements (ES) metric accounts for 100% impor-
tance, reflecting its reliance on concise, dynamic code com-
pared to Java’s more static nature.
In conclusion, cyclomatic complexity metrics remain cen-

tral across languages, but language-specific features, such as
class coupling in Python and inheritance in C++, require spe-
cialized approaches for effective transfer learning. Tailoring
models to these features can enhance harmful code detection.

Finding 3: Cyclomatic complexity metrics are fun-
damental to harmful code detection across languages,
while language-specific features like class coupling
(Python) and inheritance (C++) demand specialized ap-
proaches for effective transfer learning.

5.2 Efficient Transfer Learning to Detect
Harmful Code

5.2.1 Java High Transferability with Small Samples

Tables 8 and 10 show that for most smells, 32 or 64 sam-
ples are sufficient, with minimal improvements beyond 128
samples.
For Complex Method, Java-to-C# performs best with 16

samples, while Java-to-C++ requires 128. In Long Method,
Java-to-C# peaks with 32 samples, and Java-to-C++ with 64.
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Table 10. F-Measure of Transfer Learning trained with multiple sample sizes
Samples = 32 Samples = 64 Samples = 128 Samples = 256

Java C# C++ Python Java C# C++ Python Java C# C++ Python

Java 77% 59% 10% 75% 82% 56% 32% 80% 75% 54% 33%
Complex Method C# 79% 84% 14% 75% 84% 75% 60% 12% 75% 67% 3%

C++ 74% 54% 97% 75% 92% 75% 47% 90% 66% 47% 94%
Python 80% 82% 75% 75% 82% 82% 75% 75% 75% 80% 75%

Java 71% 58% - 71% 56% 58% 73% 57% 3% 69% 57% 3%
Long Method C# 65% 56% - 63% 60% - 70% 66% - 64% 60% -

C++ 28% 34% 75% 35% 39% 84% 35% 38% 92% 36% 41% 90%
Python 80% 75% 75% - - 75% 80% 75% 75% 80% 80% 80%

Java 12% - - - - - - - - - - -
Wide Hierarchy C# 0% 0% 1% 0% - 1% - 0% 1% 0% 1% 1%

C++ 0% 1% 100% - - 100% - - 100% - - -
Python 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5%

Java 63% 72% 13% 76% 67% 68% 68% 73% 68% 76% 67% 68%
Insufficient Modularization C# 59% 73% 10% 65% 67% - 53% 74% 22% 60% 76% 27%

C++ 23% 47% 92% 25% 48% 95% 29% 52% 95% 34% 63% 96%
Python 92% 92% 92% 92% 92% 92% 92% 92% 92% 92% 92% 92%

Java 61% 40% - 64% 40% 2% 70% 40% 2% 76% 40% 2%
Multifaceted Abstraction C# 46% 40% 25% 50% 44% 4% 49% 44% 8% 50% 50% 20%

C++ 33% 22% 88% 30% 23% 88% 36% 24% 92% 41% 29% 95%
Python 91% 91% 98% 91% 91% 91% 91% 91% 91% 91% 91% 91%

For Wide Hierarchy, 8 samples suffice for Java-to-C#. Insuf-
ficient Modularization reaches near-optimal results with 32
samples for Java-to-C# and 16 for Java-to-C++. For Multi-
faceted Abstraction, Java-to-C# performs best with 64 sam-
ples, while Java-to-C++ yields a sub-optimal result with 8
samples.
These results highlight the efficiency of transfer learning

in Java, where 32 or 64 samples often suffice for effective
harmful code detection, helping improve software quality
and maintainability.

Finding 4: For most harmful code trained in Java, 32
or 64 samples are sufficient for effective transfer learn-
ing, with minimal gains beyond 128 samples.

This finding shows that developers can achieve effective
results with moderate sample sizes, suggesting that larger
datasets may not significantly enhance accuracy, thus opti-
mizing resource allocation in code detection.

5.2.2 Harmful Code Between C# and C++

The results presented in Tables 8 and 10 provide compelling
evidence of successful knowledge transfer between the C++
and C# languages for most code smells, demonstrating the
potential for cross-language applicability in code smell de-
tection.
An intriguing observation from the results is that a sam-

ple size of 32 already yields promising outcomes for most of
the analyzed smells. This highlights the efficiency of transfer
learning even with a relatively modest amount of data, which
can be advantageous when dealing with limited resources or
large-scale software projects. Nevertheless, to achieve opti-
mal performance, larger sample sizes are necessary, as evi-
denced by the Multifaceted Abstraction smell, where a sam-
ple size of 512was required to achieve favorable results. This
discrepancy in sample size requirements underlines the im-
portance of tailoring the transfer learning approach based on
the specific code smell and language combination, ensuring
more accurate and efficient detection.

Finding 5: Effective knowledge transfer between
most code smells in C++ and C# languages using trans-
fer learning, and optimal performance often necessitates
larger sample sizes, particularly observed in the case of
Multifaceted Abstraction.

These findings have significant implications for practition-
ers and researchers in software engineering. Understanding
the transferability of knowledge between programming lan-
guages can guide the development of more effective code
analysis tools that can be applied across diverse language
ecosystems. Moreover, the insights on sample size require-
ments shed light on the trade-offs between computational re-
sources and detection accuracy, aiding in the optimization
of transfer learning techniques for code smell detection in
real-world software projects. Overall, this study contributes
valuable knowledge towards advancing transfer learning ap-
plications in software engineering and promoting better code
quality and maintainability.

5.3 Effective Transfer Learning for Detecting
Bugs

Our goal was to evaluate the effectiveness of transfer learn-
ing for detecting bugs using the Perceptron model. Separate
models were trained for each language (Java, C#, C++) us-
ing code snippets with code smells from commits. We aimed
to see if models trained in one language could detect bugs
in another. Table 12 shows that all models performed poorly,
but C++ had the highest accuracy, precision, recall, and F1
score, suggesting better suitability for this task compared to
Java and C#.
Table 11 further highlights the F-measure across lan-

guages. C++ achieved the highest F-measure (44%), while
C# had the lowest (8%). Java scored in between (9%). These
results, though suboptimal, indicate that code smells are not
effective for detecting bugs across languages. Models with
‘-’ in the table failed to run due to data correlations above
0.75.
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Table 11. Results for Model Trained with Code Smells and Tested
with Bugs

Java C# C++

Java 9% 26% -
C# 8% 21% -
C++ 26% 44% -

Table 12. Accuracy, precision, recall, and F-measure for the bug
correctly classified by the prediction model trained with smells
Model Language Accuracy Precision Recall F1
Java 0.195 0.241 0.283 0.260
C# 0.187 0.204 0.216 0.210
C++ 0.291 0.364 0.558 0.440

Finding 1: Code smells are not suited, in the context
of transfer learning models, for the detection of bugs.

Figure 3 presents the results of our transfer learning model
for bug detection. The confusion matrices provide a detailed
breakdown of the model’s performance across different pro-
gramming languages. In general, we can see in the matrices
that the number of FP and FN are bigger except for the C++
vs C#. In other words, the model fails to identify actual pos-
itive instances (higher FN) while also incorrectly labeling
negative instances as positive (higher FP). Finally, Tables 12
and 13 show the results for the accuracy, precision, recall,
and f-measure for the results of our trained model. Consis-
tently uniform values were noticed across all languages. In
an effort to decipher this phenomenon, a closer examination
of our dataset revealed a crucial insight. The application of
a correlation threshold, removing columns with coefficients
exceeding 0.75, inadvertently resulted in a reduced dataset
size. As a consequence, the models, regardless of the pro-
gramming language, were operating with a substantially sim-
ilar set of data.

5.4 Effective Transfer Learning for Detecting
Code Smells

We investigated how a transfer learning model trained with
bug-related code snippets detects code smells across lan-
guages. Using the Perceptron algorithm, models were trained
on Java, C#, and C++ snippets. As shown in Table 13, all
models had identical accuracy, precision, recall (100%), and
F1 score (0.6), indicating consistent performance across lan-
guages.
Table 14 compares success rates across languages, with

Java-to-C#, C#-to-C++, and Java-to-C++ showing 67%,
while the lowest was 63%. Overall, the rates ranged from
64-65%.
The predictive power of bug-related snippets stems from

shared characteristics like high cyclomatic complexity, large
code size, and strong class coupling, commonly seen in
smells like Long Method, God Class, and Complex Method.

Table 13. Accuracy, precision, recall, and F-measure for the smell
correctly classified by the prediction model trained with bugs
Model Language Accuracy Precision Recall F1
Java 0.500 0.500 1.000 0.666
C# 0.500 0.500 1.000 0.666
C++ 0.500 0.500 1.000 0.666

Table 14. Results for Model Trained with Bugs and Tested with
Code Smells

Java C# C++

Java 65% 64% 67%
C# 67% 63% 67%
C++ 67% 64% 67%

We also acknowledge that some smells share similar char-
acteristics, like the Long Method and the Complex Method,
which could hinder differentiation. Future work will refine
feature sets to address this overlap.

Finding 2: Code snippets with bugs are strong predic-
tors for detecting code smells in transfer learning mod-
els.

The outcomes of our transfer learning model for code
smell detection are displayed in Figure 4. Through confusion
matrices, a comprehensive breakdown of the model’s perfor-
mance across various programming languages is depicted. In
the matrices, we can see that most cases involving the C++
language had a small sample because the dataset with C++
bugs only had 18 cases. Moreover, we can see that in this
model, the results are better since we can see a higher num-
ber of True positive cases. However, the number of false pos-
itives is still high.

General Finding: Transfer learning models trained
with code smells are poorly suited to detect bugs, while
the ones trained with bugs are better suited to detect
code smells. However, both models still need improve-
ments.

6 Threats to Validity

6.1 Construct and Internal Validity.
The accuracy of code smell detection and thresholds used
could influence results. To mitigate this, we based our
techniques on established work (Palomba et al., 2018;
Amorim et al., 2016; Kovacevic et al., 2022) and aligned
data collection and algorithm selection with relevant re-
search (FontanaArcelli et al.; Sharma et al., 2019; Ardimento
and et al; De Stefano et al.; FontanaArcelli and Zanoni, 2017)
to enhance robustness.
Our methodology faced limitations, including constraints

on conducting a full ablation study due to limited labeled
data. Instead, we performed sample-size-related ablation in
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Figure 3. Confusion Matrix of the models trained with smells and tested with bugs

Figure 4. Confusion Matrix of the models trained with bugs and tested with code smells

RQ2, acknowledging this as a limitation. Transfer learning
models showed limited effectiveness in predicting bugs from
code smells, likely requiring more sophisticated models or
additional features.

6.2 External Validity.

Our research also lacked a baseline comparison, which
would have been valuable for evaluating the effectiveness
of our transfer learning approach. The domain of harmful
code detection and the application of transfer learning are rel-
atively novel, which explains the absence of similar studies.
We addressed this by comparing models within the same lan-
guage (e.g., C++ vs C++) for a more accurate cross-language
comparison.
It is essential to ensure that performance differences be-

tween languages and code smells are not due to random vari-
ations. We used established methods to collect buggy and
smelly data (Oizumi et al., 2019; Oizumi et al., 2018; Sousa
et al., 2017; Falcão et al., 2020; Rodrigo Lima et al., 2020).

Our exclusive use of open-source projects may limit the
generalizability to proprietary software environments. How-
ever, open-source projects offer diversity, transparency, and
replicability, enabling a wide analysis of code smells across
various contexts. They often reflect industry standards and
real-world practices, despite potential differences from pro-
prietary software. Open-source projects also provide long de-
velopment histories and diverse coding styles, making them
valuable for studying code smells.

7 Conclusion
In this study, we applied transfer learning for harmful code
detection across Java, C#, C++, and Python. Strong knowl-
edge transfer was observed between Java and C#, while C++
posed greater challenges. A sample size of 32 was effective
for most code smells, though larger datasets were needed for
complex cases like Multifaceted Abstraction.
Our findings highlight transfer learning’s potential in

cross-language harmful code detection and the importance
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of sample size and feature selection. While code smells were
not ideal for predicting bugs, bugs effectively predicted code
smells.
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